CN102120177A - 用于去除水溶液中单环芳香烃的吸附剂及其制备方法 - Google Patents
用于去除水溶液中单环芳香烃的吸附剂及其制备方法 Download PDFInfo
- Publication number
- CN102120177A CN102120177A CN 201010618278 CN201010618278A CN102120177A CN 102120177 A CN102120177 A CN 102120177A CN 201010618278 CN201010618278 CN 201010618278 CN 201010618278 A CN201010618278 A CN 201010618278A CN 102120177 A CN102120177 A CN 102120177A
- Authority
- CN
- China
- Prior art keywords
- adsorbent
- aqueous solution
- preparation
- mononuclear aromatic
- meant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
一种纳米材料技术领域的用于去除水溶液中单环芳香烃的吸附剂及其制备方法,通过碳纳米管改性处理后分散于酒精中制备得到用于去除水溶液中单环芳香烃的吸附剂。本发明充分利用碳纳米管表面独特的物理、化学特性,通过次氯酸钠氧化改性手段,大幅度提高其对水溶液中有机污染物的吸附性能。
Description
技术领域
本发明涉及的是一种纳米材料技术领域的吸附剂及其制备方法,具体是一种用于去除水溶液中单环芳香烃的吸附剂及其制备方法。
背景技术
随着经济的发展和科技的进步,石油及其制品广泛地应用于国民经济的各个领域和人类的日常生活中,但在为人类文明带来巨大利益的同时,在其开采、贮运、炼制加工及使用和运输过程中,由于井喷事故、泄漏及检修等原因导致石油烃类的溢出和排放、含油废水的排放、灌溉,使大量的油类污染物进入水环境中,对水环境造成严重污染,破坏了生态系统,危及人体健康。石油烃类污染是近几年继农药污染之后的又一大污染,已经成为人类社会可持续发展所面临的重要环境问题。吸附法是一种设备投资小,操作简单,快速且易于广泛应用的去除水中苯系物的方法。该方法的关键在于寻找和开发具有高吸附容量的高效、快速的新型吸附材料。
碳纳米管作为一种新型优良的吸附材料,在环境保护领域的应用研究已经成为人们广泛关注的热点课题。经过对现有技术的检索发现,碳纳米管是由日本电镜学家饭岛博士(Iijima)于1991首次正式报道的,它是由石墨烯片层卷成的无缝、中空的管体,特殊的结构决定了碳纳米管具有独特的物理、化学性质,较高的比表面积、可控的孔径分布以及可修饰的表面化学等特性,这些性能克服了许多传统吸附剂的缺陷,使其对污染物具有较高的亲和性和选择性吸附的能力,成为一种理想的候选吸附材料。但是碳纳米管不溶于水,这将影响其在水溶液中的吸附性能,此外对碳纳米管及其相关材料的研究多集中在对重金属离子的去除上,而对有机物的吸附不能令人满意。因此,利用碳纳米管作为吸附材料时,采用恰当的氧化剂对碳纳米管进行表面改性,获得能够在水溶液中均匀分散,同时对于有机污染物又具有良好吸附性能的新型改性碳纳米管吸附材料也是一个亟待解决的重要问题。
发明内容
本发明针对现有技术存在的上述不足,提供一种用于去除水溶液中单环芳香烃的吸附剂及其制备方法,充分利用碳纳米管表面独特的物理、化学特性,通过次氯酸钠氧化改性手段,大幅度提高其对水溶液中有机污染物的吸附性能。
本发明是通过以下技术方案实现的,本发明通过将碳纳米管改性处理后分散于酒精中制备得到用于去除水溶液中单环芳香烃的吸附剂。
所述的碳纳米管改性处理是指:将干燥的碳纳米管粉末与次氯酸钠水溶液以1g∶200mL的比例混合,在室温下经磁力搅拌充分反应后真空抽滤,并用去离子水反复冲洗、抽滤碳纳米管直至溶液pH值达到7;
所述的碳纳米管是指:纯化的多壁碳纳米管粉末,管径为8nm~50nm,管长为1μm~1mm。
所述的次氯酸钠水溶液是指:质量百分比浓度为1%~50%次氯酸钠水溶液。
所述的充分反应是指:在磁力环境中不断搅拌并反应12~24小时。
所述的抽滤是指:采用抽滤瓶过滤,滤膜为水溶性滤膜,滤膜的孔径为0.22μm~0.45μm。
所述的分散于酒精是指:将碳纳米管分散液分散于酒精中,放入120℃真空干燥箱中干燥处理后得到用于去除水溶液中单环芳香烃的吸附剂。
所述的单环芳香烃是指:苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯等。
本发明首次采用低成本、常规试剂次氯酸钠溶液对于碳纳米管进行改性处理,获得在溶液中分散性能良好的碳纳米管样品,并首次将这种采用新工艺改性后的碳纳米管作为去除水溶液中单环芳香烃污染物的吸附材料,试验结果显示,采用目前新工艺改善了其在水溶液中的疏水性,改性后的材料对水溶液中的单环芳香烃具有高效快速吸附性能,与其他吸附剂相比,吸附容量大幅增加,最高可增加2~3倍。
本发明的优点在于:
(1)充分利用碳纳米管表面独特可修饰的物理、化学特性,通过简单的次氯酸钠液相氧化改性的手段大幅度提高其对水溶液中有机污染物的吸附性能。
(2)制备过程不产生对环境有污染的副产物,仅采用常规化学试剂次氯酸钠,原料简单易得,成本低廉,适于大批量生产。
(3)本发明制备工艺简单、条件易控,处理过程对碳纳米管管壁结构未发生破坏,改善了碳纳米管的疏水性,提高了其在水溶液中的分散性能,制备出高效快速吸附水溶液中单环芳香烃的新型吸附材料。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
称取干燥后碳纳米管粉末2.0g,放入400mL浓度为3%次氯酸钠水溶液中,室温下经磁力搅拌充分反应12小时;反应时间结束真空抽滤后,再用去离子水反复冲洗、抽滤碳纳米管直至溶液pH值达到7为止;将得到的碳纳米管分散于酒精中,放入120℃真空干燥箱中干燥,得到水溶性良好的改性碳纳米管吸附材料。将20mg此材料加入到50mL甲苯浓度为10mg/L~100mg/L溶液中,吸附实验结果:本发明制备的吸附材料对甲苯的最大吸附容量为95.4mg/g,而未氧化改性的碳纳米管的最大吸附容量为40.0mg/g。
实施例2
称取干燥后碳纳米管粉末2.0g,放入400mL浓度为30%次氯酸钠水溶液中,室温下经磁力搅拌充分反应12小时;反应时间结束真空抽滤后,再用去离子水反复冲洗、抽滤碳纳米管直至溶液pH值达到7为止;将得到的碳纳米管分散于酒精中,放入120℃真空干燥箱中干燥,得到水溶性良好的改性碳纳米管吸附材料。将20mg此材料加入到50mL乙苯浓度为10mg/L~100mg/L溶液中,吸附试验结果:本发明制备的吸附材料对乙苯的最大吸附容量为85.5mg/g,而未氧化改性的碳纳米管的最大吸附容量为40.0mg/g。
实施例3
称取干燥后碳纳米管粉末2.0g,放入400mL浓度为3%次氯酸钠水溶液中,室温下经磁力搅拌充分反应12小时;反应时间结束真空抽滤后,再用去离子水反复冲洗、抽滤碳纳米管直至溶液pH值达到7为止;将得到的碳纳米管分散于酒精中,放入120℃真空干燥箱中干燥,得到水溶性良好的改性碳纳米管吸附材料。将20mg此材料加入到50mL乙苯浓度为10mg/L~100mg/L溶液中,吸附实验结果:本发明制备的吸附材料对乙苯的最大吸附容量为115.6mg/g,而未氧化改性的碳纳米管的最大吸附容量为61.1mg/g。
实施例4
称取干燥后碳纳米管粉末2.0g,放入400mL浓度为30%次氯酸钠水溶液中,室温下经磁力搅拌充分反应12小时;反应时间结束真空抽滤后,再用去离子水反复冲洗、抽滤碳纳米管直至溶液pH值达到7为止;将得到的碳纳米管分散于酒精中,放入120℃真空干燥箱中干燥,得到水溶性良好的改性碳纳米管吸附材料。将20mg此材料加入到50mL间二甲苯浓度为10mg/L~100mg/L溶液中,吸附试验结果:本发明制备的吸附材料对间二甲苯的最大吸附容量为109.8mg/g,而未氧化改性的碳纳米管的最大吸附容量为76.8mg/g。
Claims (9)
1.一种用于去除水溶液中单环芳香烃的吸附剂的制备方法,其特征在于,通过将碳纳米管改性处理后分散于酒精中制备得到用于去除水溶液中单环芳香烃的吸附剂。
2.根据权利要求1所述的用于去除水溶液中单环芳香烃的吸附剂的制备方法,其特征是,所述的碳纳米管改性处理是指:将干燥的碳纳米管粉末与次氯酸钠水溶液以1g∶200mL的比例混合,在室温下经磁力搅拌充分反应后真空抽滤,并用去离子水反复冲洗、抽滤碳纳米管直至溶液pH值达到7。
3.根据权利要求1或2所述的用于去除水溶液中单环芳香烃的吸附剂的制备方法,其特征是,所述的碳纳米管是指:纯化的多壁碳纳米管粉末,管径为8nm~50nm,管长为1μm~1mm。
4.根据权利要求2所述的用于去除水溶液中单环芳香烃的吸附剂的制备方法,其特征是,所述的次氯酸钠水溶液是指:质量百分比浓度为1%~50%次氯酸钠水溶液。
5.根据权利要求2所述的用于去除水溶液中单环芳香烃的吸附剂的制备方法,其特征是,所述的充分反应是指:在磁力环境中不断搅拌并反应12~24小时。
6.根据权利要求2所述的用于去除水溶液中单环芳香烃的吸附剂的制备方法,其特征是,所述的抽滤是指:采用抽滤瓶过滤,滤膜为水溶性滤膜,滤膜的孔径为0.22μm~0.45μm。
7.根据权利要求1所述的用于去除水溶液中单环芳香烃的吸附剂的制备方法,其特征是,所述的分散于酒精是指:将碳纳米管分散液分散于酒精中,放入120℃真空干燥箱中干燥处理后得到用于去除水溶液中单环芳香烃的吸附剂。
8.一种吸附剂,其特征在于,所述吸附剂通过上述任一权利要求所述方法制备得到且用于去除水溶液中单环芳香烃。
9.根据权利要求8所述的吸附剂,其特征是,所述的单环芳香烃是指:苯、甲苯、乙苯、邻二甲苯、间二甲苯以及对二甲苯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010618278 CN102120177B (zh) | 2010-12-30 | 2010-12-30 | 用于去除水溶液中单环芳香烃的吸附剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010618278 CN102120177B (zh) | 2010-12-30 | 2010-12-30 | 用于去除水溶液中单环芳香烃的吸附剂及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102120177A true CN102120177A (zh) | 2011-07-13 |
CN102120177B CN102120177B (zh) | 2012-12-26 |
Family
ID=44248895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010618278 Expired - Fee Related CN102120177B (zh) | 2010-12-30 | 2010-12-30 | 用于去除水溶液中单环芳香烃的吸附剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102120177B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102513060A (zh) * | 2011-11-14 | 2012-06-27 | 上海交通大学 | 高效吸附水相中单环芳香烃的活化碳纳米管吸附剂 |
CN104826395A (zh) * | 2015-04-21 | 2015-08-12 | 蚌埠德美过滤技术有限公司 | 一种抗静电吸附过滤剂及其制作方法 |
CN108097207A (zh) * | 2017-11-30 | 2018-06-01 | 北京建筑大学 | 协同去除重金属和多环芳烃的渗滤材料及制备和应用 |
US10399866B2 (en) | 2016-02-09 | 2019-09-03 | King Fahd University Of Petroleum And Minerals | Method for removing P-xylene from aqueous compositions |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007275815A (ja) * | 2006-04-10 | 2007-10-25 | Inoac Corp | カーボンナノチューブ担持体およびそれを含む捕捉材 |
-
2010
- 2010-12-30 CN CN 201010618278 patent/CN102120177B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007275815A (ja) * | 2006-04-10 | 2007-10-25 | Inoac Corp | カーボンナノチューブ担持体およびそれを含む捕捉材 |
Non-Patent Citations (1)
Title |
---|
《Applied Surface Science》 20080522 Chungsying Lu et al. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions 第7035页第1节、第7036页第2节以及第7041页表3 1-9 第254卷, * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102513060A (zh) * | 2011-11-14 | 2012-06-27 | 上海交通大学 | 高效吸附水相中单环芳香烃的活化碳纳米管吸附剂 |
CN104826395A (zh) * | 2015-04-21 | 2015-08-12 | 蚌埠德美过滤技术有限公司 | 一种抗静电吸附过滤剂及其制作方法 |
US10399866B2 (en) | 2016-02-09 | 2019-09-03 | King Fahd University Of Petroleum And Minerals | Method for removing P-xylene from aqueous compositions |
CN108097207A (zh) * | 2017-11-30 | 2018-06-01 | 北京建筑大学 | 协同去除重金属和多环芳烃的渗滤材料及制备和应用 |
CN108097207B (zh) * | 2017-11-30 | 2021-05-04 | 北京建筑大学 | 协同去除重金属和多环芳烃的渗滤材料及制备和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN102120177B (zh) | 2012-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Geng et al. | Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics | |
Qu et al. | Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: Performance, mechanisms and microbial community evolution | |
Zhang et al. | A key role of inner-cation-π interaction in adsorption of Pb (II) on carbon nanotubes: Experimental and DFT studies | |
Xiong et al. | Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent | |
Saravanan et al. | Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb (II) ions from water system | |
Güzel et al. | Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution | |
Li et al. | Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar | |
Chabi et al. | Removal of tetracycline with aluminum boride carbide and boehmite particles decorated biochar derived from algae | |
Hao et al. | Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment | |
Hung et al. | Degradation of organic contaminants in marine sediments by peroxymonosulfate over LaFeO3 nanoparticles supported on water caltrop shell-derived biochar and the associated microbial community responses | |
Qin et al. | Novel N-doped hierarchically porous carbons derived from sustainable shrimp shell for high-performance removal of sulfamethazine and chloramphenicol | |
Jiang et al. | Nanobiochar for the remediation of contaminated soil and water: challenges and opportunities | |
Sun et al. | Adsorption of nitroimidazole antibiotics from aqueous solutions on self-shaping porous biomass carbon foam pellets derived from Vallisneria natans waste as a new adsorbent | |
Strachowski et al. | Comparative studies of sorption of phenolic compounds onto carbon-encapsulated iron nanoparticles, carbon nanotubes and activated carbon | |
He et al. | Enhanced adsorption capacity of sulfadiazine on tea waste biochar from aqueous solutions by the two-step sintering method without corrosive activator | |
Fu et al. | Characterization of biochar derived from pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution | |
Flora et al. | The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar | |
Song et al. | Biocompatible G-Fe3O4/CA nanocomposites for the removal of Methylene Blue | |
Ma et al. | Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water | |
Zhou et al. | Synthesis of honeycomb lignin-based biochar and its high-efficiency adsorption of norfloxacin | |
Yang et al. | Investigation of the sequestration mechanisms of Cd (II) and 1-naphthol on discharged multi-walled carbon nanotubes in aqueous environment | |
Qin et al. | Dual-wastes derived biochar with tailored surface features for highly efficient p-nitrophenol adsorption | |
Jain et al. | The potential application of carbon nanotubes in water Treatment: A state-of-the-art-review | |
Guan et al. | Amphiphilic hollow carbonaceous microspheres for the sorption of phenol from water | |
CN100455347C (zh) | 高浓度难降解有机废水的多级吸附剂制备和使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121226 Termination date: 20151230 |
|
EXPY | Termination of patent right or utility model |