CN102101051B - A preparation method of carbon nanotube-loaded nano-photocatalytic material capable of degrading nitrogen oxides - Google Patents
A preparation method of carbon nanotube-loaded nano-photocatalytic material capable of degrading nitrogen oxides Download PDFInfo
- Publication number
- CN102101051B CN102101051B CN 201110026187 CN201110026187A CN102101051B CN 102101051 B CN102101051 B CN 102101051B CN 201110026187 CN201110026187 CN 201110026187 CN 201110026187 A CN201110026187 A CN 201110026187A CN 102101051 B CN102101051 B CN 102101051B
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- nano
- modified nano
- nitrogen oxides
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 29
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 29
- 239000000463 material Substances 0.000 title claims abstract description 26
- 230000000593 degrading effect Effects 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000013078 crystal Substances 0.000 claims abstract description 30
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 230000001699 photocatalysis Effects 0.000 claims abstract description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 12
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002048 multi walled nanotube Substances 0.000 claims description 2
- 101710134784 Agnoprotein Proteins 0.000 claims 1
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 8
- 230000004048 modification Effects 0.000 abstract description 7
- 238000012986 modification Methods 0.000 abstract description 7
- 238000007146 photocatalysis Methods 0.000 abstract description 6
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 abstract description 4
- 238000001354 calcination Methods 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract description 2
- 229910021392 nanocarbon Inorganic materials 0.000 abstract 1
- 230000005284 excitation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- -1 silver ions Chemical class 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种能降解氮氧化物的碳纳米管负载型改性纳米光催化材料的制备方法。The invention relates to a preparation method of a carbon nanotube loaded modified nanometer photocatalytic material capable of degrading nitrogen oxides.
背景技术 Background technique
自从1972年Fujishima提出了半导体材料的“本多——藤本”效应以来,采用光催化技术降解常温下稳定的有害液体和气体的研究已成为科学界的研究热点,然而由于激发波长的限制以及光催化量子产生率和催化效率的低下,现有光催化材料的实际户外催化效果十分有限,必须进行光催化材料的改性处理。目前,在改性处理方面已有较多的研究,例如采用离子尤其是稀土金属元素掺杂改性、表面沉积Au、Pt、Ag等惰性贵金属,或采用色素等光敏剂涂覆光催化材料表面、采用多孔载体技术等等,期望达到减少光生电子和空穴之间的复合、提高可见光的激发率和光催化活性的效果。Since Fujishima proposed the "Hondo-Fujimoto" effect of semiconductor materials in 1972, the use of photocatalytic technology to degrade harmful liquids and gases that are stable at room temperature has become a research hotspot in the scientific community. Due to the low catalytic quantum generation rate and catalytic efficiency, the actual outdoor catalytic effect of existing photocatalytic materials is very limited, and photocatalytic materials must be modified. At present, there have been many studies on modification treatment, such as doping modification with ions, especially rare earth metal elements, depositing inert noble metals such as Au, Pt, Ag on the surface, or coating the surface of photocatalytic materials with photosensitizers such as pigments. , Using porous carrier technology, etc., it is expected to reduce the recombination between photogenerated electrons and holes, improve the excitation rate of visible light and the effect of photocatalytic activity.
本发明将纳米光催化材料的掺杂改性和有效载体技术结合起来,一方面对已有的纳米二氧化钛混晶进行银离子掺杂改性,达到提高可见光下的光催化效率的效果;另一方面,采用多壁纳米碳管作为有效载体,使得光催化材料能与氮氧化物充分接触和反应,同时大幅度减少光生电子和空穴之间的复合几率,从而达到显著提高光催化效率和长效性的效果。The present invention combines the doping modification of nano photocatalytic materials and the effective carrier technology, on the one hand, silver ion doping and modification is carried out on the existing nano-titanium dioxide mixed crystal, so as to achieve the effect of improving the photocatalytic efficiency under visible light; on the other hand, On the one hand, the use of multi-walled carbon nanotubes as an effective carrier enables the photocatalytic material to fully contact and react with nitrogen oxides, and at the same time greatly reduces the recombination probability between photogenerated electrons and holes, thereby achieving a significant increase in photocatalytic efficiency and long-term effectiveness effect.
发明内容 Contents of the invention
本发明的目的在于克服现有技术中的不足提供能降解氮氧化物的碳纳米管负载型纳米光催化材料的制备方法。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a preparation method of a carbon nanotube-loaded nano photocatalytic material capable of degrading nitrogen oxides.
本发明的能降解氮氧化物的碳纳米管负载型改性纳米光催化材料的制备方法,包括以下步骤:The preparation method of the carbon nanotube-loaded modified nano photocatalytic material capable of degrading nitrogen oxides of the present invention comprises the following steps:
(1)将纳米二氧化钛混晶置于水中超声分散20~30分钟,然后放入0.3~0.5mol/L的AgNO3溶液中,加入部分乙醇然后搅拌30~40min;(1) Ultrasonically disperse nano-titanium dioxide mixed crystals in water for 20-30 minutes, then put them into 0.3-0.5mol/L AgNO3 solution, add part of ethanol and stir for 30-40 minutes;
(2)置于紫外灯下继续搅拌90min,过滤后将滤渣放在400~450℃下煅烧2~3小时,得到改性的纳米二氧化钛混晶;(2) Continue stirring for 90 minutes under an ultraviolet lamp, and after filtering, place the filter residue at 400-450° C. for 2-3 hours to calcinate to obtain a modified nano-titanium dioxide mixed crystal;
(3)将改性的纳米二氧化钛混晶与纳米碳管按重量比1∶0.01~0.015的比例混料2~4h,得到能降解氮氧化物的碳纳米管负载型改性纳米光催化材料的制备方法。(3) Mixing the modified nano-titanium dioxide mixed crystals and carbon nanotubes in a weight ratio of 1:0.01-0.015 for 2-4 hours to obtain a carbon nanotube-loaded modified nano-photocatalytic material capable of degrading nitrogen oxides Preparation.
本发明中,所述的纳米二氧化钛混晶中锐钛矿型和金红石型分别占75%和25%;所述的纳米碳管的管径为30~40nm、长度为1um左右的多壁碳纳米管。In the present invention, the anatase type and rutile type account for 75% and 25% respectively in the nano-titanium dioxide mixed crystal; Tube.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明制备工艺简单,制得的碳纳米管负载型改性纳米光催化材料由于经过银离子改性和纳米碳管负载,具备了更加优良的氮氧化物光催化效果,尤其是可见光下的效果得到明显改善,同时光催化效果的长效性也显著提高。对于纳米二氧化钛混晶这种最常用的纳米光催化材料,由于其价带宽度的限制使得激发波长位于紫外光区,可见光下的光催化效果很差,通过银离子掺杂后,激发波长发生红移使得可见光下的光催化效果得以提高;另外,由于碳纳米管的巨大比表面积易吸附改性纳米二氧化钛混晶和氮氧化物,有效避免了改性纳米二氧化钛混晶的团聚,也增大了改性纳米二氧化钛混晶和氮氧化物的接触几率,使得光催化效率得到进一步提升,同时碳纳米管的富余电子和良好导电性能也扩大了电子和空穴的移动速度差,从而降低了电子空穴对的湮灭几率,因此这种碳纳米管负载型改性纳米光催化材料具备十分优良的光催化功能。The preparation process of the present invention is simple, and the prepared carbon nanotube-loaded modified nano-photocatalytic material has a more excellent nitrogen oxide photocatalytic effect, especially the effect under visible light, due to silver ion modification and carbon nanotube loading. It has been significantly improved, and the long-term effect of photocatalysis has also been significantly improved. For nano-titanium dioxide mixed crystal, the most commonly used nano-photocatalytic material, due to the limitation of its valence band width, the excitation wavelength is in the ultraviolet region, and the photocatalytic effect under visible light is very poor. After doping with silver ions, the excitation wavelength becomes red. In addition, due to the large specific surface area of carbon nanotubes, it is easy to adsorb the modified nano-titanium dioxide mixed crystals and nitrogen oxides, which effectively avoids the agglomeration of the modified nano-titanium dioxide mixed crystals and increases the The contact probability of modified nano-titanium dioxide mixed crystals and nitrogen oxides further improves the photocatalytic efficiency. At the same time, the surplus electrons and good electrical conductivity of carbon nanotubes also expand the difference in moving speed between electrons and holes, thereby reducing the electron vacancy. The annihilation probability of hole pairs, so this carbon nanotube-loaded modified nano-photocatalytic material has very good photocatalytic function.
具体实施方式 Detailed ways
以下通过实例进一步对本发明进行描述。The present invention is further described by examples below.
实施例1Example 1
(1)将纳米二氧化钛混晶置于水中超声分散25分钟,然后放入0.3mol/L的AgNO3溶液中,加入部分乙醇然后搅拌30min;(1) Put nano-titanium dioxide mixed crystals in water for ultrasonic dispersion for 25 minutes, then put them into 0.3mol/L AgNO3 solution, add part of ethanol and stir for 30 minutes;
(2)置于紫外灯下继续搅拌90min,过滤后将滤渣放在400℃下煅烧2小时,得到改性的纳米二氧化钛混晶;(2) Continue to stir for 90 minutes under an ultraviolet lamp, and after filtering, place the filter residue at 400° C. for calcination for 2 hours to obtain modified nano-titanium dioxide mixed crystals;
(3)将改性的纳米二氧化钛混晶与纳米碳管按重量比1∶0.01的比例混料2h,得到能降解氮氧化物的碳纳米管负载型改性纳米光催化材料。(3) Mixing the modified nano-titanium dioxide mixed crystals and carbon nanotubes at a weight ratio of 1:0.01 for 2 hours to obtain a carbon nanotube-loaded modified nano-photocatalytic material capable of degrading nitrogen oxides.
该材料能在模拟日光条件下(其中254nm、290nm、365nm和420nm的光强分别为4.2、1.5、19和165μW/cm2)光催化氧化连续通过的浓度为30ppm的二氧化氮气体,其光催化效率达到73.3%,连续反应7.5小时后,光催化效率仍达到46.6%。The material can photocatalytically oxidize nitrogen dioxide gas with a concentration of 30ppm under simulated sunlight conditions (the light intensities of 254nm, 290nm, 365nm and 420nm are 4.2, 1.5, 19 and 165μW/cm2 respectively). The efficiency reached 73.3%, and after 7.5 hours of continuous reaction, the photocatalytic efficiency still reached 46.6%.
实施例2Example 2
(1)将纳米二氧化钛混晶置于水中超声分散30分钟,然后放入0.5mol/L的AgNO3溶液中,加入部分乙醇然后搅拌40min;(1) Put the nano-titanium dioxide mixed crystal in water for ultrasonic dispersion for 30 minutes, then put it into 0.5mol/L AgNO3 solution, add part of ethanol and then stir for 40 minutes;
(2)置于紫外灯下继续搅拌90min,过滤后将滤渣放在450℃下煅烧4小时,得到改性的纳米二氧化钛混晶;(2) Place under an ultraviolet lamp and continue to stir for 90 minutes, and after filtering, place the filter residue at 450° C. for calcination for 4 hours to obtain a modified nano-titanium dioxide mixed crystal;
(3)将改性的纳米二氧化钛混晶与纳米碳管按重量比1∶0.01的比例混料2h,得到能降解氮氧化物的碳纳米管负载型改性纳米光催化材料。(3) Mixing the modified nano-titanium dioxide mixed crystals and carbon nanotubes at a weight ratio of 1:0.01 for 2 hours to obtain a carbon nanotube-loaded modified nano-photocatalytic material capable of degrading nitrogen oxides.
该材料能在模拟日光条件下(其中254nm、290nm、365nm和420nm的光强分别为4.3、1.5、17和166μW/cm2)光催化氧化连续通过的浓度为30ppm的二氧化氮气体,其光催化效率达到75.1%,连续反应7.5小时后,光催化效率仍达到47.8%。The material can photocatalytically oxidize nitrogen dioxide gas with a concentration of 30ppm under simulated sunlight conditions (the light intensities of 254nm, 290nm, 365nm and 420nm are 4.3, 1.5, 17 and 166μW/cm2 respectively). The efficiency reached 75.1%, and after 7.5 hours of continuous reaction, the photocatalytic efficiency still reached 47.8%.
实施例3Example 3
(1)将纳米二氧化钛混晶置于水中超声分散30分钟,然后放入0.5mol/L的AgNO3溶液中,加入部分乙醇然后搅拌40min;(1) Put the nano-titanium dioxide mixed crystal in water for ultrasonic dispersion for 30 minutes, then put it into 0.5mol/L AgNO3 solution, add part of ethanol and then stir for 40 minutes;
(2)置于紫外灯下继续搅拌90min,过滤后将滤渣放在450℃下煅烧4小时,得到改性的纳米二氧化钛混晶;(2) Place under an ultraviolet lamp and continue to stir for 90 minutes, and after filtering, place the filter residue at 450° C. for calcination for 4 hours to obtain a modified nano-titanium dioxide mixed crystal;
(3)将改性的纳米二氧化钛混晶与纳米碳管按重量比1∶0.015的比例混料4h,得到能降解氮氧化物的碳纳米管负载型改性纳米光催化材料。(3) Mixing the modified nano-titanium dioxide mixed crystals and carbon nanotubes at a weight ratio of 1:0.015 for 4 hours to obtain a carbon nanotube-loaded modified nano-photocatalytic material capable of degrading nitrogen oxides.
该材料能在模拟日光条件下(其中254nm、290nm、365nm和420nm的光强分别为4.3、1.5、18和167μW/cm2)光催化氧化连续通过的浓度为30ppm的二氧化氮气体,其光催化效率达到76.5%,连续反应7.5小时后,光催化效率仍达到48.3%。The material can photocatalytically oxidize nitrogen dioxide gas with a concentration of 30ppm under simulated sunlight conditions (the light intensities of 254nm, 290nm, 365nm and 420nm are 4.3, 1.5, 18 and 167μW/cm2 respectively). The efficiency reached 76.5%, and after 7.5 hours of continuous reaction, the photocatalytic efficiency still reached 48.3%.
本发明所述的方法,一方面通过银离子掺杂减少了纳米二氧化钛混晶的带宽,使得激发波长向可见光区红移,从而提高了可见光下的光催化效率;另一方面,采用纳米碳管负载改性纳米二氧化钛混晶,有效地防止纳米二氧化钛混晶的团聚、促进纳米二氧化钛混晶的有效分散及其与氮氧化物的有效接触,同时纳米碳管的富余电子和良好导电功能,更有助于减少电子空穴对的湮灭几率,从而赋予纳米碳管负载改性纳米二氧化钛混晶有着良好和长期稳定的氮氧化物光催化功能。In the method of the present invention, on the one hand, the bandwidth of the nano-titanium dioxide mixed crystal is reduced by silver ion doping, so that the excitation wavelength is red-shifted to the visible light region, thereby improving the photocatalytic efficiency under visible light; on the other hand, using carbon nanotubes Loading modified nano-titanium dioxide mixed crystals can effectively prevent the agglomeration of nano-titanium dioxide mixed crystals, promote the effective dispersion of nano-titanium dioxide mixed crystals and their effective contact with nitrogen oxides, and the surplus electrons and good electrical conductivity of carbon nanotubes, more It helps to reduce the annihilation probability of electron-hole pairs, thereby endowing carbon nanotubes with modified nano-titanium dioxide mixed crystals with good and long-term stable nitrogen oxide photocatalytic function.
以上列举的仅是本发明的具体实施例子。显然,本发明不限于以上实施例子,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,均应认为是本发明的保护范围。What has been listed above are only specific implementation examples of the present invention. Apparently, the present invention is not limited to the above examples, and within the spirit of the present invention and the protection scope of the claims, any modification and change made to the present invention should be considered as the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110026187 CN102101051B (en) | 2011-01-25 | 2011-01-25 | A preparation method of carbon nanotube-loaded nano-photocatalytic material capable of degrading nitrogen oxides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110026187 CN102101051B (en) | 2011-01-25 | 2011-01-25 | A preparation method of carbon nanotube-loaded nano-photocatalytic material capable of degrading nitrogen oxides |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102101051A CN102101051A (en) | 2011-06-22 |
CN102101051B true CN102101051B (en) | 2013-01-30 |
Family
ID=44154231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110026187 Expired - Fee Related CN102101051B (en) | 2011-01-25 | 2011-01-25 | A preparation method of carbon nanotube-loaded nano-photocatalytic material capable of degrading nitrogen oxides |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102101051B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102500356A (en) * | 2011-11-11 | 2012-06-20 | 东华大学 | Preparation method for carbon nanotube-nano-bismuth vanadate composite photocatalyst |
CN104787841B (en) * | 2015-04-30 | 2017-01-11 | 扬州大学 | Preparation method of three-dimensional macroporous carbon/carbon nanotube/titanium dioxide/silver composite material capable of catalytically degrading unsymmetrical dimethylhydrazine |
CN106752113B (en) * | 2016-12-14 | 2019-02-19 | 浙江恒逸高新材料有限公司 | A kind of preparation method and application of modifying titanium dioxide |
CN109012744B (en) * | 2018-09-20 | 2021-06-11 | 四川文理学院 | Method for degrading nitrogen oxide by visible light catalysis |
CN110184632A (en) * | 2019-06-20 | 2019-08-30 | 佛山市众之助新材料科技有限公司 | A kind of method that nickel-iron-phosphorus alloy is plated on metal surface |
CN111085107A (en) * | 2019-11-25 | 2020-05-01 | 苏交科集团股份有限公司 | Method for purifying vehicle tail gas by porous asphalt pavement loaded composite modified photocatalyst |
CN113058580B (en) * | 2021-03-26 | 2022-07-15 | 曲阜师范大学 | A kind of preparation method of carbon nanotube/silver nanoparticle/titanium dioxide visible light catalyst |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1680023A (en) * | 2004-07-15 | 2005-10-12 | 清华大学 | Nanocarrier Photocatalysts |
CN1868589A (en) * | 2006-06-22 | 2006-11-29 | 厦门大学 | Method for preparing carbon nanometer tube/titanium dioxide composite photocatalyst |
CN101704641A (en) * | 2009-11-23 | 2010-05-12 | 浙江大学 | Preparation method of nano-photocatalytic admixture for cement-based material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004148305A (en) * | 2002-10-11 | 2004-05-27 | Osaka Gas Co Ltd | Photocatalyst and air cleaner using the same |
-
2011
- 2011-01-25 CN CN 201110026187 patent/CN102101051B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1680023A (en) * | 2004-07-15 | 2005-10-12 | 清华大学 | Nanocarrier Photocatalysts |
CN1868589A (en) * | 2006-06-22 | 2006-11-29 | 厦门大学 | Method for preparing carbon nanometer tube/titanium dioxide composite photocatalyst |
CN101704641A (en) * | 2009-11-23 | 2010-05-12 | 浙江大学 | Preparation method of nano-photocatalytic admixture for cement-based material |
Non-Patent Citations (2)
Title |
---|
JP特开2004-148305A 2004.05.27 |
Shuo Wang et al..Preparation and photocatalytic properties of silver nanoparticles loaded on CNTs/TiO2 composite.《Applied Surface Science》.2009,第255卷8063-8066. * |
Also Published As
Publication number | Publication date |
---|---|
CN102101051A (en) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102101051B (en) | A preparation method of carbon nanotube-loaded nano-photocatalytic material capable of degrading nitrogen oxides | |
Priya et al. | Synthesis of BiFeWO6/WO3 nanocomposite and its enhanced photocatalytic activity towards degradation of dye under irradiation of light | |
CN102600823B (en) | Preparation method of graphene/titania composite material | |
CN104289240B (en) | A preparation method of Ag3PO4/BiVO4 heterojunction composite photocatalyst | |
CN103263920B (en) | A kind of TiO2 loaded highly dispersed metal catalyst and preparation method thereof | |
CN107126944A (en) | A kind of many doping titanium dioxide nano particles of many defects with high visible light catalytic activity and preparation method | |
CN106492885B (en) | A kind of preparation method of GNs/CoPcS/TiO2 photocatalyst | |
CN108479752A (en) | A kind of BiVO of two dimension carbon-coating load4/TiO2The preparation method of heterogeneous visible light catalyst | |
CN108855078A (en) | A kind of Ag- (010) crystal face BiVO4@RGO photochemical catalyst and preparation method thereof | |
CN107096519A (en) | A kind of platinum dopant nano titanium dioxide photocatalyst | |
CN101406834A (en) | Method for preparing silver and titanic oxide nano compound material at low temperature | |
CN101229514B (en) | Preparation method and application of composite titanate nanotube photocatalyst | |
Xu et al. | The construction of a Fenton system to achieve in situ H 2 O 2 generation and decomposition for enhanced photocatalytic performance | |
CN104226340B (en) | Visible light nano composite photo-catalyst AgCl-SnO 2preparation method | |
Liu et al. | One-pot synthesis of flower-like Bi2WO6/BiOCOOH microspheres with enhanced visible light photocatalytic activity | |
CN105148972A (en) | Preparation method and application of novel catalyst for reducing nitrate nitrogen in water under visible light condition | |
CN115970715B (en) | Z-type heterojunction Cs2AgBiBr6/TiO2Composite material and preparation method thereof | |
She et al. | Photocatalytic activation of saturated C–H bond over the CdS mixed-phase under visible light irradiation | |
CN102198392B (en) | Preparation method and application of a carbon-wrapped titanium dioxide composite material | |
CN105879867A (en) | Preparation method of semiconductor oxide in-situ supported noble metal cluster | |
CN108654632A (en) | A kind of Bi for degrading microcystic toxins2WO6/Fe3O4The preparation method of photochemical catalyst | |
Fu et al. | Constructing a novel NaLa (WO4) 2/g-C3N4 Z-scheme heterojunction with efficient carrier separation for excellent photocatalytic purification of NO | |
CN105170144A (en) | Zirconium and silver codoped nano-titanium dioxide visible light photocatalyst | |
CN105251483A (en) | A method of controllable preparation of Ag-modified TiO2 nanoflower photocatalyst | |
CN110201667A (en) | The preparation method of Ag/GO catalysis material for sterilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130130 Termination date: 20170125 |