CN102110407B - 基于像素驱动电路的放电方法 - Google Patents

基于像素驱动电路的放电方法 Download PDF

Info

Publication number
CN102110407B
CN102110407B CN2009102440679A CN200910244067A CN102110407B CN 102110407 B CN102110407 B CN 102110407B CN 2009102440679 A CN2009102440679 A CN 2009102440679A CN 200910244067 A CN200910244067 A CN 200910244067A CN 102110407 B CN102110407 B CN 102110407B
Authority
CN
China
Prior art keywords
effect transistor
field effect
data
light emitting
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009102440679A
Other languages
English (en)
Other versions
CN102110407A (zh
Inventor
龙春平
孙力
肖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN2009102440679A priority Critical patent/CN102110407B/zh
Publication of CN102110407A publication Critical patent/CN102110407A/zh
Application granted granted Critical
Publication of CN102110407B publication Critical patent/CN102110407B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本发明提供像素驱动电路、放电方法、数据写入方法及驱动显示方法,其中一种像素驱动电路包括扫描线、数据线、用于连接电源极的电源线、用于连接接地极的接地线以及有机发光二极管器件,并且还包括:电容充电场效应晶体管、数据信号场效应晶体管、发光驱动场效应晶体管和数据存储电容。本发明使用三个薄膜晶体管和一个电容即3T1C结构,有利于减少电源负载、降低功耗。

Description

基于像素驱动电路的放电方法
技术领域
本发明实施例涉及有机发光二极管的驱动领域,尤其涉及像素驱动电路、放电方法、数据写入方法及驱动显示方法。 
背景技术
有机发光二极管(Organic Light-Emitting Diode,简称:OLED)显示技术与传统的液晶显示器(Liquid Crystal Display,简称:LCD)显示方式不同,它无需背光灯,而采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光,以实现显示功能。其中,有源矩阵有机发光二极管(Active Matrix Organic Light-Emitting Diode,简称:AMOLED)的每个像素配备具有开关功能的薄膜晶体管(Thin FilmTransistor,简称:TFT),在TFT的驱动下点亮各个像素。AMOLED中使用的TFT的结构与传统LCD中的TFT结构并不相同,这是因为LCD采用电压驱动,而AMOLED采用电流驱动,其像素亮度与电流量成正比。 
现有的像素驱动电路具有如图1所示的结构。如图所示,该驱动电路包括一个开关场效应晶体管14、充电场效应晶体管15、隔断场效应晶体管16、驱动场效应晶体管17、存储电容18、扫描线12、数据线13、电源(Vdd)、接地极(Vss)、用于控制隔断场效应晶体管16的选择信号线19、和OLED11。该驱动电路的工作原理简要说明如下: 
当扫描线12提供一个高电平时,同时打开了开关场效应晶体管14和充电场效应晶体管15;数据线13的数据信号电流此时流过开关场效应晶体管14和充电场效应晶体管15;流过充电场效应晶体管15的数据信号电流给存储电容18充电,使得驱动场效应晶体管17的栅极和源极之间的 栅源压差(Vgs)升高;当Vgs超过驱动场效应晶体管17的阈值电压以后,通过开关场效应晶体管14的数据信号电流有一部分分流通过驱动场效应晶体管17;此时选择信号线19提供低电平,使得隔断场效应晶体管16处于关闭状态,保证分流的数据信号电流只会通过驱动场效应晶体管17,而不受其它电路元件或信号的影响;存储电容18充电直到驱动场效应晶体管17的Vgs达到一定值,使得驱动场效应晶体管17工作在电流饱和区,驱动场效应晶体管17的Vgs使得数据信号电流完全通过驱动场效应晶体管17;这时选择信号线19打开隔断场效应晶体管16,数据信号电流被完全复制为驱动信号电流,提供给OLED11发光显示。 
现有的像素驱动电路的设计目的是为了通过提供复制的数据信号电流作为驱动信号电流来驱动OLED11发光,以补偿非晶硅TFT的阈值电压漂移。 
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:现有的像素驱动电路是一种4T1C结构,即:四个晶体管和一个电容的结构。现有像素驱动电路中的OLED的驱动电流是提供的信号电流,与驱动场效应晶体管的阈值电压无关。然而,该像素驱动电路在电源极和OLED的工作线路上,使用了两个串联的晶体管,即:隔断场效应晶体管16和驱动场效应晶体管17,这两个晶体管的工作电压增加了电源负载,使得像素驱动电路的功耗增大;并且,由于需要使用额外的选择信号线19控制隔断晶体管16,因此,增加了电路设计和阵列设计的复杂性,有可能会降低良率。对于底部发光的AMOLED显示器而言,由于晶体管的数据较多,而晶体管本身不透光,因此,4T1C的像素驱动电路也不利于高解析度显示器的制作。 
发明内容
本发明实施例提供像素驱动电路、放电方法、数据写入方法及驱动显示 方法,用以减少电源负载、降低功耗,且结构简单。 
本发明实施例提供一种像素驱动电路,包括扫描线、数据线、用于连接电源极的电源线、用于连接接地极的接地线以及有机发光二极管器件,其中还包括:电容充电场效应晶体管、数据信号场效应晶体管、发光驱动场效应晶体管和数据存储电容; 
所述电容充电场效应晶体管的栅极和数据信号场效应晶体管的栅极相连,且均连接所述扫描线; 
所述电容充电场效应晶体管的漏极和数据信号场效应晶体管的漏极分别连接所述数据线; 
所述电容充电场效应晶体管的源极连接所述数据存储电容的高电位端及所述发光驱动场效应晶体管的栅极; 
所述数据信号场效应晶体管的源极连接所述电源线; 
所述发光驱动场效应晶体管的漏极连接所述电源线,源极连接所述接地线及所述数据存储电容的低电位端; 
所述有机发光二极管器件位于所述接地线上,该有机发光二极管器件的阳极连接所述数据存储电容与所述接地线的连接点,阴极连接所述接地极。 
本发明实施例提供一种基于上述像素驱动电路的放电方法,其中包括: 
扫描线上提供作为高电平的扫描信号,使电容充电场效应晶体管及数据信号场效应晶体管打开; 
数据线上提供负数据电流,使数据存储电容放电; 
电源线向发光驱动场效应晶体管的漏极提供作为低压的电源信号,使有机发光二极管器件处于关闭状态。 
本发明实施例提供一种基于上述像素驱动电路的数据写入方法,其中当所述像素驱动电路完成放电之后包括: 
扫描线上提供作为高电平的扫描信号,使电容充电场效应晶体管及数据信号场效应晶体管打开; 
数据线上提供正数据电流,使数据存储电容充电; 
电源线向发光驱动场效应晶体管的漏极提供作为低压的电源信号,使有机发光二极管器件处于关闭状态。 
本发明实施例提供一种基于上述像素驱动电路的驱动显示方法,其中当所述像素驱动电路完成数据写入之后包括: 
扫描线上提供作为低电平的扫描信号,使电容充电场效应晶体管及数据信号场效应晶体管关闭; 
电源线向发光驱动场效应晶体管的漏极提供作为高压的电源信号,使有机发光二极管器件处于导通发光状态。 
本发明实施例提供另一种像素驱动电路,包括扫描线、数据线、用于连接电源极的电源线、用于连接接地极的接地线以及有机发光二极管器件,其中还包括:电容充电场效应晶体管、数据信号场效应晶体管、发光驱动场效应晶体管和数据存储电容; 
所述电容充电场效应晶体管的栅极和数据信号场效应晶体管的栅极相连,且均连接所述扫描线; 
所述电容充电场效应晶体管的漏极和数据信号场效应晶体管的漏极分别连接所述数据线; 
所述电容充电场效应晶体管的源极连接所述数据存储电容的高电位端及所述发光驱动场效应晶体管的栅极; 
所述数据信号场效应晶体管的源极连接所述电源线; 
所述发光驱动场效应晶体管的漏极连接所述电源线,源极连接所述接地线及所述数据存储电容的低电位端; 
所述有机发光二极管器件位于所述电源线上,该有机发光二极管器件的阴极连接所述数据信号场效应晶体管与所述电源线的连接点,阳极连接所述电源极。 
本发明实施例提供一种基于上述另一种像素驱动电路的放电方法,其 中包括: 
扫描线上提供作为高电平的扫描信号,使电容充电场效应晶体管及数据信号场效应晶体管打开; 
数据线上提供负数据电流,使数据存储电容放电; 
接地线向发光驱动场效应晶体管的源极提供作为高压的接地信号,使有机发光二极管器件处于关闭状态。 
本发明实施例提供一种基于上述另一种像素驱动电路的数据写入方法,其中当所述像素驱动电路完成放电之后包括: 
扫描线上提供作为高电平的扫描信号,使电容充电场效应晶体管及数据信号场效应晶体管打开; 
数据线上提供正数据电流,使数据存储电容充电; 
接地线向发光驱动场效应晶体管的源极提供作为高压的接地信号,使有机发光二极管器件处于关闭状态。 
本发明实施例提供一种基于上述另一种像素驱动电路的驱动显示方法,其中当所述像素驱动电路完成数据写入之后包括: 
扫描线上提供作为低电平的扫描信号,使电容充电场效应晶体管及数据信号场效应晶体管关闭; 
接地线向发光驱动场效应晶体管的源极提供作为低压的接地信号,使有机发光二极管器件处于导通发光状态。 
本发明实施例所述像素驱动电路使用三个薄膜晶体管和一个电容即3T1C结构,由于不使用两个晶体管串联的结构,因此有利于减少电源负载、降低功耗;另外,由于不使用除栅线和数据线、电源线和接地极以外的信号控制线,因此,电路结构更加简单、易于设计,有利简化制造工艺和提高良率,从而更适用于小像素、高解析度和低功耗的OLED器件应用。 
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。 
图1为现有像素驱动电路的结构示意图; 
图2本发明所述像素驱动电路实施例一的结构示意图; 
图3为本发明所述像素驱动电路实施例一的信号时序图; 
图4A为本发明所述基于图2所示像素驱动电路的放电方法实施例一的流程图; 
图4B为本发明所述基于图2所示像素驱动电路的数据写入方法实施例一的流程图; 
图4C为本发明所述基于图2所示像素驱动电路的驱动显示方法实施例一的流程图; 
图5本发明所述用于OLED的像素驱动电路实施例二的结构示意图; 
图6为本发明所述用于0LED的像素驱动电路实施例二的信号时序图。 
图7A为本发明所述基于图5所示像素驱动电路的放电方法实施例二的流程图; 
图7B为本发明所述基于图5所示像素驱动电路的数据写入方法实施例二的流程图; 
图7C为本发明所述基于图5所示像素驱动电路的驱动显示方法实施例二的流程图。 
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 
本发明提供一种像素驱动电路和驱动方法,使得向OLED提供电流的薄膜晶体管的应力效应最小化。使用电流调制信号在像素驱动电路写入一个存储电压,像素驱动电路校正薄膜晶体管的阈值电压变化。OLED驱动电流只通过一个薄膜晶体管,适合于精确灰度调节的高清晰度显示器。 
图2本发明所述用于OLED的像素驱动电路实施例一的结构示意图,如图所示,该像素驱动电路包括:数据线23、扫描线22、用于连接电源极(Vdd)的电源线24、用于连接接地极(Vss)的接地线25以及OLED器件21,此外还包括:电容充电场效应晶体管26、数据信号场效应晶体管27、发光驱动场效应晶体管28以及数据存储电容29,其中: 
电容充电场效应晶体管26的栅极和数据信号场效应晶体管27的栅极相连,且均连接所述扫描线22;电容充电场效应晶体管26的漏极和数据信号场效应晶体管27的漏极分别连接所述数据线23;电容充电场效应晶体管26的源极连接数据存储电容29的高电位端及发光驱动场效应晶体管28的栅极;数据信号场效应晶体管27的源极连接所述电源线24;发光驱动场效应晶体管28的漏极连接所述电源线24,源极连接所述接地线25及所述数据存储电容29的低电位端;所述OLED器件21位于所述接地线25上,该OLED器件21的阳极连接所述数据存储电容29与所述接地线25的连接点,阴极连接所述接地极。 
本实施例所述像素驱动电路以公共阴极方式布置OLED器件21,即:阵列基板上所有像素的OLED器件21的阴极均共同连接到接地极Vss。一般而言,在布置OLED器件21时,公共阴极方式比公共阳极方式在制造工艺方面更容易保证良率。这是因为,作为阳极的电源极通常是由透明的铟锡氧化物(Indium Tin Oxides,简称:ITO)层制成,而作为阴极的接地极通常是由金属和ITO层制成。当采用共阳极方式时,接地极设置于面板的底 部,使接地极的金属厚度受到了限制,从而会影响良率;当采用共阴极方式时,电源极设置于面板的底部,由于ITO层本身是透明的,所以无需限制其厚度,从而更容易保证良率。 
本实施例所述像素驱动电路使用三个薄膜晶体管和一个电容即3T1C结构,由于不使用两个晶体管串联的结构,因此有利于减少电源负载、降低功耗;另外,由于不使用除栅线和数据线、电源线和接地极以外的信号控制线,因此,电路结构更加简单、易于设计,有利简化制造工艺和提高良率,从而更适用于小像素、高解析度和低功耗的OLED器件应用。 
其中的三个场效应晶体管,即:电容充电场效应晶体管26、数据信号场效应晶体管27和发光驱动场效应晶体管28可以为非晶硅N型场效应晶体管、多晶硅N型场效应晶体管、多晶硅P型场效应晶体管、或非晶态氧化物半导体场效应晶体管,如:铟-镓-锌-氧(In-Ga-Zn-0,简称:IGZO)TFT。 
图3为本发明所述用于OLED的像素驱动电路实施例一的信号时序图,其中包括扫描线22的扫描信号时序、数据线23的数据信号时序和电源线24的电源信号时序。其中,为了简化驱动芯片的设计复杂性,可以将扫描信号电压V1和V2设置为相同的值;另外,电源线24也可以和同一行其它像素的电源线连接在一起,由驱动芯片统一提供电源信号Vd0和Vd1。 
以下结合图3介绍该图2所示象素驱动电路的各个工作阶段: 
放电阶段(T0~T1): 
图4A为本发明所述基于图2所示像素驱动电路的放电方法实施例一的流程图,如图所示,包括如下步骤: 
步骤101,扫描线22上提供作为高电平V1的扫描信号,使电容充电场效应晶体管26及数据信号场效应晶体管27打开。 
步骤102,数据线23上提供负数据电流I1,使数据存储电容29放电。 
其中,一般设置数据线23的负数据电流I1的绝对值与上一帧的数据电 流的绝对值相等,扫描线22的扫描信号的高电压V1开启时间与写入数据的扫描线开启时间相同。在放电过程中,数据存储电容29的高电位端的电位降低,使得数据存储电容29的残余电荷和发光驱动场效应晶体管28的栅源压差(Vgs)清除为零,从而清除了上一帧数据。 
步骤103,电源线向发光驱动场效应晶体管28的漏极提供作为低压Vd0的电源信号,使所述OLED器件21处于关闭状态。 
通过本实施例所述方法,由于电源线24提供低压Vd0,因此使得OLED器件21处于关闭状态,以避免放电过程对其产生影响。当OLED器件21源漏极两端的源漏电压低于2V时,一般就认为OLED器件处于关闭状态,因此,只要低压Vd0<Vss+2V,即可以保证OLED器件21处于关闭状态。 
数据写入阶段(T1~T2): 
图4B为本发明所述基于图2所示像素驱动电路的数据写入方法实施例一的流程图,如图所示,当所述像素驱动电路完成放电之后包括如下步骤: 
步骤111,扫描线22上提供作为高电平V2的扫描信号,使所述电容充电场效应晶体管26和数据信号场效应晶体管27打开。 
步骤112,数据线23上提供正数据电流I2,使数据存储电容29充电; 
步骤113,电源线24向发光驱动场效应晶体管28的漏极提供作为低压Vd0的电源信号,使所述OLED器件21处于关闭状态。 
电容充电场效应晶体管26打开后,使得数据线23提供的正数据电流I2流入发光驱动场效应晶体管28的栅极和数据存储电容29的高电平端,给数据存储电容29充电并提升发光驱动场效应晶体管28的Vgs电压;数据信号场效应晶体管27打开后,使得数据线23提供的正数据电流I2流入发光驱动场效应晶体管28的漏极,并有一部分正电流流过发光驱动场效应晶体管28,该部分正电流受到发光驱动场效应晶体管28的Vgs电压控制;随着发光驱动场效应晶体管28的Vgs电压逐步升高,流过发光驱动场效应晶体管28的电流也逐渐增加;当数据存储电容29充电至电容充电 场效应晶体管26不再传导任何电流的时候,从数据线23流入的正数据电流I2,全部经由数据信号场效应晶体管27流入发光驱动场效应晶体管28,从而完成数据写入。当OLED器件21处于关闭状态时,由于流过OLED器件21的电流非常低,因此,不会对像素驱动电路的工作产生影响。 
通过本实施例所述方法,使数据存储电容29的两端电压即为发光驱动场效应晶体管28的Vgs电压仅与写入的正数据电流I2有关。即使在发光驱动场效应晶体管28的阈值电压发生漂移的情况下,或者阈值电压和迁移率不均匀的情况下,数据存储电容29保持的电压仍然可以使得发光驱动场效应晶体管28产生与正数据电流I2一致的驱动电流,从而克服发光驱动场效应晶体管28在长时间应力作用下的阈值电压漂移带来的影响。 
驱动显示阶段(T2~T3): 
图4C为本发明所述基于图2所示像素驱动电路的驱动显示方法实施例一的流程图,如图所示,当所述像素驱动电路完成数据写入之后包括如下步骤: 
步骤121,扫描线22上提供作为低电平的扫描信号,使电容充电场效应晶体管26及数据信号场效应晶体管27关闭。 
数据信号场效应晶体管27关闭后,无论数据线23上通过的电流为何值,均不会改变通过发光驱动场效应晶体管28的电流。 
步骤122,电源线24向发光驱动场效应晶体管28的漏极提供作为高压Vd1的电源信号,使OLED管器件21处于导通发光状态。 
当分配在OLED器件21两端的源漏电压大于2V时,从发光驱动场效应晶体管28的漏极流过源极的驱动电流通过OLED器件21阳极流入OLED器件21产生电致发光现象,从而使得OLED器件21导通发光。 
其中,Vd1>Vgs-Vt+Voled(max)+Vss,其中,Voled(max)是OLED器件21的最大工作电压;Vgs是发光驱动场效应晶体管28的栅源电压,Vt是发光驱动场效应晶体管28的阈值电压。 
当源漏电压Vds大于夹断电压Vgs-Vt时,可以保证发光驱动场效应晶体管28工作在电流饱和区。忽略扫描线22和电源线24引起的电容耦合效应,可以为发光驱动场效应晶体管28提供一个与数据线23原始数据电流一致的驱动电流,流过OLED器件21。 
本实施例所述方法,通过将用数据线23提供的数据信号电流写入像素驱动电路中,使得发光驱动场效应晶体管28的驱动电流与数据线的数据信号电流保持一致,从而有利于得到精确的OLED器件21的发光亮度。 
另外,当扫描线22提供的扫描信号为低电平时,电容充电场效应晶体管26的栅源寄生电容倾向于减小数据存储电容29的保存电压;当电源线24提供的电源信号为高电平时,发光驱动场效应晶体管28的栅漏寄生电容倾向于增大数据存储电容29的保存电压。如图3所示,由于在驱动显示阶段中,扫描线22提供的扫描信号的电压恰好与电源线24提供的电源信号的电压的极性相反,因此,可以通过电容充电场效应晶体管26和发光驱动场效应晶体管28沟道宽度和长度的优化设计,消除扫描线22和电源线24引起的电容耦合效应。 
另外,上述还可以通过采用修正电流的方式对数据线23的数据信号的电流进行调整,以减弱或融合上述电容耦合效应,校正由于寄生电容的变化而引起的数据存储电容29的电压变化,进而修正OLED器件21的驱动电流。数据信号的修正电流与电容充电场效应晶体管26和发光驱动场效应晶体管28的沟道宽度和长度设计以及数据存储电容29的尺寸有关,也与扫描信号电压V1、V2和接地信号电压Vd0和Vd1有关。具体地,对数据信号进行修正的修正电流ΔI∝k1*V1*V2+k2*Vd0*Vd1,其中k1由电容充电场效应晶体管26的沟道宽度和长度决定,k2由发光驱动场效应晶体管28的沟道宽度和长度以及数据存储电容29的尺寸决定。 
图5本发明所述用于OLED的像素驱动电路实施例二的结构示意图,如图所示,该像素驱动电路的元件组成与图2相同,不同之处在于:本实 施例所述像素驱动电路以公共阳极方式布置OLED器件21,即:所述有OLED器件21位于电源线24上,该OLED器件21的阴极连接所述数据信号场效应晶体管27与电源线24的连接点,阳极连接电源极(Vdd),使得该OLED器件21的阳极与阵列基板上所有像素的OLED器件的阳极均共同连接到电源极(Vdd)上。 
本实施例所述像素驱动电路使用三个薄膜晶体管和一个电容即3T1C结构,由于不使用两个晶体管串联的结构,因此有利于减少电源负载、降低功耗;另外,由于不使用除栅线和数据线、电源线和接地极以外的信号控制线,因此,电路结构更加简单、易于设计,有利简化制造工艺和提高良率,从而更适用于小像素、高解析度和低功耗的OLED器件应用。 
其中的三个场效应晶体管,即:电容充电场效应晶体管26、数据信号场效应晶体管27和发光驱动场效应晶体管28可以为非晶硅N型场效应晶体管、多晶硅N型场效应晶体管、多晶硅P型场效应晶体管、或非晶态氧化物半导体场效应晶体管,如:铟-镓-锌-氧(In-Ga-Zn-O,简称:IGZO)TFT。 
图6为本发明所述用于OLED的像素驱动电路实施例二的信号时序图,如图所示,扫描信号时序和数据信号时序与图3相同,不同之处在于:以接地线25提供的接地信号时序代替了图3中的电源信号时序。其中,为了简化驱动芯片的设计复杂性,可以将扫描信号电压V1和V2设置为相同的值;另外,接地线25也可以和同一行其它像素的接地线连接在一起,由驱动芯片统一提供接地信号VS0和VS1。 
以下结合图6介绍该图5所示象素驱动电路的各个工作阶段: 
放电阶段(T0~T1): 
图7A为本发明所述基于图5所示像素驱动电路的放电方法实施例二的流程图,如图所示,包括如下步骤: 
步骤201,扫描线22上提供作为高电平V1的扫描信号,使电容充电场 效应晶体管26及数据信号场效应晶体管27打开。 
步骤202,数据线23上提供负数据电流I1,使数据存储电容29放电。 
当数据存储电容29放电时,数据存储电容29的高电位端的电位降低,使得数据存储电容29的残余电荷和发光驱动场效应晶体管28的栅源压差(Vgs)清除为零,从而清除了上一帧数据。 
步骤203,接地线25向发光驱动场效应晶体管28的源极提供作为高压VS0的接地信号,使OLED器件21处于关闭状态。 
通过本实施例所述方法,由于接地线25提供高压VS0,因此使OLED器件21处于关闭状态时,可以避免放电过程对其产生影响。当OLED器件21源漏极两端的源漏电压低于2V时,一般就认为OLED器件处于关闭状态,因此,只要高压VS0>Vss+2V,即可以保证OLED器件21处于关闭状态。 
数据写入阶段(T1~T2): 
图7B为本发明所述基于图5所示像素驱动电路的数据写入方法实施例二的流程图,如图所示,当所述像素驱动电路完成放电之后包括如下步骤: 
步骤211,扫描线22上提供作为高电平V1的扫描信号,使电容充电场效应晶体管26及数据信号场效应晶体管27打开。 
步骤212,数据线23上提供正数据电流,使数据存储电容29充电。 
步骤213,接地线25向发光驱动场效应晶体管28的源极提供作为高压VS0的接地信号,使OLED器件21处于关闭状态。 
电容充电场效应晶体管26打开后,即可以完成数据写入。 
本实施例所述方法通过数据存储电容29也实现了克服阈值电压漂移带来的影响。具体原理说明可参见前述实施例一,此处不再赘述。 
驱动显示阶段(T2~T3): 
图7C为本发明所述基于图5所示像素驱动电路的驱动显示方法实施例二的流程图,如图所示,当所述像素驱动电路完成数据写入之后包括如下步骤: 
步骤221,扫描线22上提供作为低电平的扫描信号,使电容充电场效应晶体管26和数据信号场效应晶体管27关闭。 
通过使数据信号场效应晶体管27关闭,无论数据线23上通过的电流为何值,均不会改变通过发光驱动场效应晶体管28的电流。 
步骤222,接地线25向发光驱动场效应晶体管28的源极提供作为低压VS1的接地信号,使OLED器件21处于导通发光状态。 
当分配在OLED器件21两端的源漏电压大于2V,从发光驱动场效应晶体管28的漏极流过源极的驱动电流通过OLED器件21阴极流入OLED器件21产生电致发光现象,从而使得OLED器件21导通发光。 
其中,VS1<Vdd-(Vgs-Vt)-Voled(max),其中,Voled(max)是OLED器件21的最大工作电压;Vgs是发光驱动场效应晶体管28的栅源电压,Vt是发光驱动场效应晶体管28的阈值电压。 
当源漏电压Vds大于夹断电压Vgs-Vt时,可以保证发光驱动场效应晶体管28工作在电流饱和区。忽略扫描线22和电源线24引起的电容耦合效应,可以为发光驱动场效应晶体管28提供一个与数据线23原始数据电流一致的驱动电流,流过OLED器件21。 
本实施例所述方法,通过将用数据线23提供的数据信号电流写入像素驱动电路中,使得发光驱动场效应晶体管28的驱动电流与数据线的数据信号电流保持一致,从而有利于得到精确的OLED器件21的发光亮度。 
另外,当扫描线22提供的扫描信号为低电平时,电容充电场效应晶体管26的栅源寄生电容倾向于减小数据存储电容29的保存电压;当接收线25提供的接地信号为低电平时,发光驱动场效应晶体管28的栅漏寄生电容和数据存储电容29的共同作用,倾向于减小数据存储电容29的保存电压。 
与前述实施例一不同的是,扫描信号和接地信号的电压极性相同,从而将扫描线22和接地线25引起的电容耦合效应叠加放大,因此,可以采 用修正电流的方式对数据信号的电流进行调整,以减弱或融合上述电容耦合效应,修正OLED器件21的驱动电流。数据信号的修正电流与电容充电场效应晶体管26和发光驱动场效应晶体管28的沟道宽度和长度设计以及数据存储电容29的尺寸有关,也与扫描信号电压V1、V2和接地信号电压VS0和VS1有关。具体地,对数据信号进行修正的修正电流ΔI∝k1*V1*V2+k2*VS0*VS1,其中k1由电容充电场效应晶体管26的沟道宽度和长度决定,k2由发光驱动场效应晶体管28的沟道宽度和长度以及数据存储电容29的尺寸决定。 
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。 

Claims (6)

1.一种基于像素驱动电路的放电方法,其特征在于包括:
扫描线上提供作为高电平的扫描信号,使电容充电场效应晶体管及数据信号场效应晶体管打开;
数据线上提供负数据电流,使数据存储电容放电;
电源线向发光驱动场效应晶体管的漏极提供作为低压的电源信号,使有机发光二极管器件处于关闭状态;
所述像素驱动电路包括扫描线、数据线、用于连接电源极的电源线、用于连接接地极的接地线以及有机发光二极管器件,其特征在于,还包括:电容充电场效应晶体管、数据信号场效应晶体管、发光驱动场效应晶体管和数据存储电容;
所述电容充电场效应晶体管的栅极和数据信号场效应晶体管的栅极相连,且均连接所述扫描线;
所述电容充电场效应晶体管的漏极和数据信号场效应晶体管的漏极分别连接所述数据线;
所述电容充电场效应晶体管的源极连接所述数据存储电容的高电位端及所述发光驱动场效应晶体管的栅极;
所述数据信号场效应晶体管的源极连接所述电源线;
所述发光驱动场效应晶体管的漏极连接所述电源线,源极连接所述接地线及所述数据存储电容的低电位端;
所述有机发光二极管器件位于所述接地线上,该有机发光二极管器件的阳极连接所述数据存储电容与所述接地线的连接点,阴极连接所述接地极。
2.权利要求1所述的方法,其特征在于:所述电容充电场效应晶体管、数据信号场效应晶体管和发光驱动场效应晶体管为非晶硅N型场效应晶体管、多晶硅N型场效应晶体管、多晶硅P型场效应晶体管、或非晶态氧化物半导体场效应晶体管。
3.根据权利要求2所述的方法,其特征在于:所述非晶态氧化物半导体场效应晶体管为铟-镓-锌-氧簿膜晶体管。
4.一种基于像素驱动电路的放电方法,其特征在于包括:
扫描线上提供作为高电平的扫描信号,使电容充电场效应晶体管及数据信号场效应晶体管打开;
数据线上提供负数据电流,使数据存储电容放电;
接地线向发光驱动场效应晶体管的源极提供作为高压的接地信号,使有机发光二极管器件处于关闭状态;
所述像素驱动电路,包括扫描线、数据线、用于连接电源极的电源线、用于连接接地极的接地线以及有机发光二极管器件,其特征在于,还包括:电容充电场效应晶体管、数据信号场效应晶体管、发光驱动场效应晶体管和数据存储电容;
所述电容充电场效应晶体管的栅极和数据信号场效应晶体管的栅极相连,且均连接所述扫描线;
所述电容充电场效应晶体管的漏极和数据信号场效应晶体管的漏极分别连接所述数据线;
所述电容充电场效应晶体管的源极连接所述数据存储电容的高电位端及所述发光驱动场效应晶体管的栅极;
所述数据信号场效应晶体管的源极连接所述电源线;
所述发光驱动场效应晶体管的漏极连接所述电源线,源极连接所述接地线及所述数据存储电容的低电位端;
所述有机发光二极管器件位于所述电源线上,该有机发光二极管器件的阴极连接所述数据信号场效应晶体管与所述电源线的连接点,阳极连接所述电源极。
5.权利要求4所述的方法,其特征在于:所述电容充电场效应晶体管、数据信号场效应晶体管和发光驱动场效应晶体管为非晶硅N型场效应晶体管、多晶硅N型场效应晶体管、多晶硅P型场效应晶体管、或非晶态氧化物半导体场效应晶体管。
6.根据权利要求5所述的方法,其特征在于:所述非晶态氧化物半导体场效应晶体管为铟-镓-锌-氧簿膜晶体管。
CN2009102440679A 2009-12-28 2009-12-28 基于像素驱动电路的放电方法 Expired - Fee Related CN102110407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102440679A CN102110407B (zh) 2009-12-28 2009-12-28 基于像素驱动电路的放电方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102440679A CN102110407B (zh) 2009-12-28 2009-12-28 基于像素驱动电路的放电方法

Publications (2)

Publication Number Publication Date
CN102110407A CN102110407A (zh) 2011-06-29
CN102110407B true CN102110407B (zh) 2012-12-12

Family

ID=44174544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102440679A Expired - Fee Related CN102110407B (zh) 2009-12-28 2009-12-28 基于像素驱动电路的放电方法

Country Status (1)

Country Link
CN (1) CN102110407B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715712B (zh) * 2013-12-11 2018-05-25 昆山工研院新型平板显示技术中心有限公司 一种像素电路及其驱动方法和应用
CN106463090B (zh) * 2014-05-09 2019-11-01 株式会社日本有机雷特显示器 显示装置、显示装置的驱动方法和电子设备
CN105825804A (zh) * 2015-01-04 2016-08-03 昆山国显光电有限公司 具有触摸功能的oled面板,显示装置及其制作方法
EP3460853A1 (en) * 2017-09-26 2019-03-27 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO High voltage thin-film transistor and method of manufacturing the same
CN108039147A (zh) * 2017-12-29 2018-05-15 深圳市华星光电半导体显示技术有限公司 像素及具有该像素的显示装置
US10573237B2 (en) 2017-12-29 2020-02-25 Shenzhen China Star Oproelectronics Semiconductor Display Technology Co., Ltd. Pixel and display device having the pixel
CN108597444B (zh) * 2018-04-19 2020-08-14 东南大学 一种硅基oled像素电路及其补偿oled电学特性变化的方法
CN111029395B (zh) * 2019-12-25 2024-03-15 天津大学 基于有机薄膜晶体管的电流型像素驱动电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801297A (zh) * 2001-05-25 2006-07-12 索尼株式会社 显示设备,有机电致发光显示设备,及其驱动方法
CN1822728A (zh) * 2004-12-01 2006-08-23 三星Sdi株式会社 有机场致发光显示器及其操作方法
CN1846243A (zh) * 2003-09-02 2006-10-11 皇家飞利浦电子股份有限公司 有源矩阵显示装置
CN1892773A (zh) * 2005-06-30 2007-01-10 Lg.菲利浦Lcd株式会社 发光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801297A (zh) * 2001-05-25 2006-07-12 索尼株式会社 显示设备,有机电致发光显示设备,及其驱动方法
CN1846243A (zh) * 2003-09-02 2006-10-11 皇家飞利浦电子股份有限公司 有源矩阵显示装置
CN1822728A (zh) * 2004-12-01 2006-08-23 三星Sdi株式会社 有机场致发光显示器及其操作方法
CN1892773A (zh) * 2005-06-30 2007-01-10 Lg.菲利浦Lcd株式会社 发光装置

Also Published As

Publication number Publication date
CN102110407A (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
CN102110407B (zh) 基于像素驱动电路的放电方法
CN102982767B (zh) 一种像素单元驱动电路、驱动方法及显示装置
CN104167173B (zh) 主动式有机发光二极管显示器的像素电路
US8941309B2 (en) Voltage-driven pixel circuit, driving method thereof and display panel
CN103440840B (zh) 一种显示装置及其像素电路
US10593265B2 (en) Compensation circuit in which a magnitude relationship between channel width-to-length ratios of driving transistors of any two sub-pixels is identical with a magnitude relationship between channel width-to-length ratios of two sense transistors corresponding to the two sub-pixels, manufacturing method thereof, pixel circuit, compensation device and display device
US9355597B2 (en) Pixel circuit having threshold voltage compensation and method for driving the same
US7511708B2 (en) Display device and driving method thereof
CN103500556B (zh) 一种像素电路及其驱动方法、薄膜晶体管背板
US11004383B2 (en) Light emitting display apparatus including a plurality of pixels and method for driving thereof
KR101298302B1 (ko) 유기 발광다이오드 표시장치와 그의 구동방법
US20220415273A1 (en) Simultaneous emission pixel compensation circuit and display panel
CN104299572A (zh) 像素电路、显示基板和显示面板
CN103310728B (zh) 发光二极管像素单元电路和显示面板
CN101976545A (zh) Oled显示器的像素驱动电路及其驱动方法
CN102903333A (zh) 有机发光显示器的像素电路
CN102411893A (zh) 一种像素驱动电路
CN103956142A (zh) 面板驱动电路及面板驱动方法
JP2016157073A (ja) 表示装置
CN102956201B (zh) 一种像素电路及其驱动方法、显示装置
CN104537984A (zh) 一种像素电路及其驱动方法
US10262595B2 (en) Pixel circuit, control method thereof, and display panel
CN102881253A (zh) 一种像素电路和薄膜晶体管背板
CN202120574U (zh) Amoled补偿电路像素结构及amoled显示面板
CN202394497U (zh) 一种像素驱动电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121212

Termination date: 20201228

CF01 Termination of patent right due to non-payment of annual fee