CN102104129A - 一种胶体蓄电池专用微孔隔板 - Google Patents

一种胶体蓄电池专用微孔隔板 Download PDF

Info

Publication number
CN102104129A
CN102104129A CN2009102141022A CN200910214102A CN102104129A CN 102104129 A CN102104129 A CN 102104129A CN 2009102141022 A CN2009102141022 A CN 2009102141022A CN 200910214102 A CN200910214102 A CN 200910214102A CN 102104129 A CN102104129 A CN 102104129A
Authority
CN
China
Prior art keywords
gas phase
silicon dioxide
phase nano
dividing plate
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009102141022A
Other languages
English (en)
Inventor
石光
秦炜
陈红雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN2009102141022A priority Critical patent/CN102104129A/zh
Publication of CN102104129A publication Critical patent/CN102104129A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)

Abstract

本发明公开了一种胶体蓄电池专用微孔隔板,由PVC树脂、气相纳米二氧化硅、孔径调节剂、导电剂组成。使用纳米二氧化硅可使隔板形成平均孔径为5微米的微孔,孔径分布均匀,形成迂回的孔道结构。采用气相纳米二氧化硅制备的隔板与胶体电解液有更好的亲和力,孔道的毛细作用更强,电解液的浸润性更好,隔板孔隙率高于80%,酸置换量低。加入少量微米级的沉淀二氧化硅或层状硅酸盐,调整隔板的中大孔所占比例,实现大孔快速捕捉氧气的功能,防止电池膨胀的现象出现。纳米二氧化硅的表面处理提高了与PVC树脂的界面强度,使隔板材料具有更好的强度和韧性。

Description

一种胶体蓄电池专用微孔隔板
技术领域
本发明涉及蓄电池,具体是一种胶体蓄电池专用微孔隔板。
背景技术
隔板在铅酸蓄电池中起到隔离正负极板、防止短路的重要作用,有电池第三极之称。除此之外,在阀控式蓄电池及胶体蓄电池中,隔板还起到为氧气复合提供通道、控制氧气复合速度的特殊功能。因此,要求隔板材料具有多孔结构。卢森堡阿莫西尔公司生产PVC/二氧化硅隔板,是使用沉淀二氧化硅为原料制备的,平均孔径为10微米,孔隙率达79%以上,是目前世界上公认的性能最好的胶体蓄电池隔板材料,其技术高度保密。由于阿莫西尔公司的专利隔板材料价格昂贵,而国内尚没有性能相近的产品问世,故多数国内胶体蓄电池仍沿用普通的AGM隔板,导致胶体蓄电池的性能优势无法体现。国内胶体蓄电池专用隔板亟待开发。
国内有关胶体蓄电池专用PVC/二氧化硅隔板(CN 1416183A)的报道,完全仿照阿莫西尔隔板设计,沿用沉淀二氧化硅为填充相。由于微米二氧化硅粒子尺寸大,所制备的隔板平均孔径大;微米二氧化硅的大尺寸导致其在隔板中所占体积较大,隔板酸置换量低。而且隔板中的沉淀二氧化硅与胶体电解液中的纳米二氧化硅的亲和性差,电池性能受到影响。另外,由于微米二氧化硅与PVC树脂间的界面结合差,隔板材料非常脆,不利于隔板的后期加工、运输及使用,故阿默希尔公司的隔板通常在隔板的一侧粘上玻纤用以支撑。除此之外,上述隔板专利提出用氯化钠、硫酸钠等盐作为成孔剂,后期用水浸洗去除。浸除后的隔板材料中仍有一定量的钠盐物质残留。大量实验表明钠盐会导致气相纳米二氧化硅硫酸胶体电解液快速凝胶,不利于灌胶操作,也不利于胶体电解液对隔板材料的浸润。胶体蓄电池的PVC隔板材料性能仍有待提高。
发明内容
本发明的目的在于提供一种与胶体蓄电池电解液有良好亲和性的胶体蓄电池专用微孔隔板。
本发明的技术方案如下:
一种胶体蓄电池专用微孔隔板,该隔板的组成按重量百分比是:
PVC树脂                     35-75%
气相纳米二氧化硅            19~55%
孔隙调节剂                  5~20%
导电剂                      0.1~5%。
进一步的,所述气相纳米二氧化硅的比表面积为150~380m2/g。
进一步的,所述的气相纳米二氧化硅经有机硅氧烷进行过表面处理。
进一步的,所述有机硅氧烷为乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、3-氨基丙基三乙氧基硅烷、甲基丙烯酰氧丙基三甲氧基硅烷中的一种或一种以上的组合物。
进一步的,气相纳米二氧化硅的表面处理过程如下:
将有机硅氧烷体积含量为0.5~8%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的1~10%,在搅拌下经70~90℃干燥。
进一步的,孔隙调节剂为200目以上的沉淀二氧化硅、200目以上的层状硅酸盐中的一种或一种以上的组合物。层状硅酸盐为蒙脱土、凹凸棒土、云母或累托石。
进一步的,所述导电剂为炭黑、碳纳米管、石墨中的一种或一种以上的组合物。
本发明提供的胶体蓄电池专用微孔隔板是按上述配比将原料分散混合于沸点大于100℃、可溶于水的PVC良溶剂中,制成粘度为0.2~25万Pa.s的粘稠溶液,通过常温挤出、压延的工艺成型,制成厚度为1.9~3.2mm的薄片。通过压延辊的表面设计,可赋予隔板表面不同形状及规格的筋条。成型后经过温度为50~80℃的热水浸提,浸提后经过70~90℃的烘道烘干,按要求尺寸进行裁剪即可。
本发明采用气相纳米二氧化硅代替沉淀微米二氧化硅,与PVC复合;气相纳米二氧化硅的存在,可将隔板材料的平均孔径控制在5微米附近,并形成多孔迂回结构,为氧气复合提供合适的通道,同时起到控制氧气复合速度的功能。加入少量微米二氧化硅或层状硅酸盐,调整隔板的中大孔所占比例,实现大孔快速捕捉电池正极所产生氧气的功能,防止小孔径氧气捕捉速度慢,有可能导致电池膨胀的问题。应用本发明所制备的隔板孔隙率大于80%,吸酸量大。此外,所应用的气相纳米二氧化硅经过特殊的表面改性处理,很好地改善了气相纳米二氧化硅与PVC材料的界面结合力,使隔板表现出良好的力学性能。隔板不需玻纤支撑,就具有良好的力学强度。
本发明产品可适用于各类阀控式蓄电池,特别是胶体蓄电池,从而应用于牵引型电池、固定型电池、电动车电池、储能电池等领域。
本发明所述隔板与已有技术相比,其优点体现在:
1.现有技术采用微米二氧化硅为填充相,隔板孔隙大,对氧气复合速度的控制能力差;本发明采用气相纳米二氧化硅,可使隔板平均孔径控制在5微米附近,并形成多孔迂回结构,为氧气复合提供合适的通道,同时起到控制氧气复合速度的功能;加入少量微米二氧化硅或层状硅酸盐,调整隔板的中大孔所占比例,实现大孔快速捕捉电池正极产生氧气的功能,防止小孔径氧气捕捉速度慢,从而克服电池膨胀的问题。
2.使用微米二氧化硅导致多孔隔板孔隙率低,比表面积小,隔板孔洞的虹吸作用不强,电解液的浸透时间长,吸酸量低。本发明采用气相纳米二氧化硅所制备的微孔隔板孔隙率大于80%,比表面积大,微小孔洞的毛细功能强,电解液的浸透时间短,吸酸量高。另外,隔板的微小孔洞能够有效防止极板形成的铅枝晶的穿透,延长电池的使用寿命。
3.含有微米二氧化硅的隔板与胶体电解液的亲和力差,电池性能低。本发明采用气相纳米二氧化硅制备隔板,与纳米二氧化硅硫酸胶体电解液有更好的亲和性,可进一步提高电池的电化学性能。
4.微米二氧化硅与PVC树脂的界面结合力差,大尺寸的微米二氧化硅成为隔板的应力集中点,导致隔板力学性能很差。本发明采用气相纳米二氧化硅,并对气相纳米二氧化硅进行合适的表面处理,有效的提高了界面强度,体现了气相纳米二氧化硅对PVC的增强增韧效果,隔板材料力学性能高,韧性好。
5.本发明所制备的微孔隔板可广泛应用于各类电池,特别适合于胶体蓄电池的使用,在牵引型电池、固定型电池、电动车电池、储能电池等领域可广泛应用。
附图说明
图1为实施例1所制备隔板表面形貌的扫描电子显微镜图片;
图2为实施例2所制备隔板表面形貌的扫描电子显微镜图片;
图3为实施例3所制备隔板表面形貌的扫描电子显微镜图片;
图4为实施例4所制备隔板表面形貌的扫描电子显微镜图片;
图5为实施例5所制备隔板表面形貌的扫描电子显微镜图片;
图6为实施例6所制备隔板表面形貌的扫描电子显微镜图片;
图7为实施例7所制备隔板表面形貌的扫描电子显微镜图片;
图8为实施例8所制备隔板表面形貌的扫描电子显微镜图片;
图9为实施例1所制备隔板横截面的扫描电子显微镜图片。
具体实施方式
下面给出实施例以对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据本发明内容对本发明作出的一些非本质的改进和调整仍属于本发明的保护范围。
下列实施例中,按重量配比称取干燥好的PVC树脂粉、改性气相纳米二氧化硅、孔隙调节剂及导电剂。将称好的原材料分散混合于沸点大于100℃、可溶于水的PVC良溶剂中,制成粘度为0.2~25万Pa.s的粘稠溶液,通过常温挤出、压延的工艺成型,制成厚度为1.9~3.2mm的薄片。通过压延辊的表面设计,可赋予隔板表面不同形状及规格的筋条。成型后经过温度为50~80℃的热水浸提,浸提后经过70~90℃的烘道烘干,按要求尺寸进行裁剪即可。
实施例1
按重量配比称取干燥好的PVC树脂36.1%,经乙烯基三乙氧基硅烷表面处理、比表面积为150m2/g的气相纳米二氧化硅54.8%,230目的沉淀二氧化硅8.4%,炭黑0.7%。
气相纳米二氧化硅的表面处理过程如下:将乙烯基三乙氧基硅烷体积含量为0.5%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的1%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二甲基甲酰胺中,调至成粘度为24.5万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度2.1mm的薄片。成型后经过温度为58℃的热水浸提5分钟,浸提后经过86℃的烘道烘干3分钟。图1为实施例1所制备隔板表面形貌的扫描电子显微镜图片,从图中可以看出该微孔隔板的孔隙直径在4.6微米左右,分布均匀,孔隙率高,形成了曲折迂回的孔隙路径。
实施例2
按重量配比称取干燥好的PVC树脂41.4%,经乙烯基三甲氧基硅烷表面处理、比表面积为200m2/g的气相纳米二氧化硅48.3%,250目的蒙脱土10.1%,碳纳米管0.2%。
气相纳米二氧化硅的表面处理过程如下:将乙烯基三甲氧基硅烷体积含量为8%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的10%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二甲基乙酰胺中,调至成粘度为16万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度2.3mm的薄片。成型后经过温度为65℃的热水浸提4分钟,浸提后经过75℃的烘道烘干4分钟。
图2为实施例2所制备隔板表面形貌的扫描电子显微镜图片,从图中可以看出该微孔隔板的孔隙直径在4.9微米左右,分布均匀,孔隙率高,形成了曲折迂回的孔隙路径。
实施例3
按重量配比称取干燥好的PVC树脂47.2%,经乙烯基三(2-甲氧基乙氧基)硅烷表面处理、比表面积为300m2/g的气相纳米二氧化硅43.6%,290目的凹凸棒土5%,胶体石墨4.2%。
气相纳米二氧化硅的表面处理过程如下:将乙烯基三(2-甲氧基乙氧基)硅烷体积含量为3%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的5%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二甲基亚砜中,调至成粘度为15万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度2.6mm的薄片。成型后经过温度为55℃的热水浸提6分钟,浸提后经过80℃的烘道烘干3分钟。
图3为实施例3所制备隔板表面形貌的扫描电子显微镜图片,从图中可以看出该微孔隔板的孔隙直径在4.5微米左右,分布均匀,孔隙率高,形成了曲折迂回的孔隙路径。
实施例4
按重量配比称取干燥好的PVC树脂53.6%,经3-氨基丙基三乙氧基硅烷表面处理、比表面积为380m2/g的气相纳米二氧化硅37.7%,320目的累托石6.2%,炭黑2.5%。
气相纳米二氧化硅的表面处理过程如下:将3-氨基丙基三乙氧基硅烷体积含量为6%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的8%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二丙酮醇中,调至成粘度为6.3万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度2.9mm的薄片。成型后经过温度为50℃的热水浸提7分钟,浸提后经过88℃的烘道烘干2分钟。
图4为实施例4所制备隔板表面形貌的扫描电子显微镜图片,从图中可以看出该微孔隔板的孔隙直径在5.1微米左右,分布均匀,孔隙率高,形成了曲折迂回的孔隙路径。
实施例5
按重量配比称取干燥好的PVC树脂59.2%,经甲基丙烯酰氧丙基三甲氧基硅烷及乙烯基三甲氧基硅烷表面处理、比表面积为200m2/g的气相纳米二氧化硅30.7%,300目的云母及微米二氧化硅共8.1%,炭黑1.9%,碳纳米管0.1%。
气相纳米二氧化硅的表面处理过程如下:将甲基丙烯酰氧丙基三甲氧基硅烷及乙烯基三甲氧基硅烷体积含量均为2%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的8%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二甲基甲酰胺与二甲亚砜的混合溶剂中,调至成粘度为1.6万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度3.0mm的薄片。成型后经过温度为70℃的热水浸提4分钟,浸提后经过85℃的烘道烘干3分钟。
图5为实施例5所制备隔板表面形貌的扫描电子显微镜图片,从图中可以看出该微孔隔板的孔隙直径在4.3微米左右,分布均匀,孔隙率高,形成了曲折迂回的孔隙路径。
实施例6
按重量配比称取干燥好的PVC树脂65.8%,经乙烯基三乙氧基硅烷、3-氨基丙基三乙氧基硅烷及甲基丙烯酰氧丙基三甲氧基硅烷表面处理、比表面积为300m2/g的气相纳米二氧化硅26.7%,280目的凹凸棒土、微米二氧化硅及蒙脱土共6.8%,碳纳米管0.3%,胶体石墨0.4%。
气相纳米二氧化硅的表面处理过程如下:将乙烯基三乙氧基硅烷、3-氨基丙基三乙氧基硅烷及甲基丙烯酰氧丙基三甲氧基硅烷体积含量均为2%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的3%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二甲基甲酰胺与二甲基乙酰胺的混合溶剂中,调至成粘度为0.7万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度3.1mm的薄片。成型后经过温度为69℃的热水浸提5分钟,浸提后经过87℃的烘道烘干2分钟。
图6为实施例6所制备隔板表面形貌的扫描电子显微镜图片,从图中可以看出该微孔隔板的孔隙直径在5.4微米左右,分布均匀,孔隙率高,形成了曲折迂回的孔隙路径。
实施例7
按重量配比称取干燥好的PVC树脂69.8%,经乙烯基三乙氧基硅烷及甲基丙烯酰氧丙基三甲氧基硅烷表面处理、比表面积为225m2/g的气相纳米二氧化硅21.7%,200目的云母、累托石及微米二氧化硅及蒙脱土共7.3%,炭黑1.1%,胶体石墨0.1%。
气相纳米二氧化硅的表面处理过程如下:将乙烯基三乙氧基硅烷及甲基丙烯酰氧丙基三甲氧基硅烷体积含量为2%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的7%,在搅拌下经70~90℃干燥。
将混合好的物料加分散到二甲基甲酰胺与二丙酮醇的混合溶剂中,调至成粘度为2.6万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度2.9mm的薄片。成型后经过温度为63℃的热水浸提5分钟,浸提后经过86℃的烘道烘干3分钟。
图7为实施例7所制备隔板表面形貌的扫描电子显微镜图片,从图中可以看出该微孔隔板的孔隙直径在4.1微米左右,分布均匀,孔隙率高,形成了曲折迂回的孔隙路径。
实施例8
按重量配比称取干燥好的PVC树脂52.3%,经甲基丙烯酰氧丙基三甲氧基硅烷表面处理、比表面积为225m2/g的气相纳米二氧化硅26.7%,350目的云母及微米二氧化硅及蒙脱土共20%,胶体石墨0.9%。
气相纳米二氧化硅的表面处理过程如下:将甲基丙烯酰氧丙基三甲氧基硅烷体积含量为5%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的8%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二甲基乙酰胺与二甲亚砜的混合溶剂中,调至成粘度为4.8万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度2.5mm的薄片。成型后经过温度为58℃的热水浸提6分钟,浸提后经过74℃的烘道烘干4分钟。
图8为实施例8所制备隔板表面形貌的扫描电子显微镜图片,从图中可以看出该微孔隔板的孔隙直径在4.8微米左右,分布均匀,孔隙率高,形成了曲折迂回的孔隙路径。
实施例9
按重量配比称取干燥好的PVC树脂35%,经3-氨基丙基三乙氧基硅烷表面处理、比表面积为380m2/g的气相纳米二氧化硅55%,320目的累托石9.9%,炭黑0.1%。
气相纳米二氧化硅的表面处理过程如下:将3-氨基丙基三乙氧基硅烷体积含量为6%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的8%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二丙酮醇中,调至成粘度为6.3万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度2.9mm的薄片。成型后经过温度为50℃的热水浸提7分钟,浸提后经过88℃的烘道烘干2分钟。
实施例10
按重量配比称取干燥好的PVC树脂75%,经甲基丙烯酰氧丙基三甲氧基硅烷及乙烯基三甲氧基硅烷表面处理、比表面积为200m2/g的气相纳米二氧化硅19%,300目的云母及微米二氧化硅共1%,炭黑5%。
气相纳米二氧化硅的表面处理过程如下:将甲基丙烯酰氧丙基三甲氧基硅烷及乙烯基三甲氧基硅烷体积含量均为1%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的7%,在搅拌下经70~90℃干燥。
将混合好的物料分散到二甲基甲酰胺与二甲亚砜的混合溶剂中,调至成粘度为1.6万Pa.s的粘稠液,通过常温挤出、压延工艺成型,制成厚度3.0mm的薄片。成型后经过温度为70℃的热水浸提4分钟,浸提后经过85℃的烘道烘干3分钟。
实施例1~10配方及材料性能见表1:
Figure G2009102141022D00071

Claims (8)

1.一种胶体蓄电池专用微孔隔板,其特征在于该隔板的组成按重量百分比是:
PVC树脂                  35-75%
气相纳米二氧化硅         19~55%
孔隙调节剂               5~20%
导电剂                   0.1~5%。
2.根据权利要求1所述的隔板,其特征在于所述气相纳米二氧化硅的比表面积为150~380m2/g。
3.根据权利要求2所述的隔板,其特征在于所述的气相纳米二氧化硅经有机硅氧烷进行过表面处理。
4.根据权利要求3所述的隔板,其特征在于所述有机硅氧烷为乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、3-氨基丙基三乙氧基硅烷、甲基丙烯酰氧丙基三甲氧基硅烷中的一种或一种以上的组合物。
5.根据权利要求3或4所述的隔板,其特征在于气相纳米二氧化硅的表面处理过程如下:
将有机硅氧烷体积含量为0.5~8%的无水乙醇溶液喷洒到气相纳米二氧化硅表面,上述无水乙醇溶液的用量为气相纳米二氧化硅重量的1~10%,在搅拌下经70~90℃干燥。
6.根据权利要求1所述的隔板,其特征在于孔隙调节剂为200目以上的沉淀二氧化硅、200目以上的层状硅酸盐中的一种或一种以上的组合物。
7.根据权利要求6所述的隔板,其特征在于层状硅酸盐为蒙脱土、凹凸棒土、云母或累托石。
8.根据权利要求1所述的隔板,其特征在于所述导电剂为炭黑、碳纳米管、石墨中的一种或一种以上的组合物。
CN2009102141022A 2009-12-22 2009-12-22 一种胶体蓄电池专用微孔隔板 Pending CN102104129A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102141022A CN102104129A (zh) 2009-12-22 2009-12-22 一种胶体蓄电池专用微孔隔板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102141022A CN102104129A (zh) 2009-12-22 2009-12-22 一种胶体蓄电池专用微孔隔板

Publications (1)

Publication Number Publication Date
CN102104129A true CN102104129A (zh) 2011-06-22

Family

ID=44156754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102141022A Pending CN102104129A (zh) 2009-12-22 2009-12-22 一种胶体蓄电池专用微孔隔板

Country Status (1)

Country Link
CN (1) CN102104129A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324484A (zh) * 2011-09-08 2012-01-18 扬中市阳光电源材料有限公司 高孔率胶体蓄电池聚乙烯隔板及制备方法
CN103094516A (zh) * 2013-01-23 2013-05-08 华南师范大学 一种复合增强型胶体蓄电池隔板及其制备方法
CN104091969A (zh) * 2014-07-14 2014-10-08 浙江南都电源动力股份有限公司 一种汽车启停阀控密封铅酸蓄电池
CN105895911A (zh) * 2015-02-18 2016-08-24 株式会社杰士汤浅国际 铅蓄电池
CN108448047A (zh) * 2018-02-05 2018-08-24 元创绿能科技股份有限公司 电瓶液之充电装置
CN110931690A (zh) * 2019-11-13 2020-03-27 江苏长海复合材料股份有限公司 一种胶体电池隔板片材及其制备方法
CN113292802A (zh) * 2021-05-28 2021-08-24 深圳德诚达光电材料有限公司 一种耐氧化的胶体电池隔板及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324484A (zh) * 2011-09-08 2012-01-18 扬中市阳光电源材料有限公司 高孔率胶体蓄电池聚乙烯隔板及制备方法
CN103094516A (zh) * 2013-01-23 2013-05-08 华南师范大学 一种复合增强型胶体蓄电池隔板及其制备方法
CN104091969A (zh) * 2014-07-14 2014-10-08 浙江南都电源动力股份有限公司 一种汽车启停阀控密封铅酸蓄电池
CN105895911A (zh) * 2015-02-18 2016-08-24 株式会社杰士汤浅国际 铅蓄电池
CN108448047A (zh) * 2018-02-05 2018-08-24 元创绿能科技股份有限公司 电瓶液之充电装置
CN110931690A (zh) * 2019-11-13 2020-03-27 江苏长海复合材料股份有限公司 一种胶体电池隔板片材及其制备方法
CN113292802A (zh) * 2021-05-28 2021-08-24 深圳德诚达光电材料有限公司 一种耐氧化的胶体电池隔板及其制备方法

Similar Documents

Publication Publication Date Title
Li et al. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries
Jin et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries
CN102104129A (zh) 一种胶体蓄电池专用微孔隔板
US10109845B2 (en) Methods for making graphene-supported metal oxide monolith
Xia et al. Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries
KR102117722B1 (ko) 전기화학 응용분야를 위한 메조다공성 흑연 입자의 용도
Jeong et al. Facile preparation of three-dimensional porous hydrous ruthenium oxide electrode for supercapacitors
EP2754639B1 (en) Porous silica-carbon composite body and method for producing same
KR20170129922A (ko) 복합 코어-쉘 입자
CN104446515A (zh) 锂离子电池隔膜的高固含量水性陶瓷浆料及其加工方法
Yoo et al. Porous silicon nanowires for lithium rechargeable batteries
CN105280916B (zh) 铅酸蓄电池内化成合膏
KR20150052008A (ko) 하이브리드 전해질
Yang et al. Carbon-supported SnO2 nanowire arrays with enhanced lithium storage properties
CN103094516A (zh) 一种复合增强型胶体蓄电池隔板及其制备方法
CN109860488A (zh) 锂电池隔膜用涂层浆料及其制备方法及含有该浆料的隔膜
CN105489867A (zh) 一种多孔碳硅材料及其制备方法
CN109817869A (zh) 一种锂离子电池隔膜及其制备方法
CN102169974B (zh) 一种玻纤复合增强型隔板及其制备方法
CN109119606A (zh) 一种纳米铅沉积多级孔结构碳复合材料的制备方法及应用
Moni et al. A new silicon oxycarbide based gas diffusion layer for zinc-air batteries
CN109698343A (zh) 一种纳米铅沉积多级孔结构碳复合材料的制备方法及应用
CN105845890A (zh) 一种锂电池负极材料及其制备方法
CN101199027A (zh) 质子传导膜及其制造方法
CN103579581A (zh) 单晶多孔氧化铁粉体材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110622