CN102108454A - Surface/block metal matrix composite and preparation method thereof - Google Patents

Surface/block metal matrix composite and preparation method thereof Download PDF

Info

Publication number
CN102108454A
CN102108454A CN 200910248824 CN200910248824A CN102108454A CN 102108454 A CN102108454 A CN 102108454A CN 200910248824 CN200910248824 CN 200910248824 CN 200910248824 A CN200910248824 A CN 200910248824A CN 102108454 A CN102108454 A CN 102108454A
Authority
CN
China
Prior art keywords
based composites
preparation
metal based
bulk metal
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200910248824
Other languages
Chinese (zh)
Other versions
CN102108454B (en
Inventor
倪丁瑞
马宗义
肖伯律
王继杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN 200910248824 priority Critical patent/CN102108454B/en
Publication of CN102108454A publication Critical patent/CN102108454A/en
Application granted granted Critical
Publication of CN102108454B publication Critical patent/CN102108454B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a surface/block metal matrix composite and preparation method thereof. The surface/block metal matrix composite and preparation method comprises a matrix and a reinforcement body, wherein the volume content of the reinforcement phase is 5-40%; and the thickness of the composite is 0.5-20mm. The preparation method comprises the steps of adopting the dot-matrix type porous particle prearrangement manner and preparing the surface/block metal matrix composite through agitation and friction process. In the composite material provided by the invention, enhancement phase is distributed very uniformly and perfectly combined with the matrix, the layer thickness of the composite material can reach 0.5-20mm, and the phenomenon of particle splattering is eliminated during FSP process.

Description

A kind of surface/bulk metal based composites and preparation method thereof
Technical field
The present invention relates to metallic substance, be specifically related to a kind of surface/bulk metal based composites and preparation method thereof.
Background technology
Metallic substance has lightweight, high-strength, advantage such as plasticity is good, has a wide range of applications at industrial circles such as automobile, aerospace.Stupalith has advantages such as Young's modulus height, wear resistance is good, high-temperature behavior is good.Ceramic particle being added to being prepared into metal-base composites in the metal alloy and can giving full play to the advantage of the two, is the effective way that promotes material property or produce novel texture/functional materials.This class matrix material has wide application prospect in the engineering Application Areas.
At present, the particles reiforced metal-base composition preparation method mainly contains two classes, i.e. liquid phase process and solid state process.In liquid phase process, the one, elder generation melts metallic matrix then ceramic particle to be added in the molten metal and stirs, and the cooling back forms matrix material, but owing to there being density difference, is difficult to make even particle distribution.Another is after ceramic particle is made prefabricated section, the molten metal extruding is entered wherein form matrix material, owing to require prefabricated section that enough intensity is arranged, granule content is very high, therefore can't prepare the matrix material of low volume fraction.Solid state process is earlier metal-powder and ceramic particle to be mixed, and forms through the High Temperature High Pressure sintering under vacuum or protection of inert gas.No matter be liquid phase process or solid state process, because the preparation temperature height all is easy to generate the harmful phase of chemical reaction generation, and their preparation technology is very complicated, and the production cycle is long, the cost costliness.
Agitating friction processing (Friction stir processing, FSP) be that a kind of that development in recent years is got up lacks flow process, type material high-effect, that the scope of application is extensive prepares and processing technology, be successfully applied to the preparation of metal-base composites, particularly the composite system that at high temperature is easy to react for preparation has outstanding advantage.This is because one side FSP is that its processing temperature is lower than conventional forming technique in solid-state processing down; The FSP process velocity is fast on the other hand, and the time that material at high temperature experiences is very short.
Prepare in the process for metal base composite material at FSP, a kind of is earlier the wild phase particle to be mixed with matrix powder, through colding pressing or hot pressed sintering becomes the block green compact, then green compact is carried out FSP generation matrix material, can be described as indirect method.Another kind is earlier the wild phase particle to be preset in a certain way on the sheet metal then directly FSP, utilizes the stirring action of machining tool in the FSP process that particle is directly stirred into and forms matrix material in the sheet metal, can be described as direct method.Compare with indirect method, direct method is more economical, quick, efficient.Yet this method has 2 deficiencies: the one, and the distributing homogeneity of wild phase is undesirable, and the 2nd, be mainly used in the preparation composite surface material at present, very difficult for the preparation of blocks of large matrix material.
Prepare in the metal-base composites at direct method FSP, in which way the wild phase particle being preset in the sheet metal is the final key of uniform distribution wild phase matrix material that obtains to have.The particle preset mode of having reported at present has following several: (1) directly is layered on plate surface with particle.This method starts from the initial period that FSP prepares matrix material, and is simple, efficient, but powder easily splashes, and only is applicable to the composite surface material layer that preparation is very shallow.(2) offer a groove at plate surface, carry out FSP along its length direction edge behind the particle of in groove, packing into certain-length, degree of depth.Sometimes fly shallowly in order to prevent to add the man-hour particulate, on groove, add the layer of metal cover plate.This method is extensively employing of institute in the research at present, has reduced particulate and has splashed, and prepared composite layer is also thicker.(3) be close to the deep hole that one of drill with ferrule under the metal sheet surface is parallel to the surface, the particle of packing in the hole carries out FSP along the depth direction in hole.Obviously, adding cover plate on its purpose, effect and the groove is a reason.Compare with adding the cover plate method on the groove, though this method has been saved the link that adds cover plate, its boring difficulty is big, particularly for the very big blind hole of the degree of depth, therefore is not suitable for production application.Generally speaking, with the composite surface material that mostly is of above-mentioned side's preparation, and the distributing homogeneity of wild phase is undesirable.This is because during FSP, the stirring tool in advancing also can be pushed ahead by the particle that presets that the place ahead is loose when particle is stirred into matrix, forms and piles up, thereby cause the inhomogeneous of size distribution.For the groove of open type, particle can directly splash out, although can prevent that powder from splashing after having added cover plate, can not eliminate particulate and move, piles up, and therefore also just can not fundamentally solve the uneven problem of powder distribution.
The invention provides a kind of surface/bulk metal based composites technology of preparing, be used in preparation composite surface material layer or block matrix material on magnesium, aluminium, copper, zinc, the titanium alloy plate, its wild phase is pottery or metallic particles.
Summary of the invention
The purpose of this invention is to provide a kind of surface/bulk metal based composites and preparation method thereof.
The invention provides a kind of surface/bulk metal based composites, this surface/bulk metal based composites is made up of matrix and wild phase, and wherein the volume content of wild phase is 5~40%; The thickness of this matrix material is 0.5~20 millimeter.
Surface provided by the invention/bulk metal based composites, described matrix are a kind of in magnesium alloy, aluminium alloy, copper alloy, zinc alloy, the titanium alloy; Described wild phase is pottery or metallic particles.
The present invention also provides the preparation method of surface/bulk metal based composites, adopts dot matrix porous particle preset mode, prepares surface/bulk metal based composites by the agitating friction complete processing.
The preparation method of surface provided by the invention/bulk metal based composites, described dot matrix porous particle preset mode is for getting out a series of apertures of arranging with the dot matrix rule on the sheet metal surface, the diameter of aperture is 0.5~20 millimeter, the degree of depth is 0.5~20 millimeter, with diameter 0.1 micron~0.5 millimeter wild phase uniform particles fill aperture and compacting.
The preparation method of surface provided by the invention/bulk metal based composites, described agitating friction fabrication process condition is under the processing condition of 200~2000 rev/mins of instrument rotating speeds, gait of march 20~600 mm/min, carries out the processing of 2~6 passage agitating frictions to filling the particulate place.By diameter, the depth and the dense degree control particulate addition of control punch, formation wild phase content is 5~40% composite surface material layer or block matrix material.
Microstructure observation shows that in the matrix material that is obtained, wild phase distributes very evenly, and is good with matrix bond, and the bed thickness of matrix material can reach 0.5~20 millimeter.No particle splash phenomena takes place in the FSP process.Think that this mainly is owing to adopted rational particle preset mode and FSP processing parameter.For the dot matrix porous particle preset mode among the present invention, owing to be porous, with regard to being equivalent to the discrete particle in the groove is broken the whole up into parts like this, distribute once in advance.Intermetallic between the Kong Yukong can't be compacted particle in reach under the stirring tool pushing effect, accumulation, formation splash every playing barrier action below just entering shaft shoulder forward position, and then be stirred the pin original place and stir in the matrix.In follow-up passage, obtain fine and close matrix material uniformly by adjusting draught.This technology can have broad application prospects.
Description of drawings
Fig. 1 prepares synoptic diagram for metal-base composites of the present invention.Wherein, 1 is sheet metal, and 2 is aperture, and 3 is the agitating friction machining path, and 4 is that final matrix material generates the district.
Embodiment
The following examples will give further instruction to the present invention, but not thereby limiting the invention.
Embodiment 1
SiC strengthens aluminium base skin layer composite material manufacturing process: get out a series of apertures on 6 mm thick, 5083 aluminium sheets, the diameter in hole is that 1 millimeter, the degree of depth are 1 millimeter, and the hole between centers is 2 millimeters.It with diameter compacting in 0.5 micron the SiC particle load hole.Under the condition of 1000 rev/mins of rotating speeds, gait of march 200 mm/min, carry out 2 passage FSP to filling the particulate place.There is not the particle splash phenomena in the FSP process.The thickness of gained matrix material is 1 millimeter, and SiC particulate volume fraction is 7%, is evenly distributed, and combines well with aluminum substrate.
Comparative example 1
Be layered on 5083 aluminium sheets air-dryly after the SiC particle mixed with acetone, under the condition of 600 rev/mins of rotating speeds, gait of march 50 mm/min, carry out 2 passage FSP filling the particulate place.Because the rotation of stirring tool is flowed ambient air, the part powder splashes.Gained matrix material layer thickness is 50~200 microns.This method gained composite layer is very shallow, and maldistribution is even.(RS.Mishra,et?al.,Mater.Sci.Eng.A?341(2003)307-310.)
Embodiment 2
SiC strengthens magnesium matrix composite material manufacturing process: get out a series of apertures on 10 mm thick AZ31 magnesium plates, the diameter in hole is that 6 millimeters, the degree of depth are 9 millimeters, and the hole between centers is 7 millimeters.Be compacting in 3.0 microns the SiC particle load hole with diameter, under 1500 rev/mins of rotating speeds, gait of march 100 mm/min conditions, carry out 5 passage FSP.There are not particle packing, splash phenomena in the FSP process.The thickness of gained matrix material is 9 millimeters, and SiC particulate volume fraction is 30%, is evenly distributed, and combines well with aluminum substrate.
Comparative example 2
On 6 mm thick AZ31 magnesium plates, leave dark 2 millimeters, wide 3 millimeters, long 200 millimeters groove.With diameter is the compacting in the groove of packing into of 3.0 microns SiC particle, carries out 5 passage FSP under the condition of 1500 rev/mins of rotating speeds, gait of march 100 mm/min.The SiC particle is obviously piled up under the pushing effect of stirring-head in the FSP process, overflows groove.The SiC particle exists reunion and dilution phenomenon in the microtexture analysis revealed matrix material.
Comparative example 3
On 6 mm thick AZ31 magnesium plates, leave dark 2 millimeters, wide 3 millimeters, long 200 millimeters groove.With diameter is the compacting in the groove of packing into of 3.0 microns SiC particle, and 2 millimeters AZ31 thin plate carries out 5 passage FSP on the upper cover under the condition of 1500 rev/mins of rotating speeds, gait of march 100 mm/min.FSP process thin cover plate at the middle and upper levels is distorted, and has the part of SiC particle to overflow.The SiC particle exists reunion and dilution phenomenon in the microtexture analysis revealed matrix material.
Embodiment 3
The reaction in intermetallic compound strengthens the aluminum composite manufacturing process: get out a series of apertures on 6 mm thick, 6061 aluminium sheets, the diameter in hole is that 2 millimeters, the degree of depth are 5 millimeters, and the hole between centers is 3 millimeters.Be compacting in~40 microns the Ti powder load hole with diameter, under the condition of 600 rev/mins of rotating speeds, gait of march 100 mm/min, carry out 4 passage FSP.The thickness of gained matrix material is 5 millimeters, and material phase analysis shows that the Ti powder reacts with aluminum substrate, generates AlTi, Al 2Ti, Al 3Ti intermetallic chemicals, its volume fraction is 8%, distributes very evenly.
Comparative example 4
The reaction in intermetallic compound strengthens the aluminum composite manufacturing process: get out a series of apertures on 6 mm thick, 6061 aluminium sheets, the diameter in hole is that 2 millimeters, the degree of depth are 5 millimeters, and the hole between centers is 3 millimeters.Be compacting in~40 microns the Ti powder load hole with diameter, under the condition of 600 rev/mins of rotating speeds, gait of march 100 mm/min, carry out 1 passage FSP.The thickness of gained matrix material is 5 millimeters, and material phase analysis shows except that generating AlTi, Al 2Ti, Al 3Outside the Ti intermetallic chemicals, also have part Ti to have the particulate skewness.

Claims (7)

1. surface/bulk metal based composites, it is characterized in that: this surface/bulk metal based composites is made up of matrix and wild phase, and wherein the volume content of wild phase is 5~40%; The thickness of this matrix material is 0.5~20 millimeter.
2. according to the described surface of claim 1/bulk metal based composites, it is characterized in that: described matrix is a kind of in magnesium alloy, aluminium alloy, copper alloy, zinc alloy, the titanium alloy.
3. according to the described surface of claim 1/bulk metal based composites, it is characterized in that: described wild phase is pottery or metallic particles.
4. the preparation method of the described surface of claim 1/bulk metal based composites is characterized in that: adopt dot matrix porous particle preset mode, prepare surface/bulk metal based composites by the agitating friction complete processing.
5. according to the preparation method of the described surface of claim 4/bulk metal based composites, it is characterized in that: described dot matrix porous particle preset mode is for getting out a series of apertures of arranging with the dot matrix rule on the sheet metal surface, with diameter 0.1 micron~0.5 millimeter wild phase uniform particles fill aperture and compacting.
6. according to the preparation method of the described surface of claim 4/bulk metal based composites, it is characterized in that: described agitating friction fabrication process condition carries out the processing of 2~6 passage agitating frictions under the processing condition of 200~2000 rev/mins of instrument rotating speeds, gait of march 20~600 mm/min to filling the particulate place.
7. according to the preparation method of the described surface of claim 5/bulk metal based composites, it is characterized in that: the diameter of the aperture that described dot matrix rule is arranged is 0.5~20 millimeter, and the degree of depth is 0.5~20 millimeter.
CN 200910248824 2009-12-28 2009-12-28 Surface/block metal matrix composite and preparation method thereof Active CN102108454B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910248824 CN102108454B (en) 2009-12-28 2009-12-28 Surface/block metal matrix composite and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910248824 CN102108454B (en) 2009-12-28 2009-12-28 Surface/block metal matrix composite and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102108454A true CN102108454A (en) 2011-06-29
CN102108454B CN102108454B (en) 2013-09-04

Family

ID=44172740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910248824 Active CN102108454B (en) 2009-12-28 2009-12-28 Surface/block metal matrix composite and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102108454B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060597A (en) * 2013-01-11 2013-04-24 浙江天乐新材料科技有限公司 Reinforced metal composite material of ceramic skeleton with periodical micro truss structure
CN105209212A (en) * 2013-03-12 2015-12-30 洛克希德马丁公司 Friction surface stir process
CN105220021A (en) * 2015-09-23 2016-01-06 广州市美伦建材有限公司 A kind of sheet metal molding method for preparing
CN108396163A (en) * 2018-01-22 2018-08-14 武汉理工大学 Carbon nanotube enhances the preparation method of foamed aluminium radical composite material
CN108817642A (en) * 2018-06-26 2018-11-16 南京航空航天大学 A method of improving non-heat treated reinforced aluminium alloy friction stir welding joint strength
CN108930034A (en) * 2018-05-31 2018-12-04 西安建筑科技大学 A kind of preparation method, composite material and the device of lightweight metal ingots composite material
CN109112343A (en) * 2018-09-17 2019-01-01 中南大学 A kind of preparation method of graphene aluminium alloy
CN109175667A (en) * 2018-09-11 2019-01-11 华南理工大学 A kind of hydroxyapatite/composite material of magnesium alloy and preparation method thereof
CN113084326A (en) * 2019-12-23 2021-07-09 宝山钢铁股份有限公司 Metal-based composite material and preparation method thereof
CN114457298A (en) * 2022-01-27 2022-05-10 湘潭大学 Preparation method of nanocrystalline aluminum alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075562C (en) * 1998-12-25 2001-11-28 北京航空材料研究院 Foamed silicon carbide particle reinforced aluminium base composite material and its producing technology
CN101560617B (en) * 2009-05-18 2011-05-04 北京科技大学 Method for preparing aluminum-based composite material plate by friction stir

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060597A (en) * 2013-01-11 2013-04-24 浙江天乐新材料科技有限公司 Reinforced metal composite material of ceramic skeleton with periodical micro truss structure
CN103060597B (en) * 2013-01-11 2015-05-13 浙江天乐新材料科技有限公司 Reinforced metal composite material of ceramic skeleton with periodical micro truss structure
CN105209212A (en) * 2013-03-12 2015-12-30 洛克希德马丁公司 Friction surface stir process
CN105220021A (en) * 2015-09-23 2016-01-06 广州市美伦建材有限公司 A kind of sheet metal molding method for preparing
CN108396163A (en) * 2018-01-22 2018-08-14 武汉理工大学 Carbon nanotube enhances the preparation method of foamed aluminium radical composite material
CN108930034A (en) * 2018-05-31 2018-12-04 西安建筑科技大学 A kind of preparation method, composite material and the device of lightweight metal ingots composite material
CN108930034B (en) * 2018-05-31 2021-01-29 西安建筑科技大学 Preparation method of light metal block composite material, composite material and device
CN108817642A (en) * 2018-06-26 2018-11-16 南京航空航天大学 A method of improving non-heat treated reinforced aluminium alloy friction stir welding joint strength
CN109175667A (en) * 2018-09-11 2019-01-11 华南理工大学 A kind of hydroxyapatite/composite material of magnesium alloy and preparation method thereof
CN109112343A (en) * 2018-09-17 2019-01-01 中南大学 A kind of preparation method of graphene aluminium alloy
CN109112343B (en) * 2018-09-17 2020-08-14 中南大学 Preparation method of graphene aluminum alloy
CN113084326A (en) * 2019-12-23 2021-07-09 宝山钢铁股份有限公司 Metal-based composite material and preparation method thereof
CN114457298A (en) * 2022-01-27 2022-05-10 湘潭大学 Preparation method of nanocrystalline aluminum alloy

Also Published As

Publication number Publication date
CN102108454B (en) 2013-09-04

Similar Documents

Publication Publication Date Title
CN102108454B (en) Surface/block metal matrix composite and preparation method thereof
Sunil et al. Magnesium based surface metal matrix composites by friction stir processing
Akinwekomi et al. Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites
RU2682188C2 (en) Process for additive manufacturing of parts by melting or sintering particles of powder using high-energy beam with powders adapted to targeted process/material pair
Chao et al. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding
CN1699000A (en) Method for preparing a metallic article having an other additive constituent, without any melting
Dwivedi et al. Mechanical and metallurgical characterizations of AA2014/eggshells waste particulate metal matrix composite
CN104451236B (en) A kind of nanometer ZrB2the in-situ preparation method of particle enhanced aluminum-based composite material
CN110744047A (en) Preparation method of aluminum-based composite material
CN103045914A (en) Preparation method of nano silicon carbide reinforced aluminum-based composite material
CN102260814A (en) In situ nano TiC ceramic particle reinforced aluminum based composite material and preparation method thereof
CN110744058A (en) Preparation method for in-situ synthesis of copper-based composite material
CN104789805A (en) Preparation method of carbon nanotube enhanced metal-matrix composite material
CN101250700A (en) Solid-state processing method for producing lamina profunda, agglomerate body, macrography spectrum composite material
CN106282637A (en) A kind of original position prepares the method for boron-containing magnesium-base composite
Peddavarapu et al. Micro structural investigation on friction stir welded Al–4.5 Cu–5TiB 2 Composite
CN105568036A (en) Preparing method of high-silicon aluminum composite material
CN112176213A (en) In-situ authigenic nano Al2O3Laser additive manufacturing method of reinforced aluminum matrix composite material
Sahoo et al. Critical review on liquid state processing of aluminium based metal matrix nano-composites
CN112756626A (en) Composite material reinforcing phase form and distribution control method based on additive manufacturing
CN114703394A (en) High-temperature material and preparation method and application thereof
WO2010026794A1 (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
Pashmforoosh et al. Evaluation of mechanical and microstructure properties of Mg-modified aluminum matrix composite by vortical casting method
CN100489132C (en) Method of preparing original position particle reinforced zinc-based composite material
CN103817334B (en) A kind of Al-Zn composite and solid alloy preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant