CN102096075A - Galileo system integrity concept-based multimode user integrity assessing method - Google Patents

Galileo system integrity concept-based multimode user integrity assessing method Download PDF

Info

Publication number
CN102096075A
CN102096075A CN 201010603368 CN201010603368A CN102096075A CN 102096075 A CN102096075 A CN 102096075A CN 201010603368 CN201010603368 CN 201010603368 CN 201010603368 A CN201010603368 A CN 201010603368A CN 102096075 A CN102096075 A CN 102096075A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
msup
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010603368
Other languages
Chinese (zh)
Other versions
CN102096075B (en
Inventor
於亮
张雪辉
贝超
刘岩
陈雷
任晓松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINA AEROSPACE SCIENCE & INDUSTRY ACADEMY OF INFORMATION TECHNOLOGY
Original Assignee
CHINA AEROSPACE SCIENCE & INDUSTRY ACADEMY OF INFORMATION TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINA AEROSPACE SCIENCE & INDUSTRY ACADEMY OF INFORMATION TECHNOLOGY filed Critical CHINA AEROSPACE SCIENCE & INDUSTRY ACADEMY OF INFORMATION TECHNOLOGY
Priority to CN 201010603368 priority Critical patent/CN102096075B/en
Publication of CN102096075A publication Critical patent/CN102096075A/en
Application granted granted Critical
Publication of CN102096075B publication Critical patent/CN102096075B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention belongs to the field of the integrity study of a satellite navigation system in the technical field of earth observation and navigation, and provides a Galileo system integrity concept-based multimode user integrity assessing method. In the method, the conventional Galileo user integrity concept is used in two systems directly, for a non-Galileo system (such as European geostationary navigation overlay service (EGNOS)), input parameters are needed to be pretreated appropriately, so that the input parameters are converted into information available in a Galileo user integrity algorithm, and the change in values of an integrity risk (IR) and/or a protection level (xPL) is monitored during integrity analysis. In the method, the assessment of multisystem user integrity is realized by using a more advanced Galileo system integrity concept; and by comparing and analyzing integrity calculation results of a single system and a multisystem, the availability of positioning results of users is improved substantially under the condition of the multisystem, and the user integrity is improved to a large extent.

Description

Multi-mode user integrity evaluation method based on Galileo system integrity concept
Technical Field
The invention belongs to the field of satellite navigation system integrity research in the technical field of earth observation and navigation, and particularly relates to a multi-mode user integrity evaluation method based on a Galileo system integrity concept.
Background
The global satellite navigation system currently mainly includes GPS in the united states, GLONASS in russia, and also the european Galileo and chinese BD systems under construction. And their corresponding enhancements and integrity techniques are under gradual development and sophistication. To date, a variety of integrity techniques have been proposed for single constellation satellite navigation systems, and the implementation level is mainly divided into three categories: one is receiver Autonomous Integrity raim (receiver Autonomous Integrity monitoring), which is the Integrity of the terminal level. The satellite-Based Augmentation system SBAS (satellite Based Augmentation system) and the ground-Based Augmentation system GBAS (ground base Augmentation system) belong to regional integrity technologies outside the satellite navigation system. Thirdly, the global integrity technology aiming at the Galileo satellite navigation system is embedded in the Galileo system.
The RAIM technology is proposed in the transition phase before the occurrence of the wide area augmentation system, and can be divided into three categories: a pseudo-range domain comparison and positioning domain comparison method, a least square residual method and an odd-even space vector method. The method is mainly characterized in that the stationarity of random noise is assumed only by using the current observed quantity, and the stationarity is generally called Snapshot (Snapshot). The RAIM technique relies on redundant observations to compute horizontal and vertical guard limits. But does not effectively estimate the spatial signal error.
The RAIM technology has the following defects: 1) integrity risks (Integrity Risk) are evenly distributed among the satellites. But in practice the probability of failure is different from batch to batch and from satellite to satellite and therefore cannot be evenly distributed. 2) The assumption on which the formula for calculating the horizontal Protection level limit value HPL (horizontal Protection limit) according to the Square distribution (Chi-Square) is based is very conservative, that is, some probability that can be correctly detected is included in the probability of missed detection, so that the usability is greatly reduced. 3) The risk of integrity of the localization domain is distributed between the horizontal Protection limit HPL and the vertical Protection limit vpl (vertical Protection level) in a fixed ratio of 1% and 99%. In fact, the probability of occurrence of the danger Misleading information hmi (hazardous missliding information) does not follow a fixed ratio.
The SBAS adopts a method of estimating the residual error of the space signal after Differential correction, calculates integrity parameters UDRE (user Differential Range error) and grid point ionosphere vertical error GIVE (grid ionospheric vertical error) on the basis, and verifies that the UDRE and the GIVE meet the requirement of integrity in real time.
The user firstly corrects the coordinate and clock error of the broadcast satellite according to the difference information, and the single-frequency user corrects the ionospheric delay influence by using the ionospheric delay information. And calculating XPL (HPL & VPL) by using the integrity information. Finally, XPL is compared with the protection limit XAL (HAL & VAL) to judge whether the requirement is met.
The defects of the SBAS integrity are mainly as follows: 1) the protection stage assumes that the corrected spatial signal error satisfies an unbiased normal distribution. Although the SBAS broadcasts the differential correction data in real-time/near real-time. However, the accuracy of the tracking and clock correction of the SBAS is not high, so that the SBAS does not provide a means to guarantee the user integrity risk in cases where the actual data often fails to meet the assumed conditions. 2) SBAS suffers from a similar conservative design problem as RAIM, i.e. distributing the integrity probability requirement between the horizontal protection stage HPL and the vertical protection stage VPL in a fixed ratio (WAAS in 2% and 98%).
In the Galileo system, monitoring and overrun alarming of spatial signals are important steps of a system integrity technology, the system estimates the state of the spatial signals SIS (signal in Space) in real time by using a monitoring station network distributed all over the world, and timely alarms a user when the spatial signal error SISE (signal in Space error) exceeds a limit value by a certain false alarm probability. The integrity Processing subsystem IPF (integrity Processing facility) and the orbit synchronization Processing subsystem OSPF (orbit and synchronization Processing facility) in the Galileo system can achieve high data sharing, and the precision of space signal error estimation can be greatly improved by utilizing high-precision satellite orbit determination and atomic clock data. Compared with the SBAS system, the Galileo system user directly calculates the integrity risk probability of the positioning domain, and the integrity risk probability is not distributed to the horizontal direction and the vertical direction according to a fixed proportion. This is fundamentally different from the fixed ratio distribution of the protection classes. The user integrity of Galileo takes into account not only the integrity risk of unbiased normal distributions, but also the integrity risk in case of bias.
The GPS/GLONASS/Galileo/BD multi-constellation satellite navigation system has two main advantages over the single-constellation system: firstly, the satellite number increases at double, improves the usability of navigation signal under the environment such as building group, and secondly, observed quantity redundancy increases, changes and carries out integrity detection.
In summary, on one hand, because the existing integrity technologies of SBAS, RAIM and other systems have certain conservatism and cannot truly and objectively reflect the availability of the system positioning result to the user, on the other hand, because the positioning accuracy of a single constellation system is limited, the availability of the positioning result is limited to a great extent, and in the future, with the establishment of BD and Galileo systems, the user-selectable constellation increases, and a multi-system compatible receiver will become a future development trend, thereby providing a high-accuracy positioning service for the user, and the integrity evaluation for the multi-system user positioning solution will become a new requirement in the field of high-accuracy and high-reliability satellite application.
Disclosure of Invention
In view of the above drawbacks, the present invention provides a method for evaluating integrity of a multi-mode user based on Galileo system integrity concept, which utilizes the Galileo integrity concept which is scientific and advanced so far to realize the integrity evaluation problem of multi-system users, on one hand, the conservative problem of the integrity concepts of the systems such as SBAS and RAIM in the past is solved, on the other hand, the system level integrity information of multiple systems is converted and fused into information usable in the integrity concept of the Galileo user, and the fusion calculation of the system level integrity information of multiple systems at a user end is realized, so that the integrity evaluation problem of the positioning solution of the multi-system users is solved, and the multiple systems provide services for the users together, so that the reliability of the system is improved, i.e., the integrity of the positioning result of the users is improved.
The multimode user integrity evaluation method based on the Galileo system integrity concept directly uses the existing Galileo user integrity concept on two systems, for non-Galileo systems (such as EGNOS), certain input parameters, such as integrity data UDRE and UIRE, need to be subjected to appropriate preprocessing, the input parameters are converted into information available for a Galileo user integrity algorithm, and when integrity analysis is carried out, numerical changes of Integrity Risks (IR) are monitored. IR is defined as the probability that a user should receive alarm information but does not, which is called high risk misleading information (HMI). IR is the probability that the absolute value of the estimated point deviation is greater than a predefined Alarm Limit (AL). If the calculation exceeds a preset threshold T (depending on the particular application), the probability of the HMI being received is considered too high.
The multimode user integrity evaluation method based on the Galileo system integrity concept comprises the following specific steps:
1) acquiring navigation information, firstly determining a satellite position vector of a GPS constellation according to broadcast ephemeris data downloaded by an IGS website, and simulating the navigation information of the other constellation according to Galileo constellation system parameters;
2) acquiring a navigation solution, wherein the value is determined by broadcast ephemeris, observation data and meteorological data received by a receiver under a normal condition, and a wuhn station with known accurate position coordinates is used as a user station;
3) calculating an observation matrix, and calculating an observation matrix G of the subscriber station according to the observable position vectors of the two constellation satellites and the position vector of the receiver, wherein the formula is as follows:
Gi=[-cosElisinAzi-cosElicosAzi-sinEli1]the ith row of the G matrix;
el in the formulaiElevation angle, Az, of the ith satelliteiIs the azimuth of the ith satellite;
4) and acquiring integrity information, calculating integrity parameters SISMA and SISA of the Galileo system according to ephemeris data, observation data, meteorological data and user station information downloaded by IGS, and simulating according to the existing rule to obtain GPS constellation integrity data, namely EGNOS integrity data UDRE and UIRE. Calculating the total pseudo range deviation sigma of each satellite according to the integrity information of the two systems and a UERE tableu,RX[i]", wherein parameters SISMA, SISA and UDRE, UIRE are broadcast by the satellite to the user, which can be received by the receiver;
"Total pseudorange bias" is the predicted standard deviation value for calculating the total pseudorange bias due to the signals of each visible satellite. The total pseudorange bias calculation formula for the Galileo system is as follows:
<math><mrow><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>RX</mi></mrow></msub><mo>[</mo><mi>i</mi><mo>]</mo><mo>=</mo><msqrt><msubsup><mi>&sigma;</mi><mi>SISA</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo></msqrt><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
in the formula,
σSISA[i]is the broadcast parameter SISA of the ith satellite used at the user level, which is equal to the SISA broadcast at the navigation point location multiplied by a deterministic factor, where SISA is defined as the minimum standard deviation of the unbiased Gaussian distribution and therefore can be considered as
σSISA[i]=SISA[i]]。
σuL[i]Is the predicted standard deviation of the local error (tropospheric, noise, multipath, etc.) imposed on the ith satellite signal. The standard deviation value of the local error can be read from the UERE (user Equivalent Range error) table, and a list of typical UERE values is as follows:
TABLE 1 UERE Table
ID 01 02 03 04 05 06 07 08
Elevation angle [ rad ]] 0.1745 0.2618 0.3491 0.5236 0.6981 0.8727 1.0472 1.5708
σu,L[m] 1.03 0.78 0.67 0.6 0.58 0.57 0.56 0.55
For the GPS system, the total pseudorange bias for a certain satellite can also be calculated by equation (1), except that some parameters used in the calculation process need to be equivalently converted through the following process.
EGNOS broadcasts error correction aiming at GPS satellite clock, ephemeris and ionosphere delay, and simultaneously it also broadcasts pseudo-range residual error parameters after clock error-ephemeris correction (UDRE) and ionosphere correction (GIVE) are applied;
information useful for integrity monitoring consists of observation quality and geometric information. Observation quality information is provided in the form of standard deviation and is associated with two types of corrections:
UDREi: is the residual clock error and the variance of the ephemeris error that remain on the corrected pseudorange for the ith satellite. Can be obtained directly from the broadcast information;
UIREi: is the variance of the residual ionospheric error remaining on the corrected pseudorange for the ith satellite. It corrects the variance σ from the broadcasted GIVE and the calculated vertical ionosphericUIVEObtaining the ionosphere model;
the geometry information contains ephemeris data for ranging satellites from which the satellite positions as a function of time can be estimated. It includes:
satellite ephemeris data
Correction data for satellite positions;
the EGNOS/Galileo conversion requires the equivalence of EGNOS system integrity parameters UDRE and UIRE with the SISA and SISMA integrity parameters of the Galileo system, the conversion formula is as follows:
σSISA,GPS[i]=fSISA,GPSσUDRE[i] (1)
σSISMA,GPS[i]=fSISMA,GPSσUDRE[i] (2)
here, σUDRE[i]Is the standard deviation of the user pseudo range error caused by the orbit error and the clock error of the ith satellite, and the calculation formula is as follows:
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>i</mi><mo>,</mo><mi>UDRE</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><mo>(</mo><msub><mi>UDRE</mi><mi>i</mi></msub><mo>/</mo><mn>3.29</mn><mo>)</mo></mrow><mn>2</mn></msup></mrow></math>
in the formula: f. ofSISA,GPSAnd fSISMA,GPSThe two parameters can be obtained through data result statistics, comparison and analysis;
if considering different integrity distribution methods of Galileo and EGNOS, Galileo uses four failure mechanisms, EGNOS is based on a fault-free assumption, aiming at the GPS satellite condition, the number of input variables is possibly reduced, and the single satellite failure probability can be set to 0 (p)fail0), the use of SISMA equivalent variables is correspondingly avoided. In this sense, the contribution of the GPS satellites to the IR calculations can be reduced to a single, failure-free mode. Of course, it is also possible to assume f SISMA,GPS0 and first order approximation fSISA,GPS=1。
Calculating an equivalent standard deviation formula of the local error:
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>GPS</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>=</mo><msubsup><mi>&sigma;</mi><mi>UIRE</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><mrow><mo>(</mo><msubsup><mi>&sigma;</mi><mi>air</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mi>tropo</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
σu,L,GPSis local receiver noise, multipath noise (σ)air) Troposphere (sigma)tropo) Ionosphere (σ)UIRE) Criterion of induced composite errorAnd (4) deviation.
<math><mrow><msubsup><mi>&sigma;</mi><mi>UIRE</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>-</mo><mrow><mo>(</mo><mi>cos</mi><mi>EL</mi><mo>[</mo><mi>i</mi><mo>]</mo><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><msub><mi>h</mi><mi>I</mi></msub><msub><mi>R</mi><mi>E</mi></msub></mfrac><mo>)</mo></mrow><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><msup><mrow><mo>(</mo><mi>UIVE</mi><mo>[</mo><mi>i</mi><mo>]</mo><mo>/</mo><mn>3.29</mn><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
The other components may be made equal to the data in the ue re table defined by the Galileo system:
<math><mrow><mrow><mo>(</mo><msubsup><mi>&sigma;</mi><mi>air</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mi>tropo</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>Galileo</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>
or the method is calculated by adopting an empirical formula of the following two parameters:
<math><mrow><msubsup><mi>&sigma;</mi><mi>air</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>=</mo><msup><mrow><mo>(</mo><mn>0.16</mn><mo>+</mo><mn>0.23</mn><mo>&CenterDot;</mo><msup><mi>e</mi><mfrac><mrow><mi>EL</mi><mo>[</mo><mi>i</mi><mo>]</mo></mrow><mn>19.6</mn></mfrac></msup><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mi>tropo</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>=</mo><msup><mrow><mo>(</mo><mn>0.12</mn><mfrac><mn>1.001</mn><msqrt><mn>0.002001</mn><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mi>EL</mi><mo>[</mo><mi>i</mi><mo>]</mo></msqrt></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow></math>
finally, the variance calculation formula for obtaining the total pseudorange bias of the GPS satellite is as follows:
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>RX</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>=</mo><msubsup><mi>&sigma;</mi><mrow><mi>SISA</mi><mo>,</mo><mi>GPS</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>GPS</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo></mrow></math>
<math><mrow><mo>=</mo><msubsup><mi>&sigma;</mi><mi>UDRE</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mi>UIRE</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mi>air</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mi>tropo</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow></math>
5) calculating a weighting matrix based on the calculated' total pseudorange bias σu,RX[i]"calculate the weighting matrix W, which is realized by inverting the covariance matrix, and the diagonal elements are:
<math><mrow><mo>{</mo><msub><mi>W</mi><mrow><mi>i</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>}</mo><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>RX</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow></math>
6) calculating a point location error matrix, and calculating a point location error matrix K by using the observation matrix G and the weighting matrix W, wherein the calculation formula is as follows:
K=(GTWG)-1GTW (10)
in the formula, K is a point position calculation matrix for solving, G is an observation matrix, and the formula is as follows:
Gi=[-cosElisinAzi-cosElicosAzi-sinEli1]i-th row of the G matrix
W is a weighting matrix, implemented by inverting a covariance matrix, whose diagonal elements are:
<math><mrow><mo>{</mo><msub><mi>W</mi><mrow><mi>i</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>}</mo><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>RX</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo></mrow></mfrac><mo>;</mo></mrow></math>
7) error limits for horizontal and vertical no-fault and fault conditions are calculated, respectively:
a. point location deviation calculation under fault-free conditions
Let Mtopo={K}submax trix(3,N)And N is the number of satellite particles, the variance of the horizontal fault-free point deviation distribution limit value is as follows:
<math><mrow><msup><msub><mi>&xi;</mi><mi>FF</mi></msub><mn>2</mn></msup><mo>=</mo><mfrac><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup></mrow><mn>2</mn></mfrac><mo>+</mo><msqrt><msup><mrow><mo>(</mo><mfrac><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup></mrow><mn>2</mn></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ne</mi></mrow><mn>4</mn></msubsup></msqrt></mrow></math>
wherein,
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ne</mi></mrow><mn>2</mn></msubsup><mo>=</mo><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>]</mo><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
the variance of the distribution limit value of the vertical fault-free point location deviation is as follows:
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>3</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow></math>
in the formula,
σu,V,FFis used to define the standard deviation of the vertical direction point deviation model (zero mean normal cumulative distribution function) under the fault-free condition.
ξFFIs used to define the standard deviation of the horizontal direction point deviation model under the fault-free condition.
b. Point location deviation calculation under fault conditions
The variance defining the distribution of horizontal point offsets is:
<math><mrow><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup><mo>=</mo><mfrac><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>MF</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup></mrow><mn>2</mn></mfrac><mo>+</mo><msqrt><msup><mrow><mo>(</mo><mfrac><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup></mrow><mn>2</mn></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>ne</mi></mrow><mn>4</mn></msubsup></msqrt></mrow></math>
wherein,
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>M</mi><mi>topo</mi></msub><msup><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISMA</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>SISA</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>13</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ne</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub></mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>]</mo><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>j</mi><mo>]</mo><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISMA</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>SISA</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>M</mi><mi>topo</mi></msub><msup><mrow><mo>[</mo><mn>2</mn><mo>,</mo><mi>j</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISMA</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>SISA</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
the equation defining the distribution of the point location deviations in the vertical direction is:
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>3</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>M</mi><mi>topo</mi></msub><msup><mrow><mo>[</mo><mn>3</mn><mo>,</mo><mi>j</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISMA</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>SISA</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>14</mn><mo>)</mo></mrow></mrow></math>
in the formula,
σu,V,FMis used to define the standard deviation of the vertical direction point deviation model (zero mean normal cumulative distribution function) under fault conditions.
ξFMIs used to define the standard deviation of the horizontal point deviation model under fault conditions.
8) The horizontal and vertical integrity risks in the absence of failures for GPS and Galileo are calculated according to equations (15) and (16):
the risk of failure-free level integrity is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>=</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><msup><mi>HAL</mi><mn>2</mn></msup><mrow><mn>2</mn><msup><msub><mi>&xi;</mi><mi>FF</mi></msub><mn>2</mn></msup></mrow></mfrac></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>15</mn><mo>)</mo></mrow></mrow></math>
the risk of failure-free vertical integrity is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mi>VAL</mi><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>,</mo></mrow></math> wherein <math><mrow><mi>erf</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>2</mn><msqrt><mi>&pi;</mi></msqrt></mfrac><mo>&CenterDot;</mo><munderover><mo>&Integral;</mo><mn>0</mn><mi>u</mi></munderover><msup><mi>e</mi><mrow><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></msup><msub><mi>d</mi><mi>x</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></mrow></math>
9) The Galileo fault horizontal and vertical integrity risks are calculated according to equations (17) and (18), respectively:
the failure level integrity risk is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>FM</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><msub><mi>&delta;</mi><mrow><mi>u</mi><mo>,</mo><mi>H</mi></mrow></msub></mrow><mn>2</mn></msubsup><mi>cdf</mi><mrow><mo>(</mo><mfrac><msup><mi>HAL</mi><mn>2</mn></msup><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup></mfrac><mo>)</mo></mrow></mrow></math>
wherein,
<math><mrow><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>e</mi></mrow></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open='(' close=')'><mtable><mtr><mtd><mo>|</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>b</mi><mi>j</mi></msub><mo>|</mo></mtd></mtr><mtr><mtd><mo>|</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>j</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>b</mi><mi>j</mi></msub><mo>|</mo></mtd></mtr></mtable></mfenced><mo>,</mo><msub><mi>b</mi><mi>j</mi></msub><mo>=</mo><msub><mi>TH</mi><mi>j</mi></msub></mrow></math>
<math><mrow><msub><mi>&delta;</mi><mrow><mi>u</mi><mo>,</mo><mi>H</mi></mrow></msub><mo>=</mo><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>n</mi></mrow></msub></mtd><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>e</mi></mrow></msub></mtd></mtr></mtable></mfenced><mo>&CenterDot;</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mo>&CenterDot;</mo><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>e</mi></mrow></msub></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>17</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><mi>&delta;</mi></mrow><mn>2</mn></msubsup><mi>cdf</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mo>&Integral;</mo><mn>0</mn><mi>x</mi></munderover><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><mi>&delta;</mi></mrow><mn>2</mn></msubsup><mi>pdf</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>dt</mi></mrow></math>
<math><mrow><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><mi>&delta;</mi></mrow><mn>2</mn></msubsup><mi>pdf</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>&delta;</mi><mo>)</mo></mrow></mrow></msup><mo>&CenterDot;</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mo>&infin;</mo></munderover><mfrac><mrow><msup><mi>x</mi><mi>j</mi></msup><msup><mi>&delta;</mi><mi>j</mi></msup></mrow><mrow><msup><mn>2</mn><mrow><mn>2</mn><mi>j</mi></mrow></msup><mo>&CenterDot;</mo><msup><mrow><mo>(</mo><mi>j</mi><mo>!</mo><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfrac></mrow></math>
the risk of faulty vertical integrity is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><msub><mi>sat</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><mrow><mo>(</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mrow><mi>VAL</mi><mo>+</mo><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi></mrow></msub></mrow><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mrow><mi>VAL</mi><mo>-</mo><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi></mrow></msub></mrow><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></mrow></math>
10) the overall HMI probabilities for both systems, i.e. the integrity contribution IR, are calculated according to equation (21):
the total horizontal integrity risk is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi></mrow></msub><mo>=</mo><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>+</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><msub><mi>sat</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>FM</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>19</mn><mo>)</mo></mrow></mrow></math>
the total vertical integrity risk is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi></mrow></msub><mo>=</mo><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>+</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><mi>sa</mi><msub><mi>t</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow></math>
the risk of synthetic integrity is then:
<math><mrow><msub><mi>P</mi><mi>HMI</mi></msub><mrow><mo>(</mo><mi>VAL</mi><mo>,</mo><mi>HAL</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mi>VAL</mi><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>+</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><msup><mi>HAL</mi><mn>2</mn></msup><mrow><mn>2</mn><msup><msub><mi>&xi;</mi><mi>FF</mi></msub><mn>2</mn></msup></mrow></mfrac></mrow></msup><mo>+</mo></mrow></math>
<math><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><msub><mi>sat</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><mrow><mo>(</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mrow><mi>VAL</mi><mo>+</mo><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi></mrow></msub></mrow><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mrow><mi>VAL</mi><mo>-</mo><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi></mrow></msub></mrow><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>21</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><mo>+</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><msub><mi>sat</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><msub><mi>&delta;</mi><mrow><mi>u</mi><mo>,</mo><mi>H</mi></mrow></msub></mrow><mn>2</mn></msubsup><mi>cdf</mi><mrow><mo>(</mo><mfrac><msup><mi>HAL</mi><mn>2</mn></msup><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup></mfrac><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
11) the user protection level (xPL) is calculated according to the formula (22) in the case of a single GPS system, and the user protection level (xPL) is calculated according to the formula (23) in the case of a dual system:
the horizontal and vertical protection levels in the fault-free case are as follows:
HPL0=kH·ξFF
(22)
VPL0=kV·σu,V,FF
when there is a failure in one satellite but the integrity flag is set to "OK", the horizontal and vertical protection level calculation formulas are as follows:
<math><mrow><mfenced open='' close=''><mtable><mtr><mtd><msub><mi>HPL</mi><mi>FM</mi></msub><mo>=</mo><munder><mi>max</mi><msub><mi>i</mi><mi>sat</mi></msub></munder><mo>{</mo><mo>|</mo><msqrt><msub><mi>M</mi><mi>u</mi></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>,</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>M</mi><mi>u</mi></msub><msup><mrow><mo>(</mo><mn>2</mn><mo>,</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>&CenterDot;</mo><mi>TH</mi><mrow><mo>(</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mo>|</mo><mo>+</mo><msub><mi>k</mi><mi>H</mi></msub><mo>&CenterDot;</mo><msub><mi>&xi;</mi><mi>FF</mi></msub><mo>}</mo></mtd></mtr><mtr><mtd><msub><mi>VPL</mi><mi>FM</mi></msub><mo>=</mo><munder><mi>max</mi><msub><mi>i</mi><mi>sat</mi></msub></munder><mo>{</mo><msub><mi>M</mi><mi>u</mi></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>TH</mi><mrow><mo>(</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>k</mi><mi>V</mi></msub><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>}</mo></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>23</mn><mo>)</mo></mrow></mrow></math>
here, the
Figure BDA0000040172700000092
kVAnd kHIs a scale factor by which the alarm limit may be exceeded at a given probability. They are vertical and horizontal CDF (cumulative Density function) models at σV1 and xiH1 is a value. The invention realizes the evaluation of the integrity of the multi-system user by adopting a more advanced Galileo system integrity concept, and proves that the usability of the positioning result of the user is greatly improved under the condition of multiple systems and the user integrity is improved to a great extent by comparing and analyzing the integrity calculation results of a single system and multiple systems.
Drawings
Fig. 1 is a schematic flow chart of a multimode user integrity evaluation method based on the Galileo system integrity concept according to the present invention;
FIG. 2 is a schematic integrity diagram of the integrity evaluation method for a multi-mode user based on the integrity concept of Galileo system according to the present invention;
fig. 3-6 are diagrams illustrating the results of a horizontal protection level HPL and a vertical protection level VPL with a wuhn station as a subscriber station.
Detailed Description
The technical solution of the present invention is further described below with reference to the following specific embodiments and the accompanying drawings, but is not limited thereto:
according to the multimode user integrity evaluation method based on the Galileo system integrity concept, data input mainly adopts GPS constellation original data downloaded by an IGS website and simulated GPS integrity data. The evaluation of the integrity of a multimode system requires as input two parts of data, namely Galileo system integrity data SISA, SISMA, followed by GPS system integrity data UDRE, UIRE. At present, a Galileo system is not built, so that SISA and SISMA can be calculated only by using GPS raw data and a calculation method of Galileo system integrity parameters, and an integrity evaluation method of a GPS constellation system is mature at present, so that the calculation of system integrity parameters is not deeply researched, and a data simulation method is adopted to simulate constellation data and integrity parameters UDRE and UIRE of a constellation according to summarized data rules to serve as input data of a multi-system user integrity evaluation method. And converting the simulated GPS integrity data into information equivalent to integrity parameters of the Galileo system, respectively calculating integrity risk values according to four failure mechanisms, namely under the conditions of no horizontal failure, no vertical failure and vertical failure by using a Galileo user integrity concept, and superposing the integrity risk values under the four conditions to obtain a final user integrity result of the whole system. Meanwhile, the user protection level of the whole system can be calculated through formula derivation and conversion, the user protection level is calculated under the condition that one fault exists in the positioning satellite, the user protection level is different from a user protection level concept based on the no-fault assumption in the traditional sense, and the reliability of the calculation result is greatly improved.
As shown in fig. 1, the method for assessing integrity of a multi-mode user based on the integrity concept of the Galileo system provided by the present invention mainly includes the following steps:
1) acquiring navigation information, firstly determining a satellite position vector (GPS constellation) according to broadcast ephemeris data downloaded by an IGS website, and simulating the navigation information of the other constellation according to Galileo constellation system parameters to obtain the navigation information;
2) acquiring a navigation solution, wherein the value is determined by broadcast ephemeris, observation data and meteorological data received by a receiver under a normal condition, and a wuhn station with known accurate position coordinates is used as a user station;
3) calculating an observation matrix, and calculating an observation matrix G of the user station according to the observable position vectors of the two constellation satellites and the position vector of the receiver;
4) acquiring integrity information, and calculating Galileo system integrity parameters according to ephemeris data, observation data, meteorological data and user station information downloaded by IGSSISMA and SISA, simulating GPS constellation integrity data UDRE and UIRE according to the existing rule, and calculating the total pseudo range deviation sigma of each satellite according to the integrity information of the two systems and a UERE tableu,RX[i]”;
5)5) calculating a weighting matrix based on the calculated' total pseudorange bias σu,RX[i]"calculate the weighting matrix W;
6) respectively calculating error limit values under the conditions of no fault and fault in the horizontal direction and the vertical direction;
7) calculating the horizontal and vertical integrity risks in the absence of faults for GPS and Galileo according to equations (15) and (16);
8) calculating Galileo fault horizontal and vertical integrity risks according to the expressions (17) and (18), respectively;
9) calculating the overall HMI probability of the two systems according to the formula (21), namely the integrity contribution IR;
10) the user protection level is calculated according to the equation (22) in the case of the single GPS system, and is calculated according to the equation (23) in the case of the dual system.
Theoretically, a user determines the position of the user according to the satellite signal, and the difference value between the position of the user and the actual position of the user is a positioning error PE, wherein the positioning error is smaller than an alarm threshold value. However, the user's true position is not available, the positioning error is unknown, and therefore additional parameters must be found to characterize the integrity. The receiver continuously estimates a positioning error, i.e., a Protection Level (PL), for each position solution based on the errors of the various error sources. Given the risk of integrity, properly scaled up by probability, the level of protection is always larger than the positioning error (PL > PE). The integrity evaluation is based on the protection level and the alarm threshold. The receiver estimates the positioning protection level PL and compares it with an alarm threshold AL, and if PL > AL, an alarm message occurs.
There is an assumption in estimating integrity that PL > PE, as shown in FIG. 2, that the area to the left of the main diagonal is safe. When PE is less than PL and less than AL, the system can be normally used; if PL > AL in some cases, the system gives an alarm message, at which time the system is not available. The area PL < PE to the right of the main diagonal, the protection level is less than the positioning error, the integrity provides misleading information, and is unsafe. Although theoretically the results of the integrity information given are correct in the areas PL < PE < AL and AL < PL < PE, the level of protection provided PL < PE is misleading. For the area where PL < AL < PE is the area where the integrity risk exists, the reason for the integrity risk is misleading of PL < PE.
Fig. 3 to 6 use a wuhn station as a user station, calculate a horizontal protection level HPL and a vertical protection level VPL of the station, where a diamond curve is a protection level calculation result of a single Galileo or single EGNOS system, and a square curve is a calculation result of a dual system protection level parameter, and as can be seen from a graph, the protection level result of the dual system is mostly smaller than the calculation result of the single system, for life safety application of the Galileo system, the index of the protection limit value is 12m for the horizontal protection level and 20m for the vertical protection level, so that the protection level at most epoch time is within the protection limit value range, and thus it can be determined that the availability of the positioning result of the system under the dual system condition is greatly improved.
TABLE 2. integrity risk availability statistics for individual monitoring stations
Figure BDA0000040172700000111
TABLE 3 comparative analysis of integrity Risk
Figure BDA0000040172700000121
Table 2 shows the system availability, i.e. user integrity, determined by the integrity risk calculation result. Statistics shows that under the condition of double systems, the availability of the system can reach 98.6%, the condition of a single system is far smaller than the result, the single EGNOS result is better than the single Galielo result because the data of the EGNOS is a result simulated according to the rule, and is relatively ideal, and the calculation result of the Galielo system adopts real data, so that the test focuses more on a relative result of comparison between the double systems and the single system.
Table 3 shows the calculation results of several randomly extracted sets of epoch data, which shows that the integrity risk value is greatly reduced in the case of dual systems, and the availability of the system is improved, so that the user integrity is improved.
In conclusion, the results of several tests simultaneously prove that the integrity of the dual-system user is greatly improved compared with that of the single-system user, the usability of the algorithm is verified, and the method has important significance for the integrity evaluation of the future multi-system compatible users.
The invention also carries out comparative analysis on the calculation result of the single system and the calculation result of the multiple systems, and intuitively provides the difference of the results of the vertical protection level and the horizontal protection level in the usability under the condition of the multiple systems and the single system by adopting integrity analysis software, thereby obtaining the intuitive conclusion that the integrity of the user can be improved by the multimode user integrity evaluation method.
The technical contents of the present invention have been described in detail above. It will be apparent to those skilled in the art that various changes in form and detail may be made therein without departing from the principles of the invention and without departing from the scope of the invention as defined in the appended claims.

Claims (10)

1. A multi-mode user integrity evaluation method based on a Galileo system integrity concept is characterized in that the existing Galileo user integrity concept is directly used on two systems, for non-Galileo systems, proper preprocessing is carried out on integrity parameters of the non-Galileo systems, the integrity parameters are converted into information available for a Galileo user integrity algorithm, then integrity risk IR and/or a protection level are obtained through fusion calculation of a calculation method of the Galileo system, and when integrity analysis is carried out, numerical changes of the integrity risk IR and/or the protection level are monitored.
2. The method for assessing integrity of a multimodal user based on the Galileo system integrity concept as claimed in claim 1, specifically comprising the steps of:
1) acquiring navigation information, firstly determining a satellite position vector of a GPS constellation according to broadcast ephemeris data downloaded by an IGS website, and simulating the navigation information of the other constellation according to Galileo constellation system parameters;
2) acquiring a navigation solution, wherein the value is determined by broadcast ephemeris, observation data and meteorological data received by a receiver;
3) calculating an observation matrix, and calculating an observation matrix G of the user station according to the observable position vectors of the two constellation satellites and the position vector of the receiver, wherein the calculation formula of the observation matrix G is as follows:
Gi=[-cosElisinAzi-cosElicosAzi-sinEli1]the ith row of the G matrix;
el in the formulaiElevation angle, Az, of the ith satelliteiIs the azimuth of the ith satellite;
4) obtaining integrity information, calculating Galileo system integrity parameters SISMA and SISA according to ephemeris data, observation data, meteorological data and user station information downloaded by IGS, simulating GPS constellation integrity data UDRE and UIRE according to the existing rule, and calculating the total pseudo range deviation sigma of each satellite according to the integrity information of the two systems and a UERE tableu,RX[i]”;
5) Calculating a weighting matrix, and obtaining the' total pseudo range deviation sigma of each satellite of the two systems according to the stepsu,RX[i]"calculating a weighting matrix W of the whole large system consisting of two constellation systems;
6) calculating a point location error matrix K, and calculating the point location error matrix K by using the observation matrix G and the weighting matrix W;
7) respectively calculating error limit values under the conditions of no fault and fault in the horizontal direction and the vertical direction;
8) respectively calculating horizontal and vertical integrity risks under the condition that the GPS and the Galileo have no fault;
9) respectively calculating the horizontal and vertical integrity risks of the Galileo fault;
10) the overall HMI probabilities for both systems, i.e. the integrity risks IR, are calculated.
3. The method for multi-modal user integrity assessment based on Galileo system integrity concept according to claim 2, wherein said "total pseudorange bias σ" in step 4)u,RX[i]The calculation methods of "are respectively:
the total pseudorange bias calculation formula for the Galileo system is as follows:
<math><mrow><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>RX</mi></mrow></msub><mo>[</mo><mi>i</mi><mo>]</mo><mo>=</mo><msqrt><msubsup><mi>&sigma;</mi><mi>SISA</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo></msqrt><mo>;</mo></mrow></math>
the variance calculation for the total pseudorange bias for the GPS system is as follows:
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>RX</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>=</mo><msubsup><mi>&sigma;</mi><mrow><mi>SISA</mi><mo>,</mo><mi>GPS</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>GPS</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo></mrow></math>
<math><mrow><mo>=</mo><msubsup><mi>&sigma;</mi><mi>UDRE</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mi>UIRE</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mi>air</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>+</mo><msubsup><mi>&sigma;</mi><mi>tropo</mi><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo><mo>.</mo></mrow></math>
4. the method for assessing integrity of multi-modal user based on Galileo system integrity concept according to claim 2, wherein the weighting matrix W of step 5) is calculated by the formula:
<math><mrow><mo>{</mo><msub><mi>W</mi><mrow><mi>i</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>}</mo><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>RX</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo></mrow></mfrac><mo>.</mo></mrow></math>
5. the method for assessing integrity of multi-modal user based on Galileo system integrity concept according to claim 2, wherein the calculation formula of the error matrix K in the step 6) is: k ═ GTWG)-1GTW, in the formula, K is a point position resolving matrix for solving, G is an observation matrix, and the formula is as follows:
Gi=[-cosElisinAzi-cosElicosAzi-sinEli1]i-th row of the G matrix
W is a weighting matrix, implemented by inverting a covariance matrix, whose diagonal elements are:
<math><mrow><mo>{</mo><msub><mi>W</mi><mrow><mi>i</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>}</mo><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>RX</mi></mrow><mn>2</mn></msubsup><mo>[</mo><mi>i</mi><mo>]</mo></mrow></mfrac><mo>.</mo></mrow></math>
6. the method for assessing the integrity of the multimodal user based on the Galileo system integrity concept according to claim 2, wherein in the step 7):
the variance of the horizontal fault-free point deviation distribution limit value is as follows:
<math><mrow><msup><msub><mi>&xi;</mi><mi>FF</mi></msub><mn>2</mn></msup><mo>=</mo><mfrac><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup></mrow><mn>2</mn></mfrac><mo>+</mo><msqrt><msup><mrow><mo>(</mo><mfrac><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup></mrow><mn>2</mn></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ne</mi></mrow><mn>4</mn></msubsup></msqrt></mrow></math>
wherein,
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>;</mo></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ne</mi></mrow><mn>2</mn></msubsup><mo>=</mo><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>]</mo><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
the variance of the distribution limit value of the vertical fault-free point location deviation is as follows:
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>3</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
in the formula,
σu,V,FFthe method is used for limiting the standard deviation of a vertical direction point deviation model under the fault-free condition;
ξFFthe method is used for limiting the standard deviation of a horizontal direction point deviation model under the fault-free condition;
the variance defining the horizontal direction point deviation distribution under fault conditions is:
<math><mrow><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup><mo>=</mo><mfrac><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>MF</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup></mrow><mn>2</mn></mfrac><mo>+</mo><msqrt><msup><mrow><mo>(</mo><mfrac><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup></mrow><mn>2</mn></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>ne</mi></mrow><mn>4</mn></msubsup></msqrt></mrow></math>
wherein,
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FM</mi><mo>,</mo><mi>nn</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>M</mi><mi>topo</mi></msub><msup><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISMA</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>SISA</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ne</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub></mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>]</mo><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>j</mi><mo>]</mo><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISMA</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>SISA</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>FF</mi><mo>,</mo><mi>ee</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>M</mi><mi>topo</mi></msub><msup><mrow><mo>[</mo><mn>2</mn><mo>,</mo><mi>j</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISMA</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>SISA</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
the equation defining the distribution of the point location deviations in the vertical direction under the fault condition is as follows:
<math><mrow><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow><mn>2</mn></msubsup><mo>=</mo><msup><mrow><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>3</mn><mo>,</mo><mi>i</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISA</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>L</mi><mo>,</mo><mi>i</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>+</mo><msub><mi>M</mi><mi>topo</mi></msub><msup><mrow><mo>[</mo><mn>3</mn><mo>,</mo><mi>j</mi><mo>]</mo></mrow><mn>2</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>SISMA</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>SISA</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></math>
in the formula,
σu,V,FMis used to define fault conditionsStandard deviation of the point location deviation model in the lower vertical direction;
ξFMis used to define the standard deviation of the horizontal point deviation model under fault conditions.
7. The method for assessing the integrity of the multimodal user based on the Galileo system integrity concept according to claim 2, wherein in the step 8):
the risk of failure-free level integrity is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>=</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><msup><mi>HAL</mi><mn>2</mn></msup><mrow><mn>2</mn><msup><msub><mi>&xi;</mi><mi>FF</mi></msub><mn>2</mn></msup></mrow></mfrac></mrow></msup></mrow></math>
the risk of failure-free vertical integrity is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mi>VAL</mi><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>,</mo></mrow></math> wherein <math><mrow><mi>erf</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>2</mn><msqrt><mi>&pi;</mi></msqrt></mfrac><mo>&CenterDot;</mo><munderover><mo>&Integral;</mo><mn>0</mn><mi>u</mi></munderover><msup><mi>e</mi><mrow><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></msup><msub><mi>d</mi><mi>x</mi></msub><mo>.</mo></mrow></math>
8. The method for assessing integrity of a multi-modal user based on Galileo system integrity concept according to claim 2, wherein in the step 9), the fault level integrity risk is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>FM</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><msub><mi>&delta;</mi><mrow><mi>u</mi><mo>,</mo><mi>H</mi></mrow></msub></mrow><mn>2</mn></msubsup><mi>cdf</mi><mrow><mo>(</mo><mfrac><msup><mi>HAL</mi><mn>2</mn></msup><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup></mfrac><mo>)</mo></mrow></mrow></math>
wherein,
<math><mrow><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>e</mi></mrow></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open='(' close=')'><mtable><mtr><mtd><mo>|</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>b</mi><mi>j</mi></msub><mo>|</mo></mtd></mtr><mtr><mtd><mo>|</mo><msub><mi>M</mi><mi>topo</mi></msub><mo>[</mo><mn>2</mn><mo>,</mo><mi>j</mi><mo>]</mo><mo>&CenterDot;</mo><msub><mi>b</mi><mi>j</mi></msub><mo>|</mo></mtd></mtr></mtable></mfenced><mo>,</mo><msub><mi>b</mi><mi>j</mi></msub><mo>=</mo><msub><mi>TH</mi><mi>j</mi></msub></mrow></math>
<math><mrow><msub><mi>&delta;</mi><mrow><mi>u</mi><mo>,</mo><mi>H</mi></mrow></msub><mo>=</mo><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>n</mi></mrow></msub></mtd><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>e</mi></mrow></msub></mtd></mtr></mtable></mfenced><mo>&CenterDot;</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mo>&CenterDot;</mo><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>e</mi></mrow></msub></mtd></mtr></mtable></mfenced><mo>;</mo></mrow></math>
<math><mrow><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><mi>&delta;</mi></mrow><mn>2</mn></msubsup><mi>cdf</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mo>&Integral;</mo><mn>0</mn><mi>x</mi></munderover><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><mi>&delta;</mi></mrow><mn>2</mn></msubsup><mi>pdf</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>dt</mi></mrow></math>
<math><mrow><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><mi>&delta;</mi></mrow><mn>2</mn></msubsup><mi>pdf</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>&delta;</mi><mo>)</mo></mrow></mrow></msup><mo>&CenterDot;</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mo>&infin;</mo></munderover><mfrac><mrow><msup><mi>x</mi><mi>j</mi></msup><msup><mi>&delta;</mi><mi>j</mi></msup></mrow><mrow><msup><mn>2</mn><mrow><mn>2</mn><mi>j</mi></mrow></msup><mo>&CenterDot;</mo><msup><mrow><mo>(</mo><mi>j</mi><mo>!</mo><mo>)</mo></mrow><mn>2</mn></msup></mrow></mfrac></mrow></math>
the risk of faulty vertical integrity is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><msub><mi>sat</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><mrow><mo>(</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mrow><mi>VAL</mi><mo>+</mo><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi></mrow></msub></mrow><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mrow><mi>VAL</mi><mo>-</mo><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi></mrow></msub></mrow><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mo>.</mo></mrow></math>
9. the method for assessing the integrity of a multimodal user based on the Galileo system integrity concept according to claim 2, wherein in the step 10),
the total horizontal integrity risk is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi></mrow></msub><mo>=</mo><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>+</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><msub><mi>sat</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></math>
the total vertical integrity risk is:
<math><mrow><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi></mrow></msub><mo>=</mo><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>+</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><mi>sa</mi><msub><mi>t</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><msub><mi>P</mi><mrow><mi>IntRisk</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></math>
the risk of synthetic integrity is then:
<math><mrow><msub><mi>P</mi><mi>HMI</mi></msub><mrow><mo>(</mo><mi>VAL</mi><mo>,</mo><mi>HAL</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mi>VAL</mi><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>+</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><msup><mi>HAL</mi><mn>2</mn></msup><mrow><mn>2</mn><msup><msub><mi>&xi;</mi><mi>FF</mi></msub><mn>2</mn></msup></mrow></mfrac></mrow></msup><mo>+</mo></mrow></math>
<math><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><msub><mi>sat</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><mrow><mo>(</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mrow><mi>VAL</mi><mo>+</mo><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi></mrow></msub></mrow><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>erf</mi><mrow><mo>(</mo><mfrac><mrow><mi>VAL</mi><mo>-</mo><msub><mi>&mu;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi></mrow></msub></mrow><mrow><msqrt><mn>2</mn></msqrt><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FM</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mo>.</mo></mrow></math>
<math><mrow><mo>+</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>P</mi><mrow><mi>fail</mi><mo>,</mo><msub><mi>sat</mi><mi>j</mi></msub></mrow></msub><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msubsup><mi>&chi;</mi><mrow><mn>2</mn><mo>,</mo><msub><mi>&delta;</mi><mrow><mi>u</mi><mo>,</mo><mi>H</mi></mrow></msub></mrow><mn>2</mn></msubsup><mi>cdf</mi><mrow><mo>(</mo><mfrac><msup><mi>HAL</mi><mn>2</mn></msup><msup><msub><mi>&xi;</mi><mi>FM</mi></msub><mn>2</mn></msup></mfrac><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
10. the method for assessing integrity of a multimodal user based on Galileo system integrity concept according to claim 2, further comprising the step 11): the user protection level xPL is calculated according to equation (22) in the case of the single GPS system, and the user protection level xPL is calculated according to equation (23) in the case of the dual system:
the horizontal and vertical protection levels in the fault-free case are as follows:
HPL0=kH·ξFF
(22)
VPL0=kV·σu,V,FF
when there is a failure in one satellite but the integrity flag is set to "OK", the horizontal and vertical protection level calculation formulas are as follows:
<math><mrow><mfenced open='' close=''><mtable><mtr><mtd><msub><mi>HPL</mi><mi>FM</mi></msub><mo>=</mo><munder><mi>max</mi><msub><mi>i</mi><mi>sat</mi></msub></munder><mo>{</mo><mo>|</mo><msqrt><msub><mi>M</mi><mi>u</mi></msub><msup><mrow><mo>(</mo><mn>1</mn><mo>,</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>M</mi><mi>u</mi></msub><msup><mrow><mo>(</mo><mn>2</mn><mo>,</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mn>2</mn></msup></msqrt><mo>&CenterDot;</mo><mi>TH</mi><mrow><mo>(</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mo>|</mo><mo>+</mo><msub><mi>k</mi><mi>H</mi></msub><mo>&CenterDot;</mo><msub><mi>&xi;</mi><mi>FF</mi></msub><mo>}</mo></mtd></mtr><mtr><mtd><msub><mi>VPL</mi><mi>FM</mi></msub><mo>=</mo><munder><mi>max</mi><msub><mi>i</mi><mi>sat</mi></msub></munder><mo>{</mo><msub><mi>M</mi><mi>u</mi></msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>TH</mi><mrow><mo>(</mo><msub><mi>i</mi><mi>sat</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>k</mi><mi>V</mi></msub><mo>&CenterDot;</mo><msub><mi>&sigma;</mi><mrow><mi>u</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>FF</mi></mrow></msub><mo>}</mo></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>23</mn><mo>)</mo></mrow></mrow></math>
here, the
Figure FDA0000040172690000052
kVAnd kHAre scale factors for which the alarm limit may be exceeded at a given probability that the vertical and horizontal cumulative density function models are at σV1 and xiH1 is a value.
CN 201010603368 2010-12-23 2010-12-23 Galileo system integrity concept-based multimode user integrity assessing method Active CN102096075B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010603368 CN102096075B (en) 2010-12-23 2010-12-23 Galileo system integrity concept-based multimode user integrity assessing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010603368 CN102096075B (en) 2010-12-23 2010-12-23 Galileo system integrity concept-based multimode user integrity assessing method

Publications (2)

Publication Number Publication Date
CN102096075A true CN102096075A (en) 2011-06-15
CN102096075B CN102096075B (en) 2013-09-04

Family

ID=44129245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010603368 Active CN102096075B (en) 2010-12-23 2010-12-23 Galileo system integrity concept-based multimode user integrity assessing method

Country Status (1)

Country Link
CN (1) CN102096075B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454650A (en) * 2013-08-20 2013-12-18 北京航空航天大学 Method for monitoring satellite integrity with vision as auxiliary
CN103941266A (en) * 2014-03-30 2014-07-23 桂林电子科技大学 Satellite integrity monitoring method and system based on mutual deviation
CN104199051A (en) * 2014-09-26 2014-12-10 中国电子科技集团公司第五十四研究所 Method for detecting and identifying satellite navigation RAIM (Receiver Autonomous Integrity Monitoring) multi-satellite faults
CN104596544A (en) * 2015-01-23 2015-05-06 北京航空航天大学 Method for predicting airborne navigation performances under ionospheric scintillation
CN105703905A (en) * 2014-12-15 2016-06-22 马维尔国际贸易有限公司 Apparatus and method for providing positioning data based on authentication result
CN106405587A (en) * 2016-10-27 2017-02-15 广州海格通信集团股份有限公司 Satellite selection method based on integrated multi-system satellite navigation
CN107632313A (en) * 2017-09-13 2018-01-26 航天恒星科技有限公司 Satellite navigation signals and SBAS text emulation modes based on correlation
CN108415047A (en) * 2017-12-22 2018-08-17 中国人民解放军战略支援部队航天工程大学 A kind of location accuracy of dipper satellite navigation system threshold value calculation method
CN108680936A (en) * 2018-05-21 2018-10-19 中国人民解放军战略支援部队信息工程大学 Beidou satellite navigation system integrity monitoring appraisal procedure
CN108761498A (en) * 2018-03-13 2018-11-06 南京航空航天大学 A kind of location estimation optimization method for senior receiver autonomous integrity monitoring
CN109728868A (en) * 2018-11-27 2019-05-07 中国科学院光电研究院 A kind of GNSS base station networking method for synchronizing time examined based on multiple integrity
CN109901204A (en) * 2019-03-27 2019-06-18 北京航空航天大学 A kind of GBAS integrity performance estimating method based on pseudorange error distributed model
CN110068840A (en) * 2019-05-15 2019-07-30 北京航空航天大学 A kind of ARAIM fault detection method based on pseudo range measurement characteristics extraction
CN110174683A (en) * 2019-05-17 2019-08-27 中国民航大学 GBAS protected level integrity risk allocation method based on Bayesian decision
CN111679298A (en) * 2020-05-09 2020-09-18 香港理工大学深圳研究院 Integrity monitoring method and integrity monitoring device of navigation system and electronic equipment
CN112034491A (en) * 2020-08-31 2020-12-04 中国电子科技集团公司第五十四研究所 Integrity protection level calculation method based on error core distribution
CN112198533A (en) * 2020-10-19 2021-01-08 中国电子科技集团公司第二十八研究所 System and method for evaluating integrity of foundation enhancement system under multiple hypotheses
CN112230247A (en) * 2020-09-25 2021-01-15 南京航空航天大学 GNSS integrity monitoring method used in urban complex environment
CN112924993A (en) * 2021-02-07 2021-06-08 重庆两江卫星移动通信有限公司 LEO constellation integrity monitoring method and system
CN114609650A (en) * 2022-03-09 2022-06-10 中国人民解放军92728部队 Integrity testing method based on Beidou full-chain fault excitation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798377B1 (en) * 2003-05-31 2004-09-28 Trimble Navigation, Ltd. Adaptive threshold logic implementation for RAIM fault detection and exclusion function
CN101089651A (en) * 2007-07-12 2007-12-19 北京航空航天大学 Usable forcasting method for receiver autonomic excellent monitoring
CN101755222A (en) * 2007-07-19 2010-06-23 高通股份有限公司 Global navigation satellite system
EP2264477A1 (en) * 2009-06-19 2010-12-22 Astrium GmbH A method of amending navigation data of a global navigation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798377B1 (en) * 2003-05-31 2004-09-28 Trimble Navigation, Ltd. Adaptive threshold logic implementation for RAIM fault detection and exclusion function
CN101089651A (en) * 2007-07-12 2007-12-19 北京航空航天大学 Usable forcasting method for receiver autonomic excellent monitoring
CN101755222A (en) * 2007-07-19 2010-06-23 高通股份有限公司 Global navigation satellite system
EP2264477A1 (en) * 2009-06-19 2010-12-22 Astrium GmbH A method of amending navigation data of a global navigation system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《全球定位系统》 20051031 吕志伟等 伽利略系统的完好性 10-13 1-10 , 第5期 *
《测绘科学技术学报》 20061231 郭睿等 GPS和Galileo系统下RAIM算法可用性分析 448-450,453 1-10 第23卷, 第6期 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454650B (en) * 2013-08-20 2015-06-24 北京航空航天大学 Method for monitoring satellite integrity with vision as auxiliary
CN103454650A (en) * 2013-08-20 2013-12-18 北京航空航天大学 Method for monitoring satellite integrity with vision as auxiliary
CN103941266A (en) * 2014-03-30 2014-07-23 桂林电子科技大学 Satellite integrity monitoring method and system based on mutual deviation
CN104199051A (en) * 2014-09-26 2014-12-10 中国电子科技集团公司第五十四研究所 Method for detecting and identifying satellite navigation RAIM (Receiver Autonomous Integrity Monitoring) multi-satellite faults
CN104199051B (en) * 2014-09-26 2017-01-11 中国电子科技集团公司第五十四研究所 Method for detecting and identifying satellite navigation RAIM (Receiver Autonomous Integrity Monitoring) multi-satellite faults
CN105703905A (en) * 2014-12-15 2016-06-22 马维尔国际贸易有限公司 Apparatus and method for providing positioning data based on authentication result
CN105703905B (en) * 2014-12-15 2020-10-13 马维尔亚洲私人有限公司 Apparatus and method for providing location data based on authentication result
CN104596544A (en) * 2015-01-23 2015-05-06 北京航空航天大学 Method for predicting airborne navigation performances under ionospheric scintillation
CN104596544B (en) * 2015-01-23 2017-06-30 北京航空航天大学 A kind of method of aerial navigation performance prediction under ionospheric scintillation
CN106405587B (en) * 2016-10-27 2019-01-25 广州海格通信集团股份有限公司 A kind of satellite selection method based on the navigation of multisystem combinations of satellites
CN106405587A (en) * 2016-10-27 2017-02-15 广州海格通信集团股份有限公司 Satellite selection method based on integrated multi-system satellite navigation
CN107632313A (en) * 2017-09-13 2018-01-26 航天恒星科技有限公司 Satellite navigation signals and SBAS text emulation modes based on correlation
CN108415047A (en) * 2017-12-22 2018-08-17 中国人民解放军战略支援部队航天工程大学 A kind of location accuracy of dipper satellite navigation system threshold value calculation method
CN108415047B (en) * 2017-12-22 2020-04-10 中国人民解放军战略支援部队航天工程大学 Beidou satellite navigation system positioning accuracy threshold value calculation method
CN108761498A (en) * 2018-03-13 2018-11-06 南京航空航天大学 A kind of location estimation optimization method for senior receiver autonomous integrity monitoring
CN108761498B (en) * 2018-03-13 2021-08-10 南京航空航天大学 Position estimation optimization method for advanced receiver autonomous integrity monitoring
CN108680936A (en) * 2018-05-21 2018-10-19 中国人民解放军战略支援部队信息工程大学 Beidou satellite navigation system integrity monitoring appraisal procedure
CN109728868A (en) * 2018-11-27 2019-05-07 中国科学院光电研究院 A kind of GNSS base station networking method for synchronizing time examined based on multiple integrity
CN109728868B (en) * 2018-11-27 2020-10-13 中国科学院光电研究院 GNSS base station networking time synchronization method based on multiple integrity tests
CN109901204A (en) * 2019-03-27 2019-06-18 北京航空航天大学 A kind of GBAS integrity performance estimating method based on pseudorange error distributed model
CN109901204B (en) * 2019-03-27 2020-12-04 北京航空航天大学 GBAS integrity performance evaluation method based on pseudo-range error distribution model
CN110068840A (en) * 2019-05-15 2019-07-30 北京航空航天大学 A kind of ARAIM fault detection method based on pseudo range measurement characteristics extraction
CN110068840B (en) * 2019-05-15 2020-12-29 北京航空航天大学 ARAIM fault detection method based on pseudo-range measurement characteristic value extraction
CN110174683B (en) * 2019-05-17 2022-12-23 中国民航大学 GBAS protection level integrity risk distribution method based on Bayesian decision
CN110174683A (en) * 2019-05-17 2019-08-27 中国民航大学 GBAS protected level integrity risk allocation method based on Bayesian decision
CN111679298A (en) * 2020-05-09 2020-09-18 香港理工大学深圳研究院 Integrity monitoring method and integrity monitoring device of navigation system and electronic equipment
CN111679298B (en) * 2020-05-09 2023-05-09 香港理工大学深圳研究院 Integrity monitoring method and device of navigation system and electronic equipment
CN112034491A (en) * 2020-08-31 2020-12-04 中国电子科技集团公司第五十四研究所 Integrity protection level calculation method based on error core distribution
CN112034491B (en) * 2020-08-31 2024-04-09 中国电子科技集团公司第五十四研究所 Integrity protection level calculation method based on error core distribution
CN112230247A (en) * 2020-09-25 2021-01-15 南京航空航天大学 GNSS integrity monitoring method used in urban complex environment
CN112198533A (en) * 2020-10-19 2021-01-08 中国电子科技集团公司第二十八研究所 System and method for evaluating integrity of foundation enhancement system under multiple hypotheses
CN112198533B (en) * 2020-10-19 2022-11-08 中国电子科技集团公司第二十八研究所 System and method for evaluating integrity of foundation enhancement system under multiple hypotheses
CN112924993A (en) * 2021-02-07 2021-06-08 重庆两江卫星移动通信有限公司 LEO constellation integrity monitoring method and system
CN112924993B (en) * 2021-02-07 2024-06-04 重庆两江卫星移动通信有限公司 LEO constellation integrity monitoring method and system
CN114609650A (en) * 2022-03-09 2022-06-10 中国人民解放军92728部队 Integrity testing method based on Beidou full-chain fault excitation

Also Published As

Publication number Publication date
CN102096075B (en) 2013-09-04

Similar Documents

Publication Publication Date Title
CN102096075A (en) Galileo system integrity concept-based multimode user integrity assessing method
Yang et al. GNSS receiver autonomous integrity monitoring (RAIM) algorithm based on robust estimation
CN104483678B (en) A kind of many constellations satellite navigation integrity multistage monitoring method of air-ground coordination
Castaldo et al. P‐RANSAC: An Integrity Monitoring Approach for GNSS Signal Degraded Scenario
CN101419275B (en) Local airport monitoring method and system based on multi-receiver
CN101598780B (en) Local airport monitoring method, device and system therefor
CN106468774A (en) A kind of ephemeris star clock being applied to satellite-based augmentation system corrects parameter and spacing wave integrity parameter method
CN108490459B (en) Method and system for applying precision and risk balance to GNSS position service
CN104732085A (en) Satellite navigation satellite-based augmentation system availability prediction method
CN101950025A (en) Data quality monitoring method for local enhancing system
CN109031356B (en) Method for monitoring autonomous integrity of characteristic slope weighted least square residual receiver
CN109061683B (en) H-ARAIM system for optimizing horizontal protection level
CN110941000A (en) Method for monitoring integrity of precise single-point positioning
Lee GPS-Based aircraft landing systems with enhanced performance: beyond accuracy
Wang et al. ARAIM with BDS in the Asia-Pacific region
Han et al. GNSS/IMU tightly coupled scheme with weighting and FDE for rail applications
CN100523858C (en) Positioning and monitoring methods applied to satellite navigation system
Lee et al. Sigma overbounding using a position domain method for the local area augmentaion of GPS
CN112198533B (en) System and method for evaluating integrity of foundation enhancement system under multiple hypotheses
Su et al. Receiver autonomous integrity monitoring availability and fault detection capability comparison between BeiDou and GPS
Zhang et al. MHSS ARAIM algorithm combined with gross error detection
Joerger et al. Iridium/GPS carrier phase positioning and fault detection over wide areas
Ma et al. Evaluation of BDS and GPS RAIM availability based on data collected in June 2020
Ahn et al. Orbit ephemeris failure detection in a GNSS regional application
Imtiaz et al. Design and implementation of receiver autonomous integrity monitoring algorithm on DSP for small UAV applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant