New! View global litigation for patent families

CN102096156A - Online light polarization controller based on optical fiber end face metal wire grating and manufacturing method thereof - Google Patents

Online light polarization controller based on optical fiber end face metal wire grating and manufacturing method thereof Download PDF

Info

Publication number
CN102096156A
CN102096156A CN 201110001942 CN201110001942A CN102096156A CN 102096156 A CN102096156 A CN 102096156A CN 201110001942 CN201110001942 CN 201110001942 CN 201110001942 A CN201110001942 A CN 201110001942A CN 102096156 A CN102096156 A CN 102096156A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
metal
wire
grating
optical
fiber
Prior art date
Application number
CN 201110001942
Other languages
Chinese (zh)
Inventor
冯婧
徐飞
胡伟
赵云
陆延青
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses an online light polarization controller based on an optical fiber end face metal wire grating. The end face of an optical fiber is provided with a metal wire grating; the metal wire grating has a period of 0.05 to 5 microns; the metal wire grating consists of metal films; the metal film has the thickness of 0.01 to 2 microns; and the duty ratio x is an optional value between 0 and 1. The optical fiber is provided with a flat end face and comprises a single-mode optical fiber, a multi-mode optical fiber and a polarization maintaining optical fiber. The method for preparing the metal wire grating is divided into a direct method and an indirect method, wherein the direct method comprises a step of directly preparing a metal wire grating structure on the flat optical fiber end face by utilizing a micro-nano processing technology; and the indirect method comprises the steps of: preparing a nonmetallic structure barrier layer by utilizing the micro-nano processing technology, preparing the metal wire grating structure by utilizing the structure barrier layer, and removing the structure barrier layer. Due to the specific micro-nano processing technology, the metal wire grating is prepared on the flat optical fiber end face, and the polarization of transmission light or reflected light is controlled by the wire grating structure.

Description

一种基于光纤端面金属线栅的在线式光偏振控制器及其制 Based on the fiber end face of the metal wire grid-line optical system and a polarization controller

law

技术领域: FIELD:

[0001] 本发明属于光电子技术领域,具体涉及金属线栅的偏振选择特性,及基于此的一种新型在线式光偏振控制器的制备及应用。 [0001] The present invention belongs to the polarization selection characteristic field of photonics technology, particularly relates to a metal wire grid, and based on this kind of preparation and application of new on-line light polarization controller. 利用光纤端面金属线栅结构控制反射光或透射光的偏振性,从而设计出的一种新型的在线式光偏振控制器,在光纤通信、光信息处理、光纤传感及精密光学测量等方面具有重要应用。 The metal wire grid using an optical fiber end surface configuration of the control polarization of the reflected light or transmitted light, so that the design of a new-line light polarization controller, having in optical fiber communication, optical information processing, optical fiber sensing and precision measurement critical applications.

背景技术 Background technique

[0002] 进入21世纪以来,由于信息量的骤增,对通信技术提出了更高的要求。 [0002] In the 21st century, due to the surge in the amount of information, communication technology put forward higher requirements. 光通信因其带宽大、可靠性高、成本低、传输速度快等优点而占据了市场的主导地位。 The optical communication because of their large bandwidth, high reliability, low cost, transmission speed, etc. and has dominated the market. 光通信系统和光网络的飞速发展带来了信息时代的革命。 The rapid development of optical communication systems and optical networks has brought a revolution in the information age. 其中光纤通信技术凭借其通信容量大、传输距离远,信号串扰小、保密性能好,抗电磁干扰、传输质量高、作为载体的光纤尺寸小、材料来源丰富等优点,在众多的光通信技术中脱颖而出,成为现代通信的主要支柱之一。 Wherein by virtue of its communication capacity, transmission distance, small crosstalk, confidential performance, anti-electromagnetic interference, high transmission quality, small as the carrier fiber size, a rich source of materials, etc., many optical communication technology optical fiber communication technology It emerged as one of the main pillars of modern communications.

[0003] 随着通信技术的飞速发展,系统中单信道的传输速率正在不断提高,以满足人们对通信带宽的需求。 [0003] With the rapid development of communication technologies, the transmission rate of the single channel system is increasing to meet the demand for communication bandwidth. 在传输速率提高的同时,通信系统对光纤中的偏振模色散(PMD)、电光调制器中的偏振相关调制(PDM),以及光放大器中的偏振相关增益(PDG)等一系列由偏振引起的损害也越来越敏感。 Transmission rate while improving the communication system of the optical fiber polarization mode dispersion (the PMD), electro-optic modulator in the polarization-dependent modulation (the PDM), and the optical amplifier polarization dependent gain (the PDG) caused by the polarization and a series of more and more sensitive to damage. 用于PMD补偿的动态偏振控制器是克服这些损害的最重要的器件,它能够将任意给定的偏振态转变为任何希望得到的偏振态。 Dynamic polarization controller for PMD compensation device is most important to overcome these damages, which can be given an arbitrary polarization state into any desired polarization state obtained.

[0004] 目前,商用的偏振控制器根据其技术原理可分为三类:一种是由多个延迟固定、方位角可变的波片组成的;另一种由单个延迟可调、方位角可变的波片组成;还有一种由多个方位角固定、延迟可调的波片组成。 [0004] Currently, commercial technical principle according to the polarization controller can be divided into three categories: one is fixed by a plurality of delay, azimuth variable wave plate thereof; another by a single adjustable delay, azimuth variable waveplate composition; there is a fixed by a plurality of azimuth angles, adjustable delayed wave slices. 典型的偏振控制器由三个可旋转的波片组成(如图2),一个λ/2波片处于两个λ/4波片中间,每个波片都可沿着光轴相对于其它波片自由转动。 A typical wave plate polarization controller consists of three rotatable composition (FIG. 2), a λ / 2 wave plate in the middle of two λ / 4 wave plate, wave plate each relative to the other along the optical axis may wave rotatably sheet. 第一个λ/4波片的作用是将任意输入偏振光转变为线偏振光,然后λ/2波片将此线偏振光旋转到任一希望得到的偏振方向,于是第二个λ /4波片就能将该偏振光转变为任何希望得到的输出偏振态。 The first λ / 4 plate is to effect any input polarized light into linearly polarized light, and λ / 2 wave plate this linearly polarized light the polarization direction of either a desired rotational obtained, then the second λ / 4 the polarized wave plate can be converted to any desired output polarization state obtained. 在这种实现方法中,波片的延迟是固定的,但波片的相对角度是可变的。 In this implementation, the wave retardation plate is fixed, but the relative angle of the wave plate is variable.

[0005] 虽然,这种方法应用在商用化的产品中已经颇见成效,但该项技术仍然存在许多不足。 [0005] Although this approach has been quite effective in the commercial application of the product, but the technology still has many deficiencies. 第一,光线的准直、对轴、聚焦费时费力。 First, the collimated light on the axis, the focusing time consuming. 第二,波片、微透镜等元件都价格不菲,并且还需要镀增透膜、抛磨斜角以减少背向反射。 A second wave plate, microlenses are expensive elements, and also require antireflection coatings, bevel polishing to reduce back reflections. 第三,由于不可避免的要将光从一根光纤中耦合输出,然后再将其聚焦进入另一根光纤,造成插入损耗大。 Third, due to unavoidable light is to be coupled out of an optical fiber, which is then focused into another fiber, causing a large insertion loss. 第四,波片是对波长敏感的(任何分数波片的确定都是针对某个固定波长的),从而使得相应的偏振控制器也对波长敏感。 Fourth, the wave plate is wavelength sensitive (determine any fractional wave plate are made on a fixed wavelength), so that the respective polarization controller is also sensitive to the wavelength. 第五,使用电动机或其它机械器件旋转波片,都会限制偏振控制器的控制速度。 Fifth, the use of a motor or other mechanical devices rotating waveplate will speed limit control of the polarization controller.

[0006] 与此同时,基于金属线栅技术的体块型偏振器发展已经日趋成熟。 [0006] Meanwhile, the bulk type polarizers develop techniques based on the metal wire grid has matured. 金属线栅偏振器是一种宽带的偏振器,借助一定的结构设计,工作波长可覆盖宽波段。 A metal wire grid polarizer is a broadband polarizer, with a certain design, the operating wavelength can cover a wide band. 到目前为止,在无线电波、微波和远红外波段,亚波长金属线栅偏振器均已得到了广泛应用。 So far, radio waves, microwaves, and far-infrared band, the metal sub-wavelength wire-grid polarizers have been widely used. 随着纳米加工技术的发展,制备出结构更小,应用于近红外、可见、甚至紫外波段的金属线栅偏振器也已经成为可能。 With the development of nano-processing techniques, the structure of smaller prepared, applied to the near-infrared, visible, ultraviolet and even a metal wire grid polarizer has become possible. 发明内容 SUMMARY

[0007] 本发明目的是:提出一种基于光纤端面金属线栅的在线式光偏振控制器及其制法,从金属线栅技术出发,把金属线栅偏振器与光纤相结合,制备新型在线式光偏振控制 [0007] The object of the present invention is to: propose an optical polarization controller-line fiber end face preparation method based on the metal wire grid, from the metal wire grid technology, the metal wire grid polarizer and the optical fiber combined preparation of new line type light polarization control

ο ο

[0008] 本发明的技术方案是:基于光纤端面金属线栅的在线式光偏振控制器,光纤端面设有金属线栅,金属线栅周期为0. 05-5微米,组成金属线栅是金属膜,金属膜厚为0. 01-2 微米,占空比χ为0 < χ < 1之间的任意值。 [0008] The aspect of the present invention is: a metal wire grid is provided on-line light polarization controller, the fiber end face of the fiber end faces the metal wire grid, a metal wire grid period is 0.5 05-5 m, the metal composition of the metal wire grid is film, a metal film thickness of 0.5 01-2 m, the duty ratio is [chi] 0 <χ <any value between 1.

[0009] 光纤具有平整的光纤端面,光纤包括单模光纤、多模光纤、保偏光纤。 [0009] The optical fiber having a flat end face of the optical fiber comprises a single mode fiber, multimode fiber, a polarization maintaining fiber.

[0010] 金属线栅的材质包括金、银、铝、铜、钼、铬等金属,线栅结构周期尤其为0. 1-3微米,占空比X为0. 3至0. 7之间的任意值,线栅的金属膜厚为0. 05-1微米,线栅结构区域覆盖光纤纤芯。 [0010] The metal wire grid material include gold, silver, aluminum, copper, molybdenum, chromium and other metals, in particular wire grid structure period 0. 1-3 microns, the duty ratio X is between 0.3 to 0.7 an arbitrary value, the film thickness of the metal wire grid is 0.5 05-1 m, the wire grid structure area covering the fiber core.

[0011] 结构区域覆盖光纤纤芯。 [0011] coverage area of ​​the fiber core structure. 本发明是利用微纳加工技术直接或间接地在光纤端面制备金属线栅,利用金属线栅对特定偏振光的选择性反射或透射效应,实现对特定光波段的反射光或透射光的偏振性控制。 The present invention utilizes a micro nanofabrication technologies directly or indirectly in the preparation of the fiber end faces the metal wire grid, by means of selective reflection or transmission of the specific effects of metal wire grid polarization achieve reflected or transmitted light of a particular wavelength band of the light polarizing control.

[0012] 基于光纤端面金属线栅的在线式光偏振控制器的制备方法,包括: [0012] A method for on-line optical fiber end faces polarization controller based on the metal wire grid, comprising:

[0013] (1)光纤端面金属线栅的制作。 [0013] (1) a metal wire grid optical fiber end face produced. 利用微纳加工技术,通过直接或间接的方法在光纤表面制作金属线栅。 Using micro nanofabrication technology, to prepare a metal wire grid in the surface of the fiber by direct or indirect methods. 直接法包括聚焦离子束刻蚀(FIB),微纳遮挡板定向沉积技术,及软模板打印金属;间接法包括纳米压印、光刻技术、全息干涉及电子束直写(EBL)。 Direct methods include focused ion beam etching (the FIB), micro-nano directional deposition techniques shielding plate, and a soft metallic printing template; indirect method comprises a nanoimprint lithography technology, holographic interferometry and electron beam direct writing (EBL). 具体说明:直接法中的聚焦离子束刻蚀技术为利用聚焦镓离子束溅射掉光纤端面目标区域的金属膜层, 得到金属线栅结构;微纳遮挡板定向沉积技术为利用遮挡板的空间遮挡效应,直接在光纤端面定向沉积金属线栅;软模板打印技术为在软模板的微纳结构表面沉积金属膜层,打印转移金属线栅至光纤端面。 DETAILED DESCRIPTION: a focused ion beam etching techniques is the direct method using a focused gallium ion beam sputtering off the target area of ​​the metal film of the fiber end faces, to obtain a metal wire grid structure; Winner shielding plate is oriented deposition techniques using space shielding plate shielding effect, directly on the fiber end face is deposited a metal wire grid orientation; soft template printing technique to deposit a metal film on the surface of a soft micro-nano structure template, transfer of metal wire grid print to the fiber end. 间接法还可以分为两类,一是在光纤端面沉积的金属膜层上利用微纳加工技术制备结构挡层,并以此为阻挡利用湿法刻蚀或干法刻蚀刻蚀掉凹槽处的金属,最终洗脱掉挡层,得到金属线栅结构;另一种方案是先制备微结构挡层,再沉积金属,然后洗脱掉挡层及沉积其上的金属,即得到目标金属线栅结构。 Indirect methods may also be divided into two categories, one is prepared by using the micro-structure of nanofabrication technology barrier layer on the metal film layer deposited fiber end face, and thus out of the recess of the blocking by wet etching or dry etching etching metal, finally eluted blocking layer, to obtain a metal wire grid structure; another option is to stop making a microstructured layer, and then depositing a metal, a metal which is then washed off and deposited on the blocking layer, i.e., to obtain the target metal wire gate structure.

[0014] 间接法第一种方案的一般操作步骤如下: [0014] General Procedure indirect method of the first embodiment are as follows:

[0015] (g)在光纤端面沉积一层金属膜(膜厚0. 01-1微米)。 [0015] (g) a metal film (a thickness of 0.5 01-1 m) is deposited on the fiber end.

[0016] (h)在该光纤端面涂上光刻胶或抗蚀层 [0016] (h) at the end face of the optical fiber coated with a photoresist or resist layer

[0017] (i)利用微纳加工技术对光刻胶或抗蚀层图案化 [0017] (i) the use of nanofabrication technologies for micro resist or the resist layer is patterned

[0018] (j)显影去胶或去除残留 [0018] (j) a developing or stripping to remove residual

[0019] (k)利用湿法刻蚀或干法刻蚀刻蚀掉上方没有光刻胶覆盖的金属 [0019] (k) by wet etching or dry etching is etched away without the metal covered by the photoresist above

[0020] (1)用溶剂溶解去除剩余的光刻胶层,即可获得所需的光栅结构 [0020] (1) dissolved in a solvent to remove the remaining photoresist layer, to obtain a desired grating structure

[0021] 第二种方案的操作步骤包括; Procedure [0021] A second embodiment comprises;

[0022] (f)在光纤端面涂上光刻胶或抗蚀层 [0022] (f) at the end face of the optical fiber coated with a photoresist or resist layer

[0023] (g)利用微纳加工技术对光刻胶或抗蚀层图案化 [0023] (g) the use of nanofabrication technologies micro resist or photoresist layer is patterned

[0024] (h)显影去胶或去除残留 [0024] (h) developing to remove residual glue or

[0025] (i)在图案表面沉积特定厚度(0. 01-1微米)的金属膜 [0025] (i) a specific thickness is deposited on the pattern surface (0.5 01-1 m) film of metal

5[0026] (j)用溶剂溶解去除光刻胶层,即可获得所需的光栅结构 5 [0026] (j) removing the photoresist layer is dissolved in a solvent, to obtain a desired grating structure

[0027] 金属线栅周期为0. 05-5微米,占空比χ为0 < χ < 1之间的任意值,金属膜厚为0. 01-1 微米。 [0027] The metal wire grid period 0. 05-5 m, [chi] duty ratio is 0 <χ <any value between 1, the metal thickness of 0.5 01-1 m.

[0028] (2)在线式光偏振控制器的结构设置。 [0028] (2) structure is provided on-line light polarization controller. 将制备好的具有金属线栅结构的光纤熔接进入光路。 The prepared structure having a metal wire grid optical fiber splice into the optical path. 如图1(a)所示,光路中包括:偏振控制器、环形器和端面具有金属线栅结构的光纤。 1 (a), the optical path as shown in comprising: a polarization controller, the annular end face of an optical fiber, and a metal wire grid structure.

[0029] 对于周期远小于入射光波长的金属线栅,入射的横磁模TM偏振光(平行于光栅矢量)和横电模TE偏振光(垂直于光栅矢量)(如图3)边界条件不同,等效折射率也不同。 [0029] For periodic metal wire grid much smaller than the wavelength of incident light, the incident transverse-magnetic mode TM polarized light (parallel to the grating vector) and a transverse electric mode TE polarization (perpendicular to the grating vector) (FIG. 3) different boundary conditions , different from the equivalent refractive index. 如图3所示,金属线对于TE偏振呈现出金属性,使得TE偏振光反射;而对于TM偏振光,由于空气间隙将金属线隔离而表现出介电性,此时TM光会发生透射。 3, the wire for the TE polarization exhibited metallic properties, such that the reflected TE polarized light; and for TM polarized light, since the air gap of the metal wire separator exhibits dielectric properties, and at this time TM light transmission occurs. 基于严格耦合波理论的计算结果(如图4)也表明,在一定的前述周期、占空比条件下,波长在1.5-1.6微米范围内TE偏振光几乎完全被反射,而TM偏振光几乎完全透射。 Based on the calculation result of rigorous coupled wave theory (Figure 4) also shows that, at a certain preceding period, duty cycles, the wavelength of the TE polarized light is reflected almost entirely within the range of 1.5 to 1.6 microns, and the TM polarized light is almost completely transmission.

[0030] 在图1(a)所示的光路中,一束光经过偏振控制器后即获得特定的偏振性,TM光分量经过金属线栅后发生透射,可在金属线栅结构的光纤后耦合一段光纤引出TM透射光;TE 光则被金属线栅完全反射,反射的TE光可在环形器末端测得。 [0030] In FIG. 1 (a) shown in the optical path, a beam of light through a polarization controller is obtained after specific polarization, TM components of light transmission through the metal wire grid occurs after the optical fiber may be metal wire grid structure TM coupling length of optical fiber drawn transmitted light; TE light metal wire grid were totally reflected, the reflected light can be measured in the TE ring tip. 因此,利用该装置可以有效地控制透射或反射光的偏振态。 Therefore, with this device can be controlled efficiently transmitted or reflected light polarization state. 图1(a)中所示的偏振控制器可以是传统的偏振控制器,也可以是另一具有金属线栅结构的光纤(如图1(b),(c)),且通过调节两段光纤上线栅的夹角,即可调节两个偏振器的相对关系,从而控制透射或反射光的特性:在图1(b)中,光路中前后的线栅相互平行,则只有TM光透射,无反射光;在图1(c)中,光路中前后的线栅相互垂直,则只有相对于后面线栅的TE光反射,无透射光。 The polarization controller shown in (a) in FIG. 1 may be a conventional polarization controller, or may be another metal fiber having a wire grid structure (FIG. 1 (b), (c)), and by regulating the two wire grid angle, the optical fiber can be adjusted relative relationship of the two polarizers to control light transmission or reflection characteristics: in FIG. 1 (b), the wire grid in the optical path before and parallel to one another, only the light transmission TM, no reflected light; reflected light in the TE FIG. 1 (c), the light path before and after the wire grid perpendicular to each other, only the rear with respect to the wire grid, not transmitted light.

[0031] (3)可以利用该光偏振控制器对偏振态的敏感性制备传感器。 [0031] (3) the optical polarization controller can be used to prepare a sensor sensitive to polarization. 两个偏振器之间的光纤受外界影响后,光纤中传输光的偏振态会发生变化,则透射光或反射光的光强会相应地发生变化。 After the fiber between the two polarizers outside influence, the transmission optical fiber polarization state will change, the intensity of transmitted light or reflected light will change accordingly occur. 基于该原理,此装置可用作监测影响光偏振态的物理量如压力、电场、磁场等的传感器。 Based on this principle, the physical device may be used to monitor the influence of light polarization sensors such as pressure, electric field, magnetic field or the like.

[0032] 本发明的有益效果是:本发明提出的在线式光偏振控制器与传统产品相比,具有显著优点: [0032] Advantageous effects of the invention are: compared with conventional products of the present invention proposed a light-line polarization controller having significant advantages:

[0033] (1)该偏振控制器兼容了现有产品的全部功能,且具有宽带工作的能力。 [0033] (1) The polarization controller is compatible with all the features of existing products, and work with broadband capacity. 这对于密集波分复用(DWDM)系统至关重要。 This is essential for dense wavelength division multiplexing (DWDM) system. 宽工作带宽使偏振控制器在不同信道具有相同的工作性能,这样不仅简化了系统设计,降低了制造成本,而且使系统带宽扩展成为可能。 Wide operating bandwidth of polarization controllers have the same performance in different channel, so that not only simplifies the system design and reduce manufacturing costs, and make it possible to expand the system bandwidth.

[0034] (2)该偏振控制器,相对于传统器件,结构大为简化,提高了系统的稳定性和可靠性,并可根据需要灵活实现透射光和反射光偏振性的分别控制。 [0034] (2) the polarization controller, with respect to conventional devices, greatly simplifying the structure, improve the stability and reliability of the system can be flexibly implemented polarizing transmitted light and reflected light are separately controlled.

[0035] (3)该偏振控制器,由于采用了全光纤结构,反应速度快,能够对快速变化的偏振态进行实时跟踪。 [0035] (3) the polarization controller, the use of all-fiber structure, fast response, real-time tracking can be performed rapidly changing the polarization state. 由于光纤中偏振态对于外界环境因素的敏感性,该偏振控制器适用于偏振相关物理量的实时传感。 Since the optical fiber polarization sensitivity in respect of environmental factors, the polarization controller is adapted to sense polarization dependent real quantities.

[0036] (4)该偏振控制器结构简单,制作成本低,适用于大批量生产,能够广泛应于科学研究和生产生活。 [0036] (4) The polarization controller is simple in structure, low manufacturing cost, suitable for mass production, it is possible to widely research and production life.

附图说明 BRIEF DESCRIPTION

[0037] 图1基于光纤端面金属线栅的在线式光偏振控制器的光路设置。 Light path [0037] FIG. 1-line light polarization controller based on the fiber end face of the metal wire grid is provided. 图1(a)由一个偏振控制器,一个环形器和末端具有金属线栅结构的光纤组成;图1(b)光路中有两段具有结构的光纤,其末端金属线栅相互平行时的情况;图1(c)光路中有两段具有结构的光纤, 其末端金属线栅相互垂直时的情况。 The case of FIG. 1 (b), there were two optical path of the optical fiber having a structure that the metal terminal when the wire grid are parallel; FIG. 1 (a) consists of a polarization controller, a circulator and optical fiber grating having a terminal structure metal wires ; FIG. 1 (c) there are two optical paths in an optical fiber having a structure, which is the case when the end of the metal wire grid perpendicular to each other.

[0038] 图2典型偏振控制器的组成:三个可旋转的波片,一个λ/2波片处于两个λ/4波片中间。 Composition [0038] FIG 2 is a typical polarization controller: three rotatable wave plate, a λ / 2 wave plate in the middle of two λ / 4-wave plate.

[0039] 图3金属线栅偏振器的工作原理:入射的TE光大部分被反射,TM光大部分透射。 Works [0039] FIG. 3 is a metal wire grid polarizer: most of the incident light is reflected TE, TM most of the light transmitted.

[0040] 图4利用严格耦合波(RCWA)方法计算的在一定的前述周期、占空比条件下, 1. 5-1. 6微米范围内TE和TM偏振态光的透射和反射光谱。 [0040] FIG 4 using RCWA at a certain preceding period, duty cycles, the transmission and reflection spectra 1. 5-1. 6 microns TE and TM polarization of light (the RCWA) method of calculation. 图4 (a) TE和TM偏振态光的透射光谱;图4(b) TE和TM偏振态光的反射光谱。 Transmission spectrum of FIG. 4 (a) TE and TM polarization light; reflection spectrum of FIG 4 (b) TE and TM polarization light.

[0041] 图5利用FIB方式,在光纤截面纤芯处得到的金属线栅结构。 [0041] FIG. 5 using the FIB mode, the metal wire grid structure obtained at the fiber cross-section of the core. 图5(a)为金属线栅的照片;图5(b)为纤芯处有线栅结构的光纤截面照片。 FIG 5 (a) is a photograph of a metal wire grid; FIG. 5 (b) is a cross-sectional photograph of the core of the optical fiber cable of the gate structure.

[0042] 图6(a)利用纳米压印技术在光纤端面获得的抗蚀剂线栅结构SEM照片;图6(b) 沉积金属银后洗脱掉抗蚀剂结构得到的银纳米线栅。 [0042] FIG. 6 (a) using a nanoimprint technique resist lines at the fiber end face of the gate structures obtained SEM photograph; eluted silver nano wire grid obtained resist structure Figure 6 (b) depositing a metallic silver.

[0043] 图7在两个偏振控制器之间施加压力的光路图。 [0043] FIG. 7 is an optical path diagram applying pressure between two polarization controller.

[0044] 图8实施例2中随两个偏振控制器之间所施加的压力变化,反射光强的变化。 [0044] FIG. 8 is applied between the pressure changes in the two polarization controllers with Example 2, the change in light intensity reflected embodiment. 具体实施方式 detailed description

[0045] 下面通过实施例来进一步阐明本发明方法及应用,而不是要用这些实施例来限制本发明。 [0045] The following further illustrate the method and its application to the present invention through examples, but not be limited to use of these embodiments of the present invention.

[0046] 实施例1 [0046] Example 1

[0047] 用光纤切割刀切割单模光纤以获得平整的光纤端面,并用溅射法在光纤端面镀0.07微米厚的金膜。 [0047] The gold film cutter knife cut fiber single mode optical fiber to obtain a flat fiber end faces, and by Sputtering 0.07 micron optical fiber end face. 利用聚焦离子束刻蚀系统(Strata FIB 201,FEI公司,30keV镓离子源),7pA束流的条件下,用聚焦镓离子束溅射掉光纤端面目标区域的金属膜层,从而在光纤的纤芯处获得面积为10微米X 10微米,周期为0. 2微米,占空比为0. 5的金线栅。 Etching using a focused ion beam system (Strata FIB 201, FEI Company, of 30 keV gallium ion source), the beam 7pA conditions, with a focused gallium ion beam sputtering off the target area of ​​the metal film layer fiber end face, so that fibers in the fiber obtained at the core area of ​​10 m 10 m X-a period of 0.2 microns and a duty ratio of a gold wire grid 0.5. 把该金线栅光纤接入图1(a)所示光路,测得该在线式光偏振器对TE反射光的偏振对比度为14dB。 The fiber access the gold wire grid of FIG. 1 (a) as shown in the optical path, the measured line-type light polarizer TE polarization contrast of the reflected light is 14dB.

[0048] 如果镀银、铝0. 15微米的膜效果相同。 [0048] If the silver, aluminum the same 0.15 micrometer membrane effect.

[0049] 占空比χ分别取0.4或0.7,光偏振器对TE反射光的偏振对比度为15dB。 [0049] The duty ratio χ of 0.4 or 0.7, respectively, for light polarizers TE polarization contrast for the reflected light is 15dB. 假如线栅结构周期为2微米,占空比χ分别取0. 4或0. 7,光偏振器对TE反射光的偏振对比度为分别为9dB和IldB0 If the wire grid structure period was 2 microns, the duty ratio χ were taken 0.4 or 0.7, the optical polarizers of the TE polarization contrast for the reflected light and 9dB, respectively IldB0

[0050] 实施例2 [0050] Example 2

[0051] 用光纤切割刀切割多模光纤以获得平整的光纤端面,将光纤端面与紫外固化的抗蚀剂材料接触,使该光纤端面附着一层厚度约为0. 2微米的抗蚀剂薄膜。 [0051] The optical fiber cutting blade dicing multimode fiber to obtain a flat fiber end face, contacting the end face of the optical fiber UV curable resist material, so that the fiber end face attached to a layer thickness of approximately 0.2 micrometers, the resist film . 将该光纤固定在夹具上,使粘有紫外固化胶的一头朝下,操控夹具缓慢向下移动,调节光纤的位置使光纤端面与平铺的软模板的光栅结构表面保持完全接触,但又不压得过紧。 The optical fibers fixed in the fixture, so that the ultraviolet curing adhesive is adhered to an upside down, the clamp control slowly moved downward to adjust the position of the optical fiber so that the fiber end face surface of the grating structure and the soft template tile remains completely in contact, but not too tight. 然后将整个装置置于N2环境下保持进行紫外曝光(功率20mW/cm2,时间IOmin)。 Holding UV exposure (Power 20mW / cm2, time IOmin) The entire apparatus was placed under N2 atmosphere. 待曝光完成后将光纤与软模板分离,并用反应离子束刻蚀掉凹槽处的残留层(约0. 06微米)后,即在光纤端面获得抗蚀剂线栅结构(如图6(a))。 After completion of the fiber to be exposed and the soft template separated, and with the remaining layer (about 0.06 micrometers) at the groove out reactive ion beam etching, i.e., obtain a resist line grid structure in the fiber end faces (FIG. 6 (a )).

[0052] 控制光纤端面朝向蒸发源,且光纤端面与金属沉积方向垂直,热蒸发沉积0. 12微米的银膜;然后利用丙酮溶剂将剩余的抗蚀剂线栅结构及沉积于其上金属银一起洗脱掉。 [0052] The control fiber end face toward the evaporation source, and the fiber end face perpendicular to the direction of the metal deposition, thermal evaporation deposited silver film 0.12 microns; then acetone solvent remaining resist the wire grid structure and metallic silver deposited thereon together wash off. 这样即利用纳米压印技术通过间接法在光纤端面制备了金属线栅结构。 Such indirect methods i.e. by the end face of the optical fiber produced using the metal wire grid structure nanoimprint technology. (如图6(b))结构特征为:银纳米线栅结构,周期0. 2微米、高度0. 12微米、占空比为0. 5。 (FIG. 6 (b)) structure wherein: the gate structure of silver nanowires, 0.2 micron period, height 0.12 m, the duty ratio is 0.5.

[0053] 使用热蒸发沉积铜或铬、厚度0. 6-1微米的金属膜,金属线栅周期为2微米,占空比χ为0. 6,亦可获得类似线栅结构。 [0053] using a thermal evaporation to deposit copper or chromium, a metal film thickness of 0. 6-1 microns, the metal wire grid period of 2 microns, the duty ratio χ is 0.6, the wire grid structure can also achieve similar.

[0054] 实施例3 [0054] Example 3

[0055](光经过两个正交的偏振器后,其输出光强I = sin2 (δ/2),其中δ为相位差。根据弹光效应:透明的各向同性介质在机械应力的作用下,会变成各向异性,压力越大,则各向异性越强,即Δ η越大,而δ - Δ η,因此随着施加应力的变化,输出光强也会发生相应变化。对于光纤而言,应力所导致的相位差δ =8CF/λ r,其中F为应力,C为光弹性系数, λ为光波长,r为光纤半径。因此,随压力变化,输出光强I = sin2 (4CF/λ r),随着压力呈sin函数的形式变化。) [0055] (light passes through two orthogonal polarizers, the output light intensity I = sin2 (δ / 2), where [delta] is the phase difference according to the photoelastic effect: the role of a transparent isotropic medium mechanical stress , the anisotropy becomes, the greater the pressure, the stronger the anisotropy, i.e., the larger [Delta] [eta], and δ - Δ η, so as the change in stress is applied, the output light intensity will also change to. optical fiber, the stress caused by the phase difference δ = 8CF / λ r, wherein F is the stress, C is a photoelastic coefficient, [lambda] is the wavelength of light, r is the fiber radius. Thus, with the pressure changes, the output light intensity I = sin2 (4CF / λ r), as the pressure variation as a function of sin.)

[0056] 利用实施例1所示的测试光路,以1. 55微米的激光(Santec TSL-210)作为光源, 在两个偏振器之间的一段光纤上施加压力(如图7),随着所加压力的变化(0-9kg),在反射端用一光探测器(HP8153A)监测TE模光强的变化。 [0056] With the test light path shown in Example 1, to 1.55 micron laser (Santec TSL-210) as a light source, application of pressure (FIG. 7) on a length of optical fiber between the two polarizers, with change in applied pressure (0-9kg), at the reflecting end by a photodetector (HP8153A) monitoring the change in light intensity of TE mode. 反射光强伴随压力的增加而变化(如图8),谱线和理论预期相似,从而完成了一种压力传感器的制备。 Reflected light intensity varies with an increase in pressure (FIG. 8), similar to lines, and theoretically expected, thereby completing the preparation of a pressure sensor. 通过外差分析的方法,可以进一步提高传感的精度和稳定性。 By the method of heterodyne analysis, accuracy and stability can be further improved sensing.

Claims (9)

  1. 1.基于光纤端面金属线栅的在线式光偏振控制器,其特征是光纤端面设有金属线栅, 金属线栅的周期为0. 05-5微米,组成金属线栅是金属膜,金属膜厚为0. 01-2微米,占空比χ为0 < χ < 1之间的任意值。 1. on-line optical fiber ends polarization controller metal wire grid, wherein the end face of the optical fiber provided with a metal wire grid, a metal wire grid cycle 0. 05-5 m, the metal wire grid is composed of a metal film, a metal film thickness of 0. 01-2 m, [chi] duty ratio is 0 <χ <any value between 1.
  2. 2.根据权利要求1所述的基于光纤端面金属线栅的在线式光偏振控制器,其特征是光纤具有平整的光纤端面,光纤包括单模光纤、多模光纤、保偏光纤。 The line-type light polarization controller based on the fiber end face of the metal wire grid according to claim 1, wherein the fiber has a flat end face of an optical fiber, optical fiber comprises a single mode fiber, multimode fiber, a polarization maintaining fiber.
  3. 3.根据权利要求1所述的基于光纤端面金属线栅的在线式光偏振控制器,其特征是金属线栅的材质包括金、银、铝、铜、钼、铬等金属,线栅结构周期为0. 1-3微米,占空比χ为0.3 至0. 7之间的任意值,线栅的金属膜厚为0. 05-1微米,线栅结构区域覆盖光纤纤芯。 The line-type light polarization controller based on the fiber end face of the metal wire grid claimed in claim 1, wherein the metal wire grid material include gold, silver, aluminum, copper, molybdenum, chromium and other metals, the wire grid structure period 0. 1-3 microns, χ duty cycle to any value between 0.3 to 0.7, the film thickness of the metal wire grid is 0.5 05-1 m, the wire grid structure area covering the fiber core.
  4. 4. 一种基于光纤端面金属线栅的在线式光偏振控制器的制备方法,其特征为:金属线栅制备方法分为直接法和间接法两类,直接法为在平整的光纤端面利用微纳加工技术直接制备金属线栅结构;间接法为先利用微纳加工技术制备非金属结构挡层,利用结构挡层制备金属线栅结构,然后去掉结构挡层。 4. A method of preparing a light-line fiber end faces polarization controller based on the metal wire grid, wherein: preparing a metal wire grid divided into two direct method and indirect method, as in the direct method using micro fiber end face flat nanofabrication technologies directly preparing metal wire grid structure; the indirect method is to use non-metal micro-structure prepared nanofabrication techniques blocking layer, a metal blocking layer structure prepared using the wire grid structure, and then remove the blocking layer structure.
  5. 5.根据权利要求4所述的基于光纤端面金属线栅的在线式光偏振控制器的制备方法, 其特征为:微纳加工技术包括对金属膜层以聚焦离子束刻蚀(FIB)形成金属线栅,微纳遮挡板定向沉积技术,及软模板打印金属线栅;间接法包括纳米压印、光刻技术、全息干涉及电子束直写(EBL)。 According to claim 4, wherein the light-line preparation of the fiber end faces polarization controller based on the metal wire grid, wherein: micro to nanofabrication technologies including the metal film to the focused ion beam etching (FIB) to form a metal wire grid, the shielding plate oriented micro-nano deposition techniques, template printing and soft metal wire grid; indirect method comprises a nanoimprint lithography technology, holographic interferometry and electron beam direct writing (EBL). 直接法包括聚焦离子束刻蚀(FIB),微纳遮挡板定向沉积技术,及软模板打印金属线栅;间接法包括纳米压印、光刻技术、全息干涉及电子束直写(EBL)。 Direct methods include focused ion beam etching (the FIB), micro-nano directional deposition techniques shielding plate, and the printing template soft metal wire grid; indirect method comprises a nanoimprint lithography technology, holographic interferometry and electron beam direct writing (EBL).
  6. 6.根据权利要求4所述的基于光纤端面金属线栅的在线式光偏振控制器的制备方法, 其特征为:直接法中的聚焦离子束刻蚀技术为利用聚焦镓离子束溅射掉光纤端面目标区域的金属膜层,得到金属线栅结构;微纳遮挡板定向沉积技术为利用遮挡板的空间遮挡效应, 直接在光纤端面定向沉积金属线栅;软模板打印技术为在软模板的微纳结构表面沉积金属膜层,打印转移金属线栅至光纤端面。 According to claim 4, wherein the light-line preparation of the fiber end faces polarization controller based on the metal wire grid, wherein: a focused ion beam etching techniques is the direct method using a focused gallium ion beam sputtering off the optical fiber the metal film layer end surface of the target area, to obtain a metal wire grid structure; Winner shielding plate is oriented deposition techniques using space shielding effect of the shielding plate, a metal wire grid orientation is deposited directly on the fiber end faces; soft template printing technology micro soft template nanostructured metal film deposited on the surface, a metal wire grid transfer printing to the optical fiber end faces.
  7. 7.根据权利要求4所述的基于光纤端面金属线栅的在线式光偏振控制器的制备方法, 其特征为:间接法是在光纤端面沉积的金属膜层上利用微纳加工技术制备结构挡层,并以此为阻挡利用湿法刻蚀或干法刻蚀刻蚀掉凹槽处的金属,最终洗脱掉挡层,得到金属线栅结构;所述的基于光纤端面金属线栅的在线式光偏振控制器的间接法的具体操作步骤如下:(a)在光纤端面沉积一层金属膜(膜厚0. 01-1微米)。 The method of preparing a light-line fiber-based polarization controller end surface of the metal wire grid according to claim 4, wherein: the indirect method was prepared using a micro block structure nanofabrication technologies fiber end face on a metal film layer deposited layer, and as a stopper by wet etching or dry etching to etch away metal at the groove, and finally eluted blocking layer, to obtain a metal wire grid structure; based on the on-line fiber end of the metal wire grid specific steps of the indirect method of light polarization controller as follows: (a) depositing a metal film (a thickness of 0.5 01-1 m) at the fiber ends. (b)在该光纤端面涂上光刻胶或抗蚀层(c)利用微纳加工技术对光刻胶或抗蚀层图案化(d)显影去胶或去除残留(e)利用湿法刻蚀或干法刻蚀刻蚀掉上方没有光刻胶覆盖的金属(f)用溶剂溶解去除剩余的光刻胶层,即可获得所需的光栅结构 (B) at the end face of the optical fiber coated with a photoresist or resist layer (c) using micro or nanofabrication technologies photoresist patterned resist layer (D) developing to remove residual glue or (e) by wet etching or dry etching without etching away the metal (f) covered by the photoresist dissolved in a solvent over the remaining photoresist layer is removed, to obtain a desired grating structure
  8. 8.根据权利要求4所述的基于光纤端面金属线栅的在线式光偏振控制器的制备方法, 其特征为先制备微结构挡层,再沉积金属,然后洗脱掉挡层及沉积其上的金属,即得到目标金属线栅结构,所述的基于光纤端面金属线栅的在线式光偏振控制器间接法的制备步骤包括;(a)在光纤端面涂上光刻胶或抗蚀层,(b)利用微纳加工技术对光刻胶或抗蚀层图案化,(C)显影去胶或去除残留,(d)在图案表面沉积特定厚度的金属膜,(e)用溶剂溶解去除光刻胶层,即可获得所需的光栅结构。 8. A method for preparing on-line optical fiber end faces polarization controller based on the metal wire grid, wherein the blocking layer is deposited thereon and before making a microstructured barrier layer, and then depositing a metal, and then eluted according to claim 4, wherein metal, i.e. the metal wire grid structure to give the object, based on the preparation step-line light polarization controller indirect method the fiber end faces of the metal wire grid comprising; (a) coated with a photoresist or resist layer fiber end, (B ) nanofabrication technologies using micro-patterned photoresist or resist layer, (C) developing to remove residual glue or, (d) depositing a metal film having a specific thickness of the pattern surface, (e) removal of the photoresist with a solvent to dissolve layer, to obtain a desired grating structure.
  9. 9.该基于光纤端面金属线栅的在线式光偏振控制器在光纤通信、光信息处理系统、光纤传感及精密光学测量系统中的应用。 9. Application of the line-type light polarization controller based on the fiber end face of the metal wire grid in the optical fiber communication, optical information processing systems, optical sensing and measurement precision optical system. 在线式光偏振控制器的结构设置为将制备好的具有金属线栅结构的光纤熔接进入光路,如图1(a)所示,光路中包括:偏振控制器、环形器和端面具有金属线栅结构的光纤。 Structure-line optical polarization controller is provided for the prepared structure having a metal wire grid optical fiber splice into the optical path, FIG. 1 (a), the optical path comprising: a polarization controller, the annular end surface, and having a metal wire grid fiber structure.
CN 201110001942 2011-01-06 2011-01-06 Online light polarization controller based on optical fiber end face metal wire grating and manufacturing method thereof CN102096156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110001942 CN102096156A (en) 2011-01-06 2011-01-06 Online light polarization controller based on optical fiber end face metal wire grating and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110001942 CN102096156A (en) 2011-01-06 2011-01-06 Online light polarization controller based on optical fiber end face metal wire grating and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN102096156A true true CN102096156A (en) 2011-06-15

Family

ID=44129321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110001942 CN102096156A (en) 2011-01-06 2011-01-06 Online light polarization controller based on optical fiber end face metal wire grating and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102096156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165841A (en) * 2013-05-16 2014-11-26 上海交通大学 Integrated structure of optical fiber provided with label-free optical sensing element on one end face and microfluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529676B2 (en) * 2000-12-08 2003-03-04 Lucent Technologies Inc. Waveguide incorporating tunable scattering material
CN1587913A (en) * 2004-09-09 2005-03-02 武汉光迅科技有限责任公司 Optical fiber sensor
CN1692293A (en) * 2002-12-16 2005-11-02 住友电气工业株式会社 Optical fiber having diffractive optical film on end and method for manufacturing same
CN101194857A (en) * 2007-12-28 2008-06-11 马君显 Laser lancet
CN101435890A (en) * 2008-12-09 2009-05-20 华中科技大学 Sub-wave length metal grating polarizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529676B2 (en) * 2000-12-08 2003-03-04 Lucent Technologies Inc. Waveguide incorporating tunable scattering material
CN1692293A (en) * 2002-12-16 2005-11-02 住友电气工业株式会社 Optical fiber having diffractive optical film on end and method for manufacturing same
CN1587913A (en) * 2004-09-09 2005-03-02 武汉光迅科技有限责任公司 Optical fiber sensor
CN101194857A (en) * 2007-12-28 2008-06-11 马君显 Laser lancet
CN101435890A (en) * 2008-12-09 2009-05-20 华中科技大学 Sub-wave length metal grating polarizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165841A (en) * 2013-05-16 2014-11-26 上海交通大学 Integrated structure of optical fiber provided with label-free optical sensing element on one end face and microfluid

Similar Documents

Publication Publication Date Title
US20050045799A1 (en) Optical retarders and related devices and systems
US5970190A (en) Grating-in-etalon polarization insensitive wavelength division multiplexing devices
US4492436A (en) Polarization independent beam splitter
US5237630A (en) Fiber optic device with reflector located at splice joint
US20040218270A1 (en) Universal broadband polarizer, devices incorporating same, and method of making same
US6061487A (en) Optical waveguide circuit, optical branched waveguide circuit, and optical modulator
Paterson et al. Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides
US6972906B2 (en) Space-variant subwavelength polarization grating and applications thereof
He et al. Generation and evolution of the terahertz vortex beam
US20040201889A1 (en) Method and system for providing beam polarization
JP2000284117A (en) Grid polarizer and its manufacture
JP2001051122A (en) Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture
Clausnitzer et al. Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting
Lalanne et al. A transmission polarizing beam splitter grating
CN101251484A (en) Miniature fourier transform spectrometer based on modulation
US20060266743A1 (en) Laser-ablated fiber devices and method of manufacturing the same
JP2001330728A (en) Wire grid type polarizer and its manufacturing method
US20060126066A1 (en) Polarization analyzer
US20060023212A1 (en) Spectrometer using diffraction grating
US20050205885A1 (en) Optical waveguide and the method of fabricating the same
Chaganti et al. A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens
Shokooh-Saremi et al. High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer
JPH0943057A (en) Wavelength divider
US20060152809A1 (en) High efficiency phase grating having a planar reflector
EP1103829A1 (en) Polarizer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C12 Rejection of a patent application after its publication