CN101598780B - Local airport monitoring method, device and system therefor - Google Patents
Local airport monitoring method, device and system therefor Download PDFInfo
- Publication number
- CN101598780B CN101598780B CN2009100885127A CN200910088512A CN101598780B CN 101598780 B CN101598780 B CN 101598780B CN 2009100885127 A CN2009100885127 A CN 2009100885127A CN 200910088512 A CN200910088512 A CN 200910088512A CN 101598780 B CN101598780 B CN 101598780B
- Authority
- CN
- China
- Prior art keywords
- pseudo
- satellite
- error
- receiver
- airborne user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 206
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000012937 correction Methods 0.000 claims abstract description 134
- 238000004364 calculation method Methods 0.000 claims abstract description 88
- 230000003416 augmentation Effects 0.000 claims description 42
- 239000011159 matrix material Substances 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 230000003321 amplification Effects 0.000 claims description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 16
- 239000005433 ionosphere Substances 0.000 claims description 10
- 238000012806 monitoring device Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 9
- 239000005436 troposphere Substances 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 7
- 241001522296 Erithacus rubecula Species 0.000 claims description 4
- 238000012896 Statistical algorithm Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 18
- 238000013459 approach Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 101000699762 Homo sapiens RNA 3'-terminal phosphate cyclase Proteins 0.000 description 3
- 102100029143 RNA 3'-terminal phosphate cyclase Human genes 0.000 description 3
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 101100457849 Caenorhabditis elegans mon-2 gene Proteins 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013524 data verification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明提供一种局域机场监测方法、装置及系统,其方法包括:接收每个接收机发送的卫星数据,计算每个接收机对应的伪距校正值;任选一个接收机为伪机载用户,计算伪机载用户的伪距校正值定位误差;计算伪机载用户的监视系统定位误差,并根据监视系统定位误差和广域增强系统信息播发误差,计算得到伪机载用户的地面监测保护级;将伪机载用户的所有可见卫星组合的地面监测保护级与机载用户预设的告警限值进行比较,根据比较结果输出最佳卫星组合。本发明通过在地面的监测端对机载用户进行伪距校正值的误差和监视系统的误差的计算,通过对地面监测保护级的检测完成了对机载用户最佳可见卫星组合的选取,减小了机载用户的计算负担,提高了实时性。
The present invention provides a local area airport monitoring method, device and system, the method comprising: receiving satellite data sent by each receiver, calculating the pseudo-range correction value corresponding to each receiver; selecting one receiver as a pseudo-airborne User, calculate the pseudo-range correction value positioning error of the pseudo-airborne user; calculate the monitoring system positioning error of the pseudo-airborne user, and calculate the ground monitoring of the pseudo-airborne user according to the positioning error of the monitoring system and the information broadcast error of the wide-area enhancement system Protection level: compare the ground monitoring protection level of all visible satellite combinations of the pseudo-airborne user with the preset alarm limit value of the airborne user, and output the best satellite combination according to the comparison result. The present invention calculates the error of the pseudorange correction value and the error of the monitoring system for the airborne user at the monitoring end on the ground, and completes the selection of the best visible satellite combination for the airborne user through the detection of the ground monitoring protection level, reducing The calculation burden of the airborne user is reduced, and the real-time performance is improved.
Description
技术领域 technical field
本发明实施例卫星导航技术领域,尤其涉及一种局域机场监测方法、装置及系统。 The embodiment of the present invention relates to the technical field of satellite navigation, in particular to a local airport monitoring method, device and system. the
背景技术Background technique
当卫星导航系统应用在民用航空方面时,通常必须满足精度、完好性、连续性和可用性四个性能指标。其中,精度是指在任何时间导航系统的测量位置与真实位置的差值;完好性是指当系统无法提供导航服务时,它能够及时发出警告或关闭的能力;连续性是指系统在整个飞行过程中提供服务能力;可用性是指当用户需要时,系统可能用于导航的能力。但是由于目前的卫星导航系统通常会受到可用性卫星数目、大气、电离层、雷云等因素的影响,以及受到飞机的动态行为影响,无论是美国的全球定位系统(Globle Positioninng System;以下简称GPS),还是俄罗斯的全球卫星导航系统(Global Navigation Satellite System;以下简称GLONASS),都无法全面满足以上几个方面的导航性能要求。因此,为了提高卫星导航系统的完整性、精度、可用性和连续服务性,卫星导航增强系统便形成了,它通过一些地面和卫星设施,在选择使用差分技术和伪卫星技术等技术的基础上,可以提高卫星导航系统的性能。 When the satellite navigation system is used in civil aviation, it usually must meet the four performance indicators of accuracy, integrity, continuity and availability. Among them, accuracy refers to the difference between the measured position and the true position of the navigation system at any time; integrity refers to the ability of the system to issue a warning or shut down in time when the system cannot provide navigation services; Ability to provide services during the process; usability refers to the ability of the system to be used for navigation when the user needs it. However, since the current satellite navigation system is usually affected by factors such as the number of available satellites, the atmosphere, the ionosphere, and thunderclouds, as well as the dynamic behavior of the aircraft, whether it is the US Global Positioning System (Global Positioning System; hereinafter referred to as GPS) , or Russia's Global Navigation Satellite System (Global Navigation Satellite System; hereinafter referred to as GLONASS), cannot fully meet the navigation performance requirements in the above aspects. Therefore, in order to improve the integrity, accuracy, availability and continuous service of the satellite navigation system, the satellite navigation augmentation system has been formed. It uses some ground and satellite facilities, based on the selection of differential technology and pseudolite technology. The performance of satellite navigation systems can be improved. the
目前的卫星导航增强系统可以划分为三种:地基增强系统、星基增强系统和空基增强系统,其中,地基增强系统的代表是美国的局域增强系统(Local Area Augmentation System;以下简称LAAS)。LAAS使用的差分技术是基于产生一个本地基准站和用户站之间所有预计的共同性误差的修正值,所以,LAAS只能在约20海里的“本地”范围内发播导航修正信息,其服务空间只包括在本区域内的机场。此外,由于受到电离层风暴的影响,LAAS的完好性得不到保证,使得LAAS的认证变得非常困难。 The current satellite navigation augmentation system can be divided into three types: ground-based augmentation system, satellite-based augmentation system and space-based augmentation system. Among them, the representative of the ground-based augmentation system is the Local Area Augmentation System (LAAS) of the United States. . The differential technique used by LAAS is based on generating a correction value for all expected common errors between the local reference station and the user station. Therefore, LAAS can only broadcast navigation correction information within a "local" range of about 20 nautical miles, and its service Space only includes airports within the region. In addition, due to the impact of ionospheric storms, the integrity of LAAS cannot be guaranteed, making the certification of LAAS very difficult. the
星基增强系统的代表是美国的广域增强系统(Wide Area Augmentation System;以下简称WAAS)和欧盟的欧洲全球导航重迭系统(European Geostationary Navigation Overlay Service;以下简称EGNOS)系统。这两个系统都是通过同步轨 道卫星(Geostationary Orbit;以下简称GEO)播发校正信息给用户,但由于没有进行局部的监测,使得其完好性也不能达到民航精密进近的性能需求。 Representatives of satellite-based augmentation systems are the Wide Area Augmentation System (Wide Area Augmentation System; hereinafter referred to as WAAS) of the United States and the European Geostationary Navigation Overlay Service (EGNOS) system of the European Union. These two systems broadcast correction information to users through geostationary orbit satellites (Geostationary Orbit; hereinafter referred to as GEO), but due to lack of local monitoring, their integrity cannot meet the performance requirements of civil aviation precision approach. the
空基增强系统的代表是接收机自主式完好性监测系统(Receiver Autonomous Integrity Monitoring;以下简称RAIM)。虽然RAIM是目前一种简便有效的完好性监测方法,但是RAIM方法还是存在可用性的问题。所谓RAIM可用性就是在某些时空点,无法进行RAIM监测或者RAIM的监测结果不能保证同时满足虚警率和漏检率要求。导致RAIM可用性问题的因素主要有两种:一是观测卫星数目不足,RAIM需要同时至少5颗卫星才可以进行冗余信息一致性检验来检测故障,至少6颗卫星才可以进行故障识别操作。也就是在一些时空点会出现卫星数目不足导致RAIM监测不能进行的情况,也有称此情况为RAIM空洞。二是几何分布因素。在某些时空点虽然卫星数目满足了RAIM的基本要求,但是卫星的几何布局可能导致在进行完好性监测时,对出现在某些卫星上的故障无法检测到,结果无法保证漏检率的要求。因此,总体来说,RAIM方法还是不适合用来进行完好性监测。 The representative of the space-based augmentation system is the receiver autonomous integrity monitoring system (Receiver Autonomous Integrity Monitoring; hereinafter referred to as RAIM). Although RAIM is currently a simple and effective integrity monitoring method, there are still usability problems in the RAIM method. The so-called availability of RAIM means that at certain time and space points, RAIM monitoring cannot be performed or the monitoring results of RAIM cannot guarantee to meet the requirements of false alarm rate and missed detection rate at the same time. There are two main factors that lead to RAIM availability problems: one is the insufficient number of observation satellites, RAIM needs at least 5 satellites at the same time to perform redundant information consistency checks to detect faults, and at least 6 satellites to perform fault identification operations. That is to say, at some time and space points, the number of satellites is insufficient and RAIM monitoring cannot be carried out. This situation is also called RAIM hole. The second is the geometric distribution factor. Although the number of satellites meets the basic requirements of RAIM at some time and space points, the geometric layout of the satellites may cause failures on some satellites to be undetectable during integrity monitoring, and the result cannot guarantee the missed detection rate. . Therefore, overall, the RAIM method is still not suitable for integrity monitoring. the
为使卫星导航的LAAS系统达到I类精密进近的性能,美国联邦航空局(Federal Aviation Administration;以下简称FAA)将其与WAAS系统联合后,又提出了一种局域机场监测系统(Local Airport Monitor;以下简称LAM),其在提高卫星导航的定位精度以及各个性能的同时,消除电离层风暴对系统的影响。但是,现有技术中的LAM系统的大部分完好性算法都需要机载用户自身完成,加重了用户负担,降低了实时性。 In order to make the satellite navigation LAAS system achieve the performance of Class I precision approach, the Federal Aviation Administration (Federal Aviation Administration; hereinafter referred to as FAA) combined it with the WAAS system and proposed a Local Airport Monitoring System (Local Airport Monitoring System). Monitor (hereinafter referred to as LAM), which improves the positioning accuracy and various performances of satellite navigation, and at the same time eliminates the impact of ionospheric storms on the system. However, most of the integrity algorithms of the LAM system in the prior art need to be completed by the airborne user itself, which increases the burden on the user and reduces the real-time performance. the
发明内容Contents of the invention
本发明实施例提供一种局域机场监测方法、装置及系统,用以解决现有技术中的LAM系统的大部分完好性算法都需要机载用户自身完成,加重了用户负担、降低了实用性的缺陷,提高局域机场监测方法及系统的性能。 The embodiment of the present invention provides a local airport monitoring method, device and system to solve the problem that most of the integrity algorithms of the LAM system in the prior art need to be completed by the airborne user itself, which increases the burden on the user and reduces the practicality To improve the performance of the local airport monitoring method and system. the
本发明实施例提供一种局域机场监测方法,包括: The embodiment of the present invention provides a local airport monitoring method, including:
获取每个接收机本身的接收机信息以及接收机从导航征星接收的卫星数据,利用广域增强系统播发的增强信息、载波相位观测值和对流层误差模型对所述卫星数据中的伪距信息进行校正,得到每个接收机对应的每颗卫星的伪距校正值,所述接 收机信息包括接收机对应的可见卫星的卫星仰角值、接收机与其可见卫星之间的真实距离以及每个接收机的可见卫星数目; Obtain the receiver information of each receiver itself and the satellite data received by the receiver from the navigation satellite, and use the augmentation information broadcast by the wide area augmentation system, the carrier phase observation value and the tropospheric error model to analyze the pseudorange information in the satellite data Perform correction to obtain the pseudorange correction value of each satellite corresponding to each receiver, and the receiver information includes the satellite elevation value of the visible satellite corresponding to the receiver, the real distance between the receiver and the visible satellite, and each The number of satellites visible to the receiver;
任选一个接收机为伪机载用户,根据所述伪机载用户的所述接收机信息和机载用户预设的连续性需求值,利用伪距域到定位域的转换矩阵计算得到所述伪机载用户的伪距校正值定位误差,并从所述伪距校正值定位误差中提取出所述伪机载用户的广域增强系统信息播发定位误差; Optionally one receiver is a pseudo-airborne user, and according to the receiver information of the pseudo-airborne user and the continuity requirement value preset by the airborne user, the conversion matrix from the pseudo-range domain to the positioning domain is used to calculate the described The pseudo-range correction value positioning error of the pseudo-airborne user, and extract the wide-area augmentation system information broadcast positioning error of the pseudo-airborne user from the pseudo-range correction value positioning error;
根据所述伪机载用户的所述接收机信息和系统预设的完好性风险值,利用所述伪距域到定位域的转换矩阵计算得到所述伪机载用户的监视系统定位误差,并将所述监视系统定位误差和所述广域增强系统信息播发定位误差之和进行理想包络值的计算,得到所述伪机载用户的地面监测保护级,所述监视系统定位误差包括由机载用户的热噪声和机身多径引起的定位误差、由监测中心上空的电离层引起的定位误差和监测中心上空的对流层引起的定位误差; According to the receiver information of the pseudo-airborne user and the integrity risk value preset by the system, calculate the positioning error of the monitoring system of the pseudo-airborne user by using the transformation matrix from the pseudo-range domain to the positioning domain, and Calculate the ideal envelope value of the sum of the positioning error of the monitoring system and the broadcasting positioning error of the wide-area augmentation system information to obtain the ground monitoring protection level of the pseudo-airborne user, and the positioning error of the monitoring system includes Positioning errors caused by the thermal noise of the user and the multipath of the fuselage, the positioning error caused by the ionosphere above the monitoring center, and the positioning error caused by the troposphere above the monitoring center;
将所述伪机载用户的所有可见卫星组合的地面监测保护级依次与机载用户预设的告警限值进行比较,若所述可见卫星组合的地面监测保护级小于所述告警限值,则将包含卫星数目最多的可见卫星组合和该可见卫星组合中每颗可见卫星的伪距校正值发送给所述机载用户。 Comparing the ground monitoring protection level of all visible satellite combinations of the pseudo-airborne user with the preset alarm limit value of the airborne user in turn, if the ground monitoring protection level of the visible satellite combination is less than the warning limit value, then The visible satellite combination containing the largest number of satellites and the pseudorange correction value of each visible satellite in the visible satellite combination are sent to the airborne user. the
本发明实施例提供一种局域机场监测装置,包括: An embodiment of the present invention provides a local airport monitoring device, including:
第一计算模块,用于获取每个接收机本身的接收机信息以及接收机从导航卫星接收的卫星数据,利用广域增强系统播发的增强信息、载波相位观测值和对流层误差模型对所述卫星数据中的伪距信息进行校正,得到每个接收机对应的每颗卫星的伪距校正值,所述接收机信息包括接收机对应的可见卫星的卫星仰角值、接收机与其可见卫星之间的真实距离以及每个接收机的可见卫星数目; The first calculation module is used to obtain the receiver information of each receiver itself and the satellite data received by the receiver from the navigation satellite, and use the augmentation information broadcast by the wide area augmentation system, the carrier phase observation value and the tropospheric error model to calculate the The pseudo-range information in the data is corrected to obtain the pseudo-range correction value of each satellite corresponding to each receiver. The receiver information includes the satellite elevation angle value of the visible satellite corresponding to the receiver, the distance between the receiver and the visible satellite True distance and number of visible satellites per receiver;
第二计算模块,与所述第一计算模块连接,用于任选一个接收机为伪机载用户,根据所述伪机载用户的所述接收机信息和机载用户预设的连续性需求值,利用伪距域到定位域的转换矩阵计算得到所述伪机载用户的伪距校正值定位误差,并从所述伪距校正值定位误差中提取出所述伪机载用户的广域增强系统信息播发定位误差; The second calculation module is connected with the first calculation module, and is used to select a receiver as a pseudo-airborne user, according to the receiver information of the pseudo-airborne user and the preset continuity requirements of the airborne user value, using the transformation matrix from the pseudo-range domain to the positioning domain to calculate the pseudo-range correction value positioning error of the pseudo-airborne user, and extract the pseudo-airborne user’s wide area from the pseudo-range correction value positioning error Enhance system information broadcast positioning error;
第三计算模块,与所述第二计算模块连接,用于根据所述伪机载用户的所述接收机信息和系统预设的完好性风险值,利用所述伪距域到定位域的转换矩阵计算得 到所述伪机载用户的监视系统定位误差,并将所述监视系统定位误差和所述广域增强系统信息播发定位误差之和进行理想包络值的计算,得到所述伪机载用户的地面监测保护级,所述监视系统定位误差包括由机载用户的热噪声和机身多径引起的定位误差、由监测中心上空的电离层引起的定位误差和监测中心上空的对流层引起的定位误差; The third calculation module, connected to the second calculation module, is used to convert the pseudo-range domain to the positioning domain according to the receiver information of the pseudo-airborne user and the integrity risk value preset by the system The matrix calculation obtains the monitoring system positioning error of the pseudo-airborne user, and calculates the ideal envelope value of the sum of the monitoring system positioning error and the wide-area augmentation system information broadcast positioning error to obtain the pseudo-aircraft user The ground monitoring protection level of the airborne user, the positioning error of the monitoring system includes the positioning error caused by the thermal noise of the airborne user and the multipath of the fuselage, the positioning error caused by the ionosphere above the monitoring center and the troposphere above the monitoring center The positioning error;
判决模块,与所述第三计算模块连接,用于将所述伪机载用户的所有可见卫星组合的地面监测保护级依次与机载用户预设的告警限值进行比较,若所述可见卫星组合的地面监测保护级小于所述告警限值,则将包含卫星数目最多的可见卫星组合和该可见卫星组合中每颗可见卫星的伪距校正值发送给所述机载用户。 The judgment module is connected with the third calculation module, and is used to compare the ground monitoring protection level of all visible satellites of the false airborne user with the alarm limit preset by the airborne user in turn, if the visible satellite If the ground monitoring protection level of the combination is less than the alarm limit, the visible satellite combination containing the largest number of satellites and the pseudorange correction value of each visible satellite in the visible satellite combination are sent to the airborne user. the
本发明实施例提供一种局域机场监测系统,包括: An embodiment of the present invention provides a local airport monitoring system, including:
多个接收机,用于接收导航卫星发送的卫星数据,对所述卫星数据进行模数转换,并将经转换模数后的卫星数据和其自身的接收机信息发送给监测中心,所述接收机信息包括接收机对应的可见卫星的卫星仰角值、接收机与其可见卫星之间的真实距以及每个接收机的可见卫星数目; A plurality of receivers are used to receive satellite data sent by navigation satellites, perform analog-to-digital conversion on the satellite data, and send the converted satellite data and its own receiver information to the monitoring center. The machine information includes the satellite elevation value of the visible satellite corresponding to the receiver, the real distance between the receiver and the visible satellite, and the number of visible satellites of each receiver;
一监测中心,与所述接收机相连接,用于根据接收到的卫星数据计算得到所述接收机对应的每颗卫星的伪距校正值,以及根据所述接收机信息对机载用户的伪距校正值引起的误差和监视系统引起的误差进行检测,计算得到所述监测中心的地面监测保护级,并通过对所述地面监测保护级与用户预设的告警限值的大小比较结果,获取可用的卫星组合,将所述可用的卫星组合和该卫星组合中每颗可见卫星的伪距校正值发送给机载用户, A monitoring center, connected with the receiver, is used to calculate the pseudo-range correction value of each satellite corresponding to the receiver according to the received satellite data, and calculate the pseudo-range correction value of the airborne user according to the receiver information. The error caused by the distance correction value and the error caused by the monitoring system are detected, and the ground monitoring protection level of the monitoring center is calculated, and by comparing the ground monitoring protection level with the user's preset alarm limit, the An available satellite combination, sending the available satellite combination and the pseudorange correction value of each visible satellite in the satellite combination to the airborne user,
所述监测中心包括:第一计算模块,用于获取每个接收机本身的接收机信息以及接收机从导航卫星接收的卫星数据,利用广域增强系统播发的增强信息、载波相位观测值和对流层误差模型对所述卫星数据中的伪距信息进行校正,得到每个接收机对应的每颗卫星的伪距校正值,所述接收机信息包括接收机对应的可见卫星的卫星仰角值、接收机与其可见卫星之间的真实距离以及每个接收机的可见卫星数目; The monitoring center includes: a first calculation module, which is used to obtain the receiver information of each receiver itself and the satellite data received by the receiver from the navigation satellite, and use the enhanced information broadcast by the wide area augmentation system, the carrier phase observation value and the tropospheric The error model corrects the pseudorange information in the satellite data to obtain the pseudorange correction value of each satellite corresponding to each receiver, and the receiver information includes the satellite elevation angle value of the visible satellite corresponding to the receiver, the receiver The true distance between its visible satellites and the number of visible satellites per receiver;
第二计算模块,与所述第一计算模块连接,用于任选一个接收机为伪机载用户,根据所述伪机载用户的所述接收机信息和机载用户预设的连续性需求值,利用伪距域到定位域的转换矩阵计算得到所述伪机载用户的伪距校正值定位误差,并从所述 伪距校正值定位误差中提取出所述伪机载用户的广域增强系统信息播发定位误差; The second calculation module is connected with the first calculation module, and is used to select a receiver as a pseudo-airborne user, according to the receiver information of the pseudo-airborne user and the preset continuity requirements of the airborne user value, using the conversion matrix from the pseudo-range domain to the positioning domain to calculate the pseudo-range correction value positioning error of the pseudo-airborne user, and extract the pseudo-airborne user’s wide area from the pseudo-range correction value positioning error Enhance system information broadcast positioning error;
第三计算模决,与所述第二计算模块连接,用于根据所述伪机载用户的所述接收机信息和系统预设的完好性风险值,利用所述伪距域到定位域的转换矩阵计算得到所述伪机载用户的监视系统定位误差,并将所述监视系统定位误差和所述广域增强系统信息播发定位误差之和进行理想包络值的计算,得到所述伪机载用户的地面监测保护级,所述监视系统定位误差包括由机载用户的热噪声和机身多径引起的定位误差、由监测中心上空的电离层引起的定位误差和监测中心上空的对流层引起的定位误差; The third calculation module is connected with the second calculation module, and is used to utilize the relationship between the pseudo-range domain and the positioning domain according to the receiver information of the pseudo-airborne user and the integrity risk value preset by the system The conversion matrix is calculated to obtain the monitoring system positioning error of the pseudo-airborne user, and the sum of the monitoring system positioning error and the wide-area augmentation system information broadcast positioning error is calculated for an ideal envelope value, and the pseudo-aircraft user is obtained The ground monitoring protection level of the airborne user, the positioning error of the monitoring system includes the positioning error caused by the thermal noise of the airborne user and the multipath of the fuselage, the positioning error caused by the ionosphere above the monitoring center and the troposphere above the monitoring center The positioning error;
判决模块,与所述第三计算模块连接,用于将所述伪机载用户的所有可见卫星组合的地面监测保护级依次与机载用户预设的告警限值进行比较,若所述可见卫星组合的地面监测保护级小于所述告警限值,则将包含卫星数目最多的可见卫星组合和该可见卫星组合中每颗可见卫星的伪距校正值发送给所述机载用户; The judgment module is connected with the third calculation module, and is used to compare the ground monitoring protection level of all visible satellites of the false airborne user with the alarm limit preset by the airborne user in turn, if the visible satellite If the combined ground monitoring protection level is less than the alarm limit, the visible satellite combination with the largest number of satellites and the pseudorange correction value of each visible satellite in the visible satellite combination will be sent to the airborne user;
一机载用户,与所述监测中心相连接,用于根据所述监测中心发送的可见卫星组合和可见卫星组合的伪距校正值计算所述机载用户的位置。 An airborne user, connected to the monitoring center, is used to calculate the position of the airborne user according to the visible satellite combination and the pseudorange correction value of the visible satellite combination sent by the monitoring center. the
本发明实施例的局域机场监测方法、装置及系统,通过在地面的监测端对机载用户进行伪距校正值引起的误差和监视系统引起的误差的检测,并据此定义得到地面监测保护级的概念,将机载用户自身的保护级计算转换到地面的监测中心对地面监测保护级的计算中,从而通过对地面检测中心的保护级的检测完成了对机载用户最佳可见卫星组合的选取,与现有系统中机载用户自己进行卫星子集选择的方法相比,在保证系统精度的同时,还提高了系统的健壮性,减小了机载用户的计算负担,提高了实时性。 The local airport monitoring method, device and system of the embodiments of the present invention detect the error caused by the pseudo-range correction value and the error caused by the monitoring system for the airborne user at the monitoring terminal on the ground, and obtain the ground monitoring and protection based on the definition Based on the concept of the protection level, the calculation of the protection level of the airborne user itself is transferred to the calculation of the ground monitoring protection level by the ground monitoring center, so that the best visible satellite combination for the airborne user is completed through the detection of the protection level of the ground detection center. Compared with the method in which airborne users select satellite subsets by themselves in the existing system, while ensuring the accuracy of the system, it also improves the robustness of the system, reduces the calculation burden of airborne users, and improves the real-time sex. the
附图说明Description of drawings
图1为本发明局域机场监测方法实施例一的流程图; Fig. 1 is the flow chart of embodiment one of local area airport monitoring method of the present invention;
图2为本发明局域机场监测方法实施例二的流程图; Fig. 2 is the flow chart of embodiment two of local area airport monitoring method of the present invention;
图3为本发明局域机场监测装置实施例的结构示意图; Fig. 3 is the structural representation of the embodiment of local area airport monitoring device of the present invention;
图4为本发明局域机场监测系统实施例的结构示意图。 Fig. 4 is a schematic structural diagram of an embodiment of the local airport monitoring system of the present invention. the
具体实施方式Detailed ways
下面结合附图和具体实施例进一步说明本发明实施例的技术方案。 The technical solutions of the embodiments of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments. the
随着卫星导航事业的蓬勃发展,世界各国都在建设自己的卫星导航系统,如美国的GPS系统,俄罗斯的GLONASS系统,以及正在建设中的欧洲的伽利略(Galileo)系统。然而,由于电离层,对流层,多径效应和热噪声的影响,以及卫星导航系统自身的问题,如星历误差,星钟误差等,使得卫星导航在很多应用方面都不能满足系统所要求的性能指标。例如,在民航飞机精密进近系统应用中,不仅对卫星导航精度提出了很高的要求,同时对其完好性,连续性和可用性的要求也很苛刻。 With the vigorous development of satellite navigation, countries all over the world are building their own satellite navigation systems, such as the GPS system in the United States, the GLONASS system in Russia, and the Galileo system in Europe that is under construction. However, due to the impact of ionosphere, troposphere, multipath effect and thermal noise, as well as the satellite navigation system's own problems, such as ephemeris error, satellite clock error, etc., satellite navigation cannot meet the performance required by the system in many applications. index. For example, in the application of the precision approach system of civil aviation aircraft, not only high requirements are placed on the accuracy of satellite navigation, but also strict requirements on its integrity, continuity and availability. the
为了解决以上问题,导航领域的研究者发明了很多辅助系统来增强卫星导航系统。目前,典型的卫星导航增强有美国的WAAS和LAAS,欧盟的EGNOS,日本的星基增强系统(Multi-Functional Satellite Augmentation System;以下简称MSAS)等。但是,由于民航飞机精密进近系统应用中,其完好性还是不能达到民航精密进近的性能需求,基于此,相关研究者提出了LAM系统。然而,现有技术的LAM系统缺乏数据校验,健壮性较差,同时,大部分完好性算法都需要机载用户自身完成,加重了用户负担,降低了实时性。 In order to solve the above problems, researchers in the field of navigation have invented many auxiliary systems to enhance satellite navigation systems. At present, typical satellite navigation enhancements include WAAS and LAAS in the United States, EGNOS in the European Union, and Multi-Functional Satellite Augmentation System (MSAS) in Japan. However, due to the integrity of the civil aviation aircraft precision approach system application, its integrity still cannot meet the performance requirements of civil aviation precision approach. Based on this, relevant researchers proposed the LAM system. However, the LAM system in the prior art lacks data verification and has poor robustness. At the same time, most of the integrity algorithms need to be completed by the airborne user itself, which increases the burden on the user and reduces the real-time performance. the
因此,在LAM系统的基础上,本发明实施例提出了一种局域机场监测方法、装置及系统,该局域机场监测方法都在地面监测中心实现,其通过在地面的监测中心针对接收机、监测中心以及机载用户本身引起的对机载用户卫星定位误差进行检测与估计,并在地面监测中心计算得到地面监测保护级,将机载用户的保护级计算转换到对地面监测保护级的计算中,从而减小了机载用户的计算负担,提高了实时性。 Therefore, on the basis of the LAM system, the embodiment of the present invention proposes a local area airport monitoring method, device and system. Detect and estimate the satellite positioning error of the airborne user caused by the monitoring center and the airborne user itself, and calculate the ground monitoring protection level at the ground monitoring center, and convert the calculation of the protection level of the airborne user to the ground monitoring protection level. In the calculation, the calculation burden of the airborne user is reduced, and the real-time performance is improved. the
图1为本发明局域机场监测方法实施例一的流程图,如图1所示,本实施局域机场监测方法包括: Fig. 1 is the flow chart of embodiment one of local area airport monitoring method of the present invention, as shown in Fig. 1, this implementation local area airport monitoring method comprises:
步骤100,获取每个接收机本身的接收机信息以及接收机从导航卫星接收的卫星数据,利用广域增强系统播发的增强信息、载波相位观测值和对流层误差模型对所述卫星数据中的伪距信息进行校正,得到每个接收机对应的每颗卫星的伪距校正值;
本实施例的局域机场监测方法是针对基于多接收机的局域机场监测系统中的监测中心而言的,由于在本实施例中,每个接收机接收到来自各自可见卫星的卫星数据后,并不对其进行计算,而是只对其进行模数转换,并直接将经过模数转换后的卫星数据伴随接收机信息一起发送给监测中心,因此,对于接收机的伪距校正值的计算是在监测中心中完成的。其中,监测中心接收到的卫星数据包括静止轨道卫星 (Geo-stationary Orbit;以下简称GEO)播发的WAAS信息和GPS卫星播发的导航信息,而接收机发送的接收机信息则包括接收机i对应的可见卫星j的卫星仰角值 接收机i与其可见卫星j之间的真实距离 以及每个接收机的可见卫星数目N等,监测中心根据接收到的卫星数据计算得到每个接收机对应每颗卫星的伪距校正值。 The local area airport monitoring method of this embodiment is aimed at the monitoring center in the local area airport monitoring system based on multi-receivers, because in this embodiment, after each receiver receives satellite data from their respective visible satellites , does not calculate it, but only performs analog-to-digital conversion on it, and directly sends the satellite data after analog-to-digital conversion to the monitoring center together with the receiver information. Therefore, for the calculation of the pseudo-range correction value of the receiver It is done in the monitoring center. Among them, the satellite data received by the monitoring center includes the WAAS information broadcast by the geostationary orbit satellite (Geo-stationary Orbit; hereinafter referred to as GEO) and the navigation information broadcast by the GPS satellite, while the receiver information sent by the receiver includes the receiver i corresponding Satellite elevation angle value of visible satellite j The true distance between receiver i and its visible satellite j And the number N of visible satellites of each receiver, etc., the monitoring center calculates the pseudo-range correction value corresponding to each satellite of each receiver according to the received satellite data.
需要指明的是,由于位于地面的各个接收机之间的距离很近,而卫星与地球之间的距离却相比之下远得多,因此,两者相比,各个接收机之间的距离完全可以忽略不计。于是,在本发明实施例中,可近似认为各接收机的可见卫星数目是相同的,而且由于各个接收机之间的距离很近,因此也可近似地认为各接收机对于每颗可见卫星的卫星仰角 都相等,都为θj。 It should be pointed out that, since the distance between the receivers on the ground is very short, while the distance between the satellite and the earth is much farther in comparison, the distance between the receivers completely negligible. Therefore, in the embodiment of the present invention, it can be approximately considered that the number of visible satellites of each receiver is the same, and because the distance between each receiver is very short, it can also be approximately considered that the number of visible satellites of each receiver is satellite elevation angle are all equal, and both are θ j .
具体地,接收机的伪距校正值包括三个部分:经Hatch滤波平滑之后的伪距校正值、广域增强系统伪距校正值和对流层伪距校正值。其中,经Hatch滤波平滑之后的伪距校正值是指监测中心从接收到的卫星数据中提取定位卫星的伪距观测值和载波相位观测值,然后利用Hatch滤波的方法,用载波相位观测值对伪距观测值进行平滑,得到的平滑后的伪距校正值;广域增强系统伪距校正值为从GEO卫星播发的WAAS广播信息中得到伪距校正值,包括快速校正值、长期校正值和电离层校正值;而对流层伪距校正值是针对对流层误差进行的校正值,具体是指通过采用对流层误差模型计算得到的伪距校正值,此处的对流层误差模型为萨期塔莫宁模型。 Specifically, the pseudorange correction value of the receiver includes three parts: the pseudorange correction value smoothed by the Hatch filter, the wide area augmentation system pseudorange correction value and the tropospheric pseudorange correction value. Among them, the pseudo-range correction value smoothed by Hatch filter refers to that the monitoring center extracts the pseudo-range observation value and carrier phase observation value of the positioning satellite from the received satellite data, and then uses the method of Hatch filter to use the carrier phase observation value to correct The pseudo-range observation value is smoothed to obtain the smoothed pseudo-range correction value; the wide-area augmentation system pseudo-range correction value is obtained from the WAAS broadcast information broadcast by the GEO satellite, including the fast correction value, long-term correction value and The ionospheric correction value; the tropospheric pseudorange correction value is the correction value for the tropospheric error, specifically refers to the pseudorange correction value calculated by using the tropospheric error model, and the tropospheric error model here is the Saqitamonen model. the
步骤101,任选一个接收积为伪机载用户,计算所述伪机载用户的伪距校正值定位误差,并从所述伪距校正值定位误差中提取出所述伪机载用户的广域增强系统信息播发定位误差;
在本实施例中,假设地面共有M个接收机,从M个接收机中任意选取一个接收机,将其假定为“伪机载用户”,顾名思义,该“伪机载用户”为地面的监测站中假定的一个机载用户。由于在民航系统中,地面的接收机与实际机载用户之间的距离和它们相对卫星的距离相比,几乎可以忽略不计,因此,可以近似认为两点之间的误差具有共同性的特点,于是针对实际机载用户的保护级的运算则可以在对从接收机中任意选取的“伪机载用户”的保护级运算中得以体现。而在对该伪机载用户的地面监测保护级的计算过程中,不仅考虑了伪距校正值引起的误差,还考虑了监测中心对于实 际机载用户的电离层、对流层引起的误差,能最大化的拉近地面监测保护级与实际机载用户保护级的差距,使得监测得结果更加准确。 In this embodiment, it is assumed that there are M receivers on the ground, and one receiver is randomly selected from the M receivers, and it is assumed to be a "pseudo-airborne user". As the name implies, this "pseudo-airborne user" is a ground monitoring One airborne user assumed in the station. Since in the civil aviation system, the distance between the ground receiver and the actual airborne user is almost negligible compared with their distance to the satellite, therefore, it can be approximately considered that the error between the two points has the characteristics of commonality, Therefore, the calculation of the protection level for the actual airborne user can be reflected in the protection level calculation for the "pseudo airborne user" randomly selected from the receiver. In the process of calculating the ground monitoring protection level of the pseudo-airborne user, not only the error caused by the pseudo-range correction value, but also the error caused by the ionosphere and troposphere of the actual airborne user by the monitoring center, can be considered. Maximize the gap between the ground monitoring protection level and the actual airborne user protection level, making the monitoring results more accurate. the
在该步骤中,主要对伪机载用户的伪距校正值引起的误差进行计算与估计。对于选取出的伪机载用户的伪距校正值的误差,若忽略真实位置的测量误差,则该误差主要来自于两个部分:一是接收机的监视误差,主要由地面的热噪声和多径造成,称之为接收机监视误差;另一个是WAAS播发的信息所带来的误差,称之为广域增强系统信息播发误差,即WAAS信息播发误差。因此监测中心将首先根据这两部分误差的标准差σmon和σMWAAS,利用方差传递原理,计算得到伪距校正值误差的标准差σdPR,然后根据机载用户预先设定的连续性需求值,通过高斯分布的统计算法计算得到连续性误差放大因子Kmt,该连续性误差放大因子充分考虑了由于对系统的误检引起的对系统连续性的影响,最后根据计算得到伪距校正值误差标准差σdPR和连续性误差放大因子Kmt,利用所述伪距域到定位域的转换矩阵计算得到伪机载用户的伪距校正值定位误差。从该伪距校正值定位误差中提取得到的伪机载用户的WAAS信息播发定位误差则为伪机载用户的地面监测保护级的一部分。 In this step, the error caused by the pseudo-range correction value of the pseudo-airborne user is mainly calculated and estimated. For the error of the pseudo-range correction value of the selected pseudo-airborne user, if the measurement error of the real position is ignored, the error mainly comes from two parts: one is the monitoring error of the receiver, which is mainly caused by the ground thermal noise and multiple The other is the error caused by the information broadcast by WAAS, which is called the wide area augmentation system information broadcast error, that is, the WAAS information broadcast error. Therefore, the monitoring center will first calculate the standard deviation σ dPR of the error of the pseudorange correction value based on the standard deviation σ mon and σ MWAAS of these two parts of the error, and then use the principle of variance transfer , the continuity error amplification factor K mt is calculated by the statistical algorithm of Gaussian distribution. The continuity error amplification factor fully considers the influence on the continuity of the system caused by the false detection of the system, and finally the error of the pseudorange correction value is obtained according to the calculation The standard deviation σ dPR and the continuity error amplification factor K mt are used to calculate the pseudo-range correction value positioning error of the pseudo-airborne user by using the conversion matrix from the pseudo-range domain to the positioning domain. The WAAS information broadcast positioning error of the pseudo-airborne user extracted from the positioning error of the pseudo-range correction value is a part of the ground monitoring protection level of the pseudo-airborne user.
步骤102,根据伪距域到定位域的转换矩阵,计算得到所述伪机载用户的监视系统定位误差,并将所述监视系统定位误差和所述广域增强系统信息播发定位误差之和进行理想包络值的计算,得到所述伪机载用户的地面监测保护级; Step 102: According to the transformation matrix from the pseudo-range domain to the positioning domain, calculate the monitoring system positioning error of the pseudo-airborne user, and calculate the sum of the monitoring system positioning error and the wide-area augmentation system information broadcast positioning error The calculation of the ideal envelope value obtains the ground monitoring protection level of the pseudo-airborne user;
由于在本实施例中,对地面监测保护级的计算的核心思想为:将实际的机载用户的保护级计算转换到对地面监测中心的保护级的计算中,即转换到对伪机载用户的保护级的计算中,因此,在该保护级的值的计算过程中,不得不考虑到各方面的误差对该地面监测保护级的影响,具体地,包括以下四个部分:WAAS播发的信息引起的误差,机载接收机的热噪声及机身多径引起的误差,来自地面的监测中心上空的侧向分量引起的电离层误差,以及来自地面监测站的垂直分量引起的对流层误差。其中,WAAS播发的信息引起的误差,即WAAS信息播发误差可以由步骤101计算得到的伪距校正值定位误差与接收机监视定位误差通过相减计算得到,因此在本步骤中,主要是计算得到其他三部分的定位误差,在本发明实施例中,由于这三部分误差都是由监视系统的各个因素引起的,如机载用户本身的因素或是监测中心的因素, 因此统称这三部分的定位误差为监视系统定位误差。
Because in this embodiment, the core idea of the calculation of the protection level of ground monitoring is: the calculation of the protection level of the actual airborne user is converted to the calculation of the protection level of the ground monitoring center, that is, converted to the calculation of the protection level of the pseudo-airborne user Therefore, in the calculation of the value of the protection level, the impact of various errors on the ground monitoring protection level has to be taken into account, specifically, the following four parts are included: Information broadcast by WAAS Errors caused by airborne receiver thermal noise and airframe multipath, ionospheric errors from the lateral component over the monitoring center on the ground, and tropospheric errors from the vertical component from ground monitoring stations. Among them, the error caused by the information broadcast by WAAS, that is, the broadcast error of WAAS information can be obtained by subtracting the pseudorange correction value positioning error calculated in
对于该监视系统定位误差值的计算,首先,监测中心将根据接收机信息计算得到监视系统误差中每部分误差的伪距域标准差,再利用伪距域到定位域的转换矩阵,将之分别转换成垂直方向的定位域标准差,并利用方差传递原理,计算得到监测系统误差的定位标准差;然后,监测中心将根据系统预设的完好性风险值,通过高斯分布的统计算法计算得到完好性误差放大因子Kbnd,与现有的系统预设的完好性风险值相比,本实施例中,该完好性误差放大因子还考虑了WAAS故障对整个LAM系统的影响;最后,监测中心根据计算得到监测系统误差的定位标准差和完好性性误差放大因子Kbnd,利用伪距域到定位域的转换矩阵计算得到伪机载用户的监视系统定位误差,该监视系统定位误差为机载用户的地面监测保护级的另一部分。 For the calculation of the positioning error value of the monitoring system, firstly, the monitoring center will calculate the pseudorange domain standard deviation of each error in the monitoring system error according to the receiver information, and then use the conversion matrix from the pseudorange domain to the positioning domain to convert them respectively Convert it into the standard deviation of the positioning domain in the vertical direction, and use the principle of variance transfer to calculate the positioning standard deviation of the monitoring system error; then, the monitoring center will calculate the integrity risk value through the Gaussian distribution statistical algorithm according to the system’s preset integrity risk value. The performance error amplification factor K bnd , compared with the integrity risk value preset by the existing system, in this embodiment, the integrity error amplification factor also considers the impact of the WAAS failure on the entire LAM system; finally, the monitoring center according to Calculate the positioning standard deviation of the monitoring system error and the integrity error amplification factor K bnd , and use the transformation matrix from the pseudo-range domain to the positioning domain to calculate the positioning error of the monitoring system for the pseudo-airborne user. The positioning error of the monitoring system is the airborne user Another part of the ground monitoring protection level.
在本实施例中,监测中心通过计算分别得到WAAS信息播发定位误差和监视系统定位误差后,最户计算得到的两者之和则为伪机载用户的实际的总定位误差,而在该基础上,将该实际的总定位误差进行进一步的理想包络值的计算,将最后得到伪机载用户的地面监测保护级,通过对该地面监测保护级的检测则可以在地面监测中心中判断得到最佳的可用卫星组合。 In this embodiment, after the monitoring center obtains the WAAS information broadcast positioning error and the monitoring system positioning error respectively through calculation, the sum of the two calculated by the user is the actual total positioning error of the pseudo-airborne user, and on this basis Above, the actual total positioning error is further calculated by the ideal envelope value, and finally the ground monitoring protection level of the pseudo-airborne user is obtained. Through the detection of the ground monitoring protection level, it can be judged in the ground monitoring center. Best combination of satellites available. the
步骤103,将所述伪机载用户的所有可见卫星组合的地面监测保护级与机载用户预设的告警限值进行比较,根据比较结果获取最佳可用卫星组合,并将该最佳可用卫星组合和该可用卫星组合中每颗可见卫星的伪距校正值发送给机载用户。
具体地,监测中心通过轮循去除方法将伪机载用户的所有可见卫星划分为多个卫星子集,首先将伪机载用户的所有可见卫星组成一个集合,称之为第一级卫星子集,判断该第一级卫星子集中的可见卫星数目是否等于4,若等于4,则停止对子集的划分,否则,按照预设顺序分别从所述集合中去除一颗卫星,生成第二级卫星子集,此处所指的预设顺序可以为按照卫星的仰角升序排列后的卫星的数据,分别去除的含义为每次只去除其中一颗卫星,而不是依次去除,即假设所有的可见卫星数目为N,当去除第一颗卫星时,卫星组合中剩余N-1颗,当去除第二颗卫星时,将去除的第一颗卫星再添加 到卫星组合中,卫星组合中仍然剩余N-1颗,此时再判断第二级卫星子集中的可见卫星数目是否等于4,若第二级卫星子集中所包含的可见卫星数目等于4时,则同样停止对子集的划分,若第二级卫星子集中所包含的可见卫星数目大于4时,则依照此方法继续划分卫星子集,生成新的第N级卫星子集,直至第N级卫星子集中的可见卫星的数目等于4为止。假设通过该轮循去除方法划分得到的最后的卫星子集数目为B,B可以由公式:
划分完可见卫星的子集之后,监测中心将计算伪机载用户的所有卫星子集的地面监测保护级,并将所述卫星子集的地面监测保护级依次与用户预设的告警限值进行比较,若有子集的地面监测保护级小于所述告警限值,则将包含卫星数目最多的可见卫星的子集和该子集中每颗可见卫星的伪距校正值发送给机载用户,该包含卫星数目最多的可见卫星的子集则为最佳的可见卫星组合。 After dividing the subsets of visible satellites, the monitoring center will calculate the ground monitoring protection levels of all satellite subsets of pseudo-airborne users, and compare the ground monitoring protection levels of the satellite subsets with the user-preset alarm limit in turn. Comparison, if the ground monitoring protection level of a subset is less than the alarm limit value, then the subset containing the visible satellites with the largest number of satellites and the pseudorange correction value of each visible satellite in the subset are sent to the airborne user, the The subset containing the visible satellites with the largest number of satellites is the best combination of visible satellites. the
本实施例提供了一种局域机场监测方法,通过在地面的监测端对机载用户进行伪距校正值引起的误差和监视系统引起的误差的检测,并据此定义得到地面监测保护级的概念,将机载用户自身的保护级计算转换到地面的监测中心对地面监测保护级的计算中,从而通过对地面检测中心的保护级的检测完成了对机载用户最佳可见卫星组合的选取,与现有系统中机载用户自己进行卫星子集选择的方法相比,在保证系统精度的同时,还提高了系统的健壮性,减小了机载用户的计算负担,提高了实时性。 This embodiment provides a local airport monitoring method, by detecting the error caused by the pseudo-range correction value and the error caused by the monitoring system for the airborne user at the monitoring end on the ground, and defining the protection level of the ground monitoring accordingly. concept, the calculation of the protection level of the airborne user itself is transferred to the calculation of the ground monitoring protection level by the ground monitoring center, so that the selection of the best visible satellite combination for the airborne user is completed through the detection of the protection level of the ground detection center , compared with the method in which the airborne user selects satellite subsets by himself in the existing system, while ensuring the system accuracy, it also improves the robustness of the system, reduces the calculation burden of the airborne user, and improves the real-time performance. the
图2为本发明局域机场监测方法实施例二的流程图,如图2所示,本实施局域机场监测方法包括: Fig. 2 is the flow chart of embodiment two of local area airport monitoring method of the present invention, as shown in Fig. 2, this implementation local area airport monitoring method comprises:
步骤200,获取每个接收机本身的接收机信息以及接收机从导航卫星接收的卫星数据,根据所述卫星数据计算得到每个接收机对应的每颗可见卫星的伪距校正值PRi j;
该步骤200与实施例一中的步骤100操作一样,接收每个接收机发送的卫星数据,得到接收机的伪距校正值。具体地,对于第i个接收机的第j颗可见卫星,其伪距校正值可由下述表达式表示:
The operation of
其中,PSi j为经Hatch滤波平滑之后的伪距校正值,PRCi j为从WAAS广播信息中得到的伪距校正值,TCi j为对流层伪距校正值。具体地,监测中心首先从接收到的卫星数据中提取定位卫星的伪距观测值P和载波相位观测值φ,然后利用Hatch滤波的方法,用载波相位观测值φ对伪距观测值P进行平滑,得到经Hatch滤波平滑后的伪距校正值,Hatch滤波计算公式如公式(2)所示: Among them, P Si j is the pseudorange correction value smoothed by Hatch filter, PRC i j is the pseudorange correction value obtained from WAAS broadcast information, and TC i j is the tropospheric pseudorange correction value. Specifically, the monitoring center first extracts the pseudo-range observation value P and carrier phase observation value φ of the positioning satellite from the received satellite data, and then uses the Hatch filter method to smooth the pseudo-range observation value P with the carrier phase observation value φ , to obtain the pseudorange correction value smoothed by the Hatch filter, the calculation formula of the Hatch filter is shown in formula (2):
式中,l表示历元,τs为滤波时间常数,TS为测量间隔,Ns为滤波长度:
伪距观测值P经Hatch滤波平滑后,将达到去除噪声的目的,此时,再对从WAAS广播信息中得到的伪距值进行校正,得到WAAS伪距校正值PRCi j,该WAAS伪距校正值也包括三个部分:WAAS快速校正值FCi j、WAAS长期校正值LTCi j和WAAS电离层校正值ICi j,其中的每个部分的值都可以根据WAAS电文类型中给出的具体信息计算得到。PRCi j的计算表达式如下: After the pseudo-range observation value P is smoothed by Hatch filtering, the purpose of removing noise will be achieved. At this time, the pseudo-range value obtained from the WAAS broadcast information is corrected to obtain the WAAS pseudo-range correction value PRC i j , the WAAS pseudo-range The correction value also includes three parts: WAAS fast correction value FC i j , WAAS long-term correction value LTC i j and WAAS ionospheric correction value IC i j , the value of each part can be given according to the WAAS message type The specific information is calculated. The calculation expression of PRC i j is as follows:
最后计算对流层伪距校正值TCi j,在本实施例中,监测中心在对卫星数据的校正伪距的过程中,除了利用WAAS播发的信息,利用Hatch滤波对码伪距进行处理外,同时还使用对流层误差模型对对流层误差也进行了校正,具体指采用萨斯塔莫宁模型对伪距信息进行校正,TCi j的计算公式为: Finally, the tropospheric pseudorange correction value TC i j is calculated. In this embodiment, in the process of correcting the pseudorange of the satellite data, the monitoring center not only uses the information broadcast by WAAS, but also uses the Hatch filter to process the code pseudorange, and at the same time The tropospheric error is also corrected using the tropospheric error model, specifically referring to the correction of the pseudorange information using the Sastamonen model. The calculation formula of TC i j is:
其中,Nr为对流层折射系数,h0为对流层高度,可以从卫星数据中包括的导航信息中提取得到,θi j为卫星仰角,为接收机发送的接收机信息中包含 的数据,Δh为飞机(即机载用户)距离地面的监测中心的高度,其可以根据实际的测量得到。 Among them, N r is the tropospheric refraction coefficient, h0 is the tropospheric height, which can be extracted from the navigation information included in the satellite data, θi j is the satellite elevation angle, which is the data contained in the receiver information sent by the receiver, and Δh is The height of the aircraft (that is, the airborne user) from the monitoring center on the ground can be obtained according to actual measurement.
步骤201,对所述伪距校正值PRi j进行接收机与卫星距离误差的校正,得到新的伪距校正值dPRi j;
由于各个接收机的位置是已知的,因此,其各接收机与卫星之间的真实距离Ri i可以在接收机中通过计算得到,接收机将其发送给监测中心,监测中心根据该真实距离Ri i与步骤200中计算得到的接收机的伪距校正值PRi j可以进一步对接收机的伪距校正值进行接收机与卫星距离误差的校正,得到新的伪距校正值dPRi j,dPRi j的计算公式为:
Since the position of each receiver is known, the real distance R i i between each receiver and the satellite can be obtained by calculation in the receiver, and the receiver sends it to the monitoring center, and the monitoring center uses the real The distance R i i and the pseudo-range correction value PR i j of the receiver calculated in
步骤202,任选一个接收机为伪机载用户,计算伪机载用户的伪距校正值定位误差,具体的计算过程包括:
步骤2021,任选一个接收机为伪机载用户,计算该伪机载用户的伪距校正值误差标准差σdPR;
在本实施例中,伪机载用户的伪距校正值的误差主要来自两部分:接收机的监视误差和WAAS播发的信息所带来的误差,分别称为接收机监视误差和WAAS信息播发误差,且假定该两部分的误差都服从均值为0的高斯分布,因此,首先需计算该两部分误差的标准差。 In this embodiment, the error of the pseudo-range correction value of the pseudo-airborne user mainly comes from two parts: the error caused by the monitoring error of the receiver and the information broadcast by WAAS, which are respectively called the receiver monitoring error and the WAAS information broadcast error , and it is assumed that the errors of the two parts are subject to a Gaussian distribution with a mean value of 0. Therefore, the standard deviation of the two parts of the errors needs to be calculated first. the
对于接收机的监视误差标准差σmon,可以由下述公式计算得到: For the receiver monitoring error standard deviation σ mon , it can be calculated by the following formula:
其中,a0、a1、θ0由接收机的性能等级决定,具体可以参考航空无线电技术委员会的标准RTCA DO-245A,θj为卫星仰角值,M为接收机的数目。 Among them, a 0 , a 1 , and θ 0 are determined by the performance level of the receiver. For details, please refer to the standard RTCA DO-245A of the Radio Technical Committee for Aviation, θ j is the satellite elevation angle value, and M is the number of receivers.
对于WAAS播发信息误差标准差,可以由下述计算公式计算得到: For the standard deviation of WAAS broadcast information error, it can be calculated by the following calculation formula:
其中,OF为电离层倾斜因子,Re为地球半径,hI为电离层高度。 Among them, OF is the ionospheric tilt factor, R e is the radius of the earth, and h I is the ionospheric height.
而伪距校正值误差标准差σdPR则可以根据方差传递原理得到: The error standard deviation σdPR of the pseudorange correction value can be obtained according to the principle of variance transfer:
步骤2022,根据机载用户预先设定的连续性需求值计算连续性误差放大因子Kmt;
为了保证系统的连续性,伪距校正值误差中的连续性误差放大因子与系统的连续性有关。而由于引起系统的连续性丢失一般包括两个方面:或者因为真正的系统故障,如卫星故障或地面站故障;或者因为对故障的误检,因此,简单的处理下,可以对上述两种原因按照用户预设的连续性需求的一半分配,假定用户预设的连续性需求为Pr(连续性): In order to ensure the continuity of the system, the continuity error amplification factor in the error of the pseudorange correction value is related to the continuity of the system. The loss of continuity of the system generally includes two aspects: either because of real system failures, such as satellite failures or ground station failures; or because of false detection of failures. According to the allocation of half of the continuity requirement preset by the user, it is assumed that the continuity requirement preset by the user is P r (continuity):
P误检=Pr(连续)/2 (8) P false detection = Pr (continuous) / 2 (8)
对于M个接收机,任一接收机故障对应的单接收机故障保护级都有可能导致连续性丢失,因此,保守考虑,所有的单接收机故障保护级为独立的,因此无故障误检的概率可按总体连续性需求除以M确定,即 For M receivers, the single-receiver fault protection level corresponding to any receiver failure may cause loss of continuity. Therefore, conservatively considered, all single-receiver fault protection levels are independent, so there is no fault false detection The probability can be determined by dividing the overall continuity requirement by M, i.e.
PFD/M=P误检/M (9) P FD/M = P false detection /M (9)
上述概率是对于一个接收机的,假设这个接收机可见卫星数为N,则对于每颗卫星对应的测量值来说,其误检概率为: The above probability is for a receiver, assuming that the number of satellites visible to this receiver is N, then for the measured value corresponding to each satellite, the false detection probability is:
PFFD=PFFD/M/N (10) P FFD =P FFD/M /N (10)
所以最终得到的连续性误差放大因子为: So the final continuity error amplification factor is:
Kmt=Q-1(PFFD/2) (11) K mt = Q −1 (P FFD /2) (11)
其中,
步骤2023,根据上述伪距校正值误差标准差和连续性误差放大因子,计算得到所述伪距校正值定位误差Ek;
为了获得更高的监测效率,监测中心通常利用定位卫星的伪距域到定位域的转换矩阵S将伪距误差转化为定位误差,该转换矩阵S的具体计算方法如下式所示: In order to obtain higher monitoring efficiency, the monitoring center usually uses the conversion matrix S from the pseudo-range domain of the positioning satellite to the positioning domain to convert the pseudo-range error into a positioning error. The specific calculation method of the conversion matrix S is shown in the following formula:
S=(HTW-1H)-1HTW-1 (12) S=(H T W -1 H) -1 H T W -1 (12)
其中,H表示定位卫星的几何矩阵,由卫星位置和接收机位置决定,W为权值,它是由定位卫星的接收机标准差组成的一个对角矩阵,关于这两个参数的详细计算公式可以参考航空无线电技术委员会的标准RTCA DO-245。 Among them, H represents the geometric matrix of the positioning satellite, which is determined by the position of the satellite and the receiver, and W is the weight, which is a diagonal matrix composed of the standard deviation of the receiver of the positioning satellite. The detailed calculation formulas for these two parameters Reference can be made to the standard RTCA DO-245 of the Radio Technical Commission for Aeronautics. the
而且,转换矩阵S为四行(分别代表x,y,z,t)Nk列,Nk为伪机载用户对应的可见卫星的个数,Sj,vert表示矩阵的第z行。由于在民航应用中,垂直方向的要求比在水平方向的要求苛刻的多,因此,在对误差从伪距域转换到定位域时,在本实施例中,只考虑垂直方向的情况,最后得到的伪距校正值定位误差的门限值可以由下述公式计算得到: Moreover, the transformation matrix S is four rows (representing x, y, z, t) N k columns, N k is the number of visible satellites corresponding to the pseudo airborne user, and S j, vert represents the zth row of the matrix. Since in civil aviation applications, the requirements in the vertical direction are much more stringent than those in the horizontal direction, when converting the error from the pseudo-range domain to the positioning domain, in this embodiment, only the vertical direction is considered, and finally we get The threshold value of the positioning error of the pseudorange correction value can be calculated by the following formula:
通过上述步骤,监测中心便对伪机载用户的接收机端的伪距校正值引起的误差进行了检测与计算,得到了该伪机载用户的伪距校正值定位误差的门限值,即该误差的最大值。 Through the above steps, the monitoring center detects and calculates the error caused by the pseudo-range correction value of the pseudo-airborne user’s receiver, and obtains the threshold value of the pseudo-range correction value positioning error of the pseudo-airborne user, that is, the maximum error. the
步骤2024,从伪距校正值定位误差中提取出伪机载用户的广域增强系统信息播发定位误差EWAAS,k;
由于伪距校正值定位误差是由接收机监视定位误差Emon,k和WAAS信息播发定位误差EWAAS,k两部分组成的,在从伪距校正值定位误差Ek中提取出伪机载用户的广域增强系统信息播发误差EWAAS,k时,需要从伪距校正值定位误差Ek中减去接收机监视定位误差Emon,k。 Since the positioning error of the pseudo-range correction value is composed of two parts: the receiver monitoring positioning error E mon,k and the WAAS information broadcast positioning error E WAAS,k , the pseudo-airborne user is extracted from the pseudo-range correction value positioning error E k When the broadcast error E WAAS,k of the wide-area augmentation system information of , it is necessary to subtract the receiver monitoring positioning error E mon, k from the pseudo-range correction value positioning error E k .
步骤203,计算伪机载用户的监视系统定位误差,具体的计算过程包括:
步骤2031,计算伪机载用户的各监视系统误差标准差;
对于实际的机载用户而言,通常需要考虑的总误差主要包括四个部分:WAAS播发的信息引起的误差,机载接收机的热噪声及机身多径引起的误差,来自地面监测中心的侧向分量引起的电离层误差,以及来自地面监测中心的垂直分量引起的对流层误差。因此在本实施例中,对伪机载用户的地面监测定位误差的计算中,也主要从这四个方面引起的定位误差来考虑。在本实施例中,由于上述所说的民航应用的特殊性,垂直方向的要求比在水平方向 的要求苛刻的多,因此,在此也只考虑垂直方向的情况,由此得到的伪机载用户的总误差表达式为: For actual airborne users, the total error that usually needs to be considered mainly includes four parts: the error caused by the information broadcast by WAAS, the thermal noise of the airborne receiver and the error caused by the multipath of the fuselage, and the error caused by the ground monitoring center. Ionospheric errors due to lateral components, and tropospheric errors due to vertical components from ground monitoring centers. Therefore, in this embodiment, in the calculation of the ground monitoring positioning error of the pseudo-airborne user, the positioning error caused by these four aspects is mainly considered. In this embodiment, due to the particularity of the civil aviation application mentioned above, the requirements in the vertical direction are much more stringent than those in the horizontal direction. Therefore, only the situation in the vertical direction is considered here, and the resulting pseudo-airborne The user's total error expression is:
Etotal,vert,k=EMWAAS,vert,k+Eair,vert,k+Eiono,vert,k+Etrop,vert,k (14) E total, vert, k = E MWAAS, vert, k + E air, vert, k + E iono, vert, k + E trop, vert, k (14)
其中,假定: Among them, it is assumed that:
Eother,vert,k=Eair,vert,k+Eiono,vert,k+Etrop,vert,k (15) E other, vert, k = E air, vert, k + E iono, vert, k + E trop, vert, k (15)
且WAAS播发的信息引起的误差EMWAAS,vert,k可以通过步骤204计算得到,因此得到:
And the error E MWAAS, vert, k caused by the information broadcast by WAAS can be calculated in
Etotal,vert,k=Evert,k-Emon,vert,k+Eother,vert,k (16) E total, vert, k = E vert, k - E mon, vert, k + E other, vert, k (16)
至此,对伪机载用户的总误差的计算变成了上述三个部分的计算,其中,第一部分伪距校正值定位误差Evert,k已经在步骤203中计算得到,而第二部分接收机的监视定为误差Emon,vert,k服从均值为0,标准差为σmon的高斯分布,且该标准差σmon已在式(5)中得到计算,因此,在本步骤中,应首先对Eother,vert,k中的包含的三部分误差的标准差进行计算。
So far, the calculation of the total error of the pseudo-airborne user has become the calculation of the above three parts, wherein the first part of the pseudo-range correction value positioning error E vert,k has been calculated in
具体地,对于机载用户本身的热噪声和机身多径引起的误差的热噪声和机身多径误差标准差σair,vert,j和地面监测站的侧向分量引起的电离层误差的电离层误差标准差σiono,vert,j,其详细的计算公式均可以参考航空无线电技术委员会的标准RTCA DO-245,具体如下: Specifically, for the thermal noise of the airborne user itself and the error caused by the multipath of the airframe and the standard deviation of the airframe multipath error σair ,vert,j and the ionospheric error caused by the lateral component of the ground monitoring station The standard deviation of the ionospheric error σ iono, vert, j , its detailed calculation formula can refer to the standard RTCA DO-245 of the Aeronautical Radio Technical Committee, as follows:
σiono,vert,j=0.106×OF(θj) (18) σ iono,vert,j = 0.106×OF(θ j ) (18)
其中,OF为电离层倾斜因子,θj为卫星仰角值。 Among them, OF is the ionospheric tilt factor, and θ j is the satellite elevation angle value.
而对于地面监测站的垂直分量引起的对流层误差标准差σtropo,vert,j而言,由于相对于σair,vert,j和σiono,vert,j来说,σtropo,vert,j的值很小,所以近似地: For the standard deviation of the tropospheric error σ tropo,vert,j caused by the vertical component of the surface monitoring station, due to the value of σ tropo,vert,j relative to σ air,vert,j and σ iono,vert ,j is small, so approximately:
σtropo,vert,j=0 (19) σ tropo, vert, j = 0 (19)
步骤2032,根据系统预设的完好性风险值计算完好性误差放大因子Kbnd;
由于在计算伪机载用户的监视系统定位误差时,近似地认为该误差为一 理想值,即认为WAAS播发的信息引起的误差EMWAAS,vert,k,机载接收机的热噪声及机身多径引起的误差Eair,vert,k,来自地面监测站的侧向分量引起的电离层误差Eiono,vert,k,以及来自地面监测站的垂直分量引起的对流层误差Etrop,vert,k都是服从高斯分布的假设条件下计算得到的,因此,监视系统定位误差的计算过程中,必须考虑到LAM系统为垂直保护级分配的完好性风险值,该风险值具体通过完好性误差因子Kbnd反映出来,具体地,Kbnd的计算公式为: When calculating the positioning error of the monitoring system of the pseudo-airborne user, the error is approximately considered as an ideal value, that is, the error E MWAAS,vert,k caused by the information broadcast by WAAS, the thermal noise of the airborne receiver and the airframe The error E air,vert,k due to multipath, the ionospheric error E iono,vert,k due to the lateral component from the ground monitoring station, and the tropospheric error E air,vert,k due to the vertical component from the ground monitoring station They are all calculated under the assumption of Gaussian distribution. Therefore, in the calculation process of the monitoring system positioning error, the integrity risk value assigned by the LAM system for the vertical protection level must be taken into account. The risk value is specifically determined by the integrity error factor K bnd is reflected, specifically, the calculation formula of K bnd is:
Kbnd=Q-1(P完好性) (20) K bnd = Q -1 (P integrity ) (20)
其中,
步骤2033,根据上述完好性误差放大因子和各监视系统误差标准差,计算监视系统定位误差;
在本实施例中,为了获得更高的监测效率,监视系统误差标准差都可以由伪距域的标准差通过伪距域到定位域的转换矩阵S转化得到: In this embodiment, in order to obtain higher monitoring efficiency, the standard deviation of the monitoring system error can be obtained by transforming the standard deviation of the pseudo-range domain through the conversion matrix S from the pseudo-range domain to the positioning domain:
定义σother,vert,k为上述三种标准差的总和,通过方差传递原理可以得到: Define σ other, vert, k as the sum of the above three standard deviations, which can be obtained through the principle of variance transfer:
另外,由于在对伪机载用户的总定位误差的计算中,还包括接收机监视定位误差Emon,vert,k,且该接收机监视定位误差Emon,vert,k与监视系统定位误差Eother,vert,k一样都服从均值为0的高斯分布,因此,在理想情况下,可将两者进行包络值的计算,具体地,上述公式(16)可转换为: In addition, since the calculation of the total positioning error of pseudo-airborne users also includes the receiver monitoring positioning error E mon,vert,k , and the receiver monitoring positioning error E mon,vert,k is related to the monitoring system positioning error E other, vert, and k all obey the Gaussian distribution with a mean value of 0. Therefore, in an ideal situation, the envelope value of the two can be calculated. Specifically, the above formula (16) can be converted into:
VPLideal,k=|Evert,k|+Kbndσmon+other,vert,k (23) VPL ideal, k = |E vert, k |+K bnd σ mon+other, vert, k (23)
其中,将伪距校正值定位误差Evert,k取绝对值也是为了取得理想情况下的最大值,并且,根据方差传递原理,σmon+other,vert,k可由以下公式计算得到: Among them, taking the absolute value of the pseudorange correction value positioning error E vert, k is also to obtain the maximum value under ideal conditions, and, according to the principle of variance transfer, σ mon+other, vert, k can be calculated by the following formula:
步骤2034,计算得到伪机载用户的地面监测保护级VPLmon,k;
由于式(23)中的将伪距校正值定位误差Evert,k取绝对值,即为公式(13)得到的伪机载用户的伪距校正值定位误差的门限值TEvert,k,最终可得到伪机载用户的地面监测保护级为: Since the absolute value of the pseudorange correction value positioning error E vert,k in formula (23) is the threshold value TE vert,k of the pseudo-range correction value positioning error of the pseudo-airborne user obtained by formula (13), Finally, the ground monitoring protection level of pseudo-airborne users can be obtained as:
步骤204,将伪机载用户的所有可见卫星组合的地面监测保护级依次与机载用户预设的告警限值进行比较,若可见卫星组合的地面监测保护级小于所述告警限值,则执行步骤205,若所有可见卫星组合的地面监测保护级都大于所述告警限值,则执行206;
具体地,在本步骤中,将首先对伪机载用户的所有可见卫星通过轮循去除方法进行可见卫星子集的划分,再针对各个可见卫星子集进行各子集的地面监测保护级的计算,具体的划分可见卫星子集的过程在实施例一中已详细描述,在此不再赘述。对于伪机载用户的每个可见卫星子集,其地面监测保护级的值可能大于机载用户预设的告警限值,也可能小于该告警限值,当小于用户预设的告警限值时,代表该子集的可见卫星组合对于机载用户而言是可用的,而当其地面监测保护级大于机载用户预设的告警限值时,则代表该子集的可见卫星组合对于机载用户而言是不可用的,则该子集应该得到舍弃。
Specifically, in this step, all visible satellites of pseudo-airborne users will first be divided into visible satellite subsets by round robin removal method, and then the ground monitoring protection level of each subset will be calculated for each visible satellite subset , the specific process of dividing visible satellite subsets has been described in detail in
步骤205,将包含卫星数目最多的可见卫星组合和该可见卫星组合中每颗可见卫星的伪距校正值发送给机载用户;
如果伪机载用户的地面监测保护级的值大于机载用户的告警限值时,代表该子集的可见卫星组合对于机载用户而言是可用的,则应该将该可见卫星 组合发送给机载用户,但是,一般地,对于卫星数越多的组合,其监测保护级越小,对于机载用户而言,监测保护级越小,代表机载用户的误差越小,因此,机载用户应当选择卫星数目最多的可见卫星组合。而在本实施例中,由监测中心来对可见卫星组合进行选择,直接根据地面监测保护级与告警限值的比较结果,将包含卫星数目最多的可见卫星组合和该可见卫星组合中每颗可见卫星的伪距校正值直接发送给机载用户,减小了机载用户的计算负担。 If the value of the ground monitoring protection level of the pseudo-airborne user is greater than the warning limit of the airborne user, the visible satellite combination representing the subset is available to the airborne user, and the visible satellite combination should be sent to the airborne user. However, in general, for a combination with more satellites, the monitoring protection level is smaller. For airborne users, the smaller the monitoring protection level, the smaller the error of the airborne user. Therefore, the airborne user The combination of visible satellites with the largest number of satellites should be selected. In this embodiment, the monitoring center selects the combination of visible satellites, and directly according to the comparison result of the ground monitoring protection level and the warning limit value, the visible satellite combination with the largest number of satellites and each visible satellite combination in the visible satellite combination are selected. The pseudorange correction value of the satellite is directly sent to the airborne user, which reduces the calculation burden of the airborne user. the
步骤206,向所述机载用户发送指示机载用户该卫星导航系统不可用的告警信息。
如果伪机载用户的所有可见卫星组合计算得到的地面监测保护级都大于所述告警限值时,代表机载用户所有的卫星组合都不可用,监测中心则将发送告警信息给机载用户,该告警信息指示机载用户当前卫星导航系统为不可用的状态。 If the ground monitoring protection level calculated by all visible satellite combinations of the pseudo-airborne user is greater than the alarm limit, it means that all satellite combinations of the airborne user are unavailable, and the monitoring center will send a warning message to the airborne user. The warning information indicates that the current satellite navigation system of the airborne user is unavailable. the
本实施例提供一种局域机场监测方法,在基于多接收机的基础上,通过在地面的监测端对机载用户进行伪距校正值引起的误差和监视系统引起的误差的检测,并据此定义得到地面监测保护级的概念,将机载用户自身的保护级计算转换到地面的监测中心对地面监测保护级的计算中,从而通过对地面检测站的保护级的检测完成了对机载用户最佳可见卫星组合的选取,与现有系统中机载用户自己进行卫星子集选择的方法相比,在保证系统精度的同时,还提高了系统的健壮性,减小了机载用户的计算负担,提高了实时性,进一步地,本实施例中对地面监测保护级的计算过程中,还充分考虑了对流层误差对其的影响,以及完好性监测的失误带来的连续性损失和WAAS故障对LAM系统的影响,使得该保护级的计算更为精确。 This embodiment provides a local area airport monitoring method. On the basis of multiple receivers, the error caused by the pseudo-range correction value and the error caused by the monitoring system are detected for the airborne user at the monitoring end on the ground, and the error is detected according to the This definition obtains the concept of ground monitoring protection level, and converts the calculation of the protection level of the airborne user itself into the calculation of the ground monitoring protection level by the ground monitoring center, so that the airborne monitoring is completed by detecting the protection level of the ground detection station. The selection of the user's best visible satellite combination, compared with the method of satellite subset selection by the airborne user in the existing system, not only ensures the accuracy of the system, but also improves the robustness of the system and reduces the burden of the airborne user. The calculation burden improves the real-time performance. Further, in the calculation process of the ground monitoring protection level in this embodiment, the influence of tropospheric errors, as well as the continuity loss and WAAS caused by integrity monitoring errors are also fully considered. The impact of faults on the LAM system makes the calculation of this protection level more accurate. the
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。 Those of ordinary skill in the art can understand that all or part of the steps for realizing the above-mentioned method embodiments can be completed by hardware related to program instructions, and the aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the It includes the steps of the above method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes. the
图3为本发明局域机场监测装置实施例的结构示意图,如图3所示,本 发明局域机场监测装置包括: Fig. 3 is the structural representation of the embodiment of the local area airport monitoring device of the present invention, as shown in Fig. 3, the local area airport monitoring device of the present invention comprises:
第一计算模块11,用于获取每个接收机本身的接收机信息以及接收机从导航卫星接收的卫星数据,利用广域增强系统播发的增强信息、载波相位观测值和对流层误差模型对所述卫星数据中的伪距信息进行校正,得到每个接收机对应的每颗卫星的伪距校正值,所述接收机信息包括接收机对应的可见卫星的卫星仰角值、接收机与其可见卫星之间的真实距离以及每个接收机的可见卫星数目; The first calculation module 11 is used to obtain the receiver information of each receiver itself and the satellite data received by the receiver from the navigation satellite, and use the augmentation information broadcast by the wide area augmentation system, the carrier phase observation value and the tropospheric error model to calculate the The pseudo-range information in the satellite data is corrected to obtain the pseudo-range correction value of each satellite corresponding to each receiver. The receiver information includes the satellite elevation value of the visible satellite corresponding to the receiver, the distance between the receiver and its visible satellite and the number of visible satellites per receiver;
第二计算模块12,与所述第一计算模块11连接,用于任选一个接收机为伪机载用户,根据所述伪机载用户的所述接收机信息和机载用户预设的连续性需求值,利用伪距域到定位域的转换矩阵计算得到所述伪机载用户的伪距校正值定位误差,并从所述伪距校正值定位误差中提取出所述伪机载用户的广域增强系统信息播发定位误差; The second calculation module 12 is connected with the first calculation module 11, and is used to select a receiver as a pseudo-airborne user, and according to the receiver information of the pseudo-airborne user and the serial number preset by the airborne user The pseudo-range correction value positioning error of the pseudo-airborne user is calculated by using the conversion matrix from the pseudo-range domain to the positioning domain, and the pseudo-airborne user’s location error is extracted from the pseudo-range correction value positioning error Wide area enhanced system information broadcast positioning error;
第三计算模块13,与所述第二计算模块12连接,用于根据所述伪机载用户的所述接收机信息和系统预设的完好性风险值,利用所述伪距域到定位域的转换矩阵计算得到所述伪机载用户的监视系统定位误差,并将所述监视系统定位误差和所述广域增强系统信息播发误差之和进行理想包络值的计算,得到所述伪机载用户的地面监测保护级,所述监视系统定位误差包括由机载用户的热噪声和机身多径引起的定位误差、由监测中心上空的电离层引起的定位误差和监测中心上空的对流层引起的定位误差; The third calculation module 13 is connected with the second calculation module 12, and is used for using the pseudo-range domain to the positioning domain according to the receiver information of the pseudo-airborne user and the integrity risk value preset by the system The transformation matrix is calculated to obtain the monitoring system positioning error of the pseudo-airborne user, and the sum of the monitoring system positioning error and the wide-area augmentation system information broadcast error is calculated for the ideal envelope value, and the pseudo-aircraft user is obtained The ground monitoring protection level of the airborne user, the positioning error of the monitoring system includes the positioning error caused by the thermal noise of the airborne user and the multipath of the fuselage, the positioning error caused by the ionosphere above the monitoring center and the troposphere above the monitoring center The positioning error;
判决模块14,与所述第三计算模块13连接,用于将所述伪机载用户的所有可见卫星组合的地面监测保护级依次与机载用户预设的告警限值进行比较,若所述可见卫星组合的地面监测保护级小于所述告警限值,则将包含卫星数目最多的可见卫星组合和该可见卫星组合中每颗可见卫星的伪距校正值发送给所述机载用户。 Judgment module 14, connected with the third calculation module 13, is used to compare the ground monitoring protection level of all visible satellite combinations of the pseudo-airborne user with the alarm limit value preset by the airborne user in turn, if the If the ground monitoring protection level of the visible satellite combination is less than the alarm limit, the visible satellite combination containing the largest number of satellites and the pseudorange correction value of each visible satellite in the visible satellite combination are sent to the airborne user. the
具体地,该局域机场监测装置设置在局域机场监测系统的监测中心端,且其具体的监测过程在上述局域机场监测方法的实施例中已经详细描述,在此不再进行赘述。 Specifically, the local airport monitoring device is set at the monitoring center of the local airport monitoring system, and its specific monitoring process has been described in detail in the above-mentioned embodiments of the local airport monitoring method, and will not be repeated here. the
本发明实施例提供一种局域机场监测装置,通过在地面的监测端对机载 用户进行伪距校正值引起的误差和监视系统引起的误差的检测,并据此定义得到地面监测保护级的概念,将机载用户自身的保护级计算转换到地面的监测中心对地面监测保护级的计算中,从而通过对地面检测站的保护级的检测完成了对机载用户最佳可见卫星组合的选取,与现有系统中机载用户自己进行卫星子集选择的方法相比,在保证系统精度的同时,还提高了系统的健壮性,减小了机载用户的计算负担,提高了实时性。 The embodiment of the present invention provides a local airport monitoring device, which detects the error caused by the pseudo-range correction value and the error caused by the monitoring system for the airborne user at the monitoring end on the ground, and obtains the ground monitoring protection level based on this definition concept, the calculation of the protection level of the airborne user itself is transferred to the calculation of the ground monitoring protection level by the monitoring center on the ground, so that the selection of the best visible satellite combination for the airborne user is completed through the detection of the protection level of the ground detection station , compared with the method in which the airborne user selects satellite subsets by himself in the existing system, while ensuring the system accuracy, it also improves the robustness of the system, reduces the calculation burden of the airborne user, and improves the real-time performance. the
图4为本发明局域机场监测系统实施例的结构示意图,如图4所示,本发明局域机场监测系统包括: Fig. 4 is the structural representation of the embodiment of local area airport monitoring system of the present invention, as shown in Fig. 4, local area airport monitoring system of the present invention comprises:
多个接收机1,用于接收导航卫星发送的卫星数据,对所述卫星数据进行模数转换,并将经数模转换后的卫星数据和其自身的接收机信息发送给监测中心,所述接收机信息包括接收机对应的可见卫星的卫星仰角值、接收机与其可见卫星之间的真实距离以及每个接收机的可见卫星数目;
A plurality of
一监测中心2,与所述接收机1相连接,用于根据接收到的卫星数据计算得到所述接收机对应的每颗卫星的伪距校正值,以及根据所述接收机信息对机载用户的伪距校正值引起的误差和监视系统引起的误差进行检测,计算得到所述监测中心的地面监测保护级,并通过对所述地面监测保护级与用户预设的告警限值的大小比较结果,获取可用的卫星组合,将所述可用的卫星组合和该卫星组合中每颗可见卫星的伪距校正值发送给机载用户;
A
具体地,该监测中心可设置有上述实施例中的局域机场监测装置,且该监测中心的所有对卫星数据的具体计算过程及监测操作都可以由该局域机场监测装置来实现,该局域机场监测装置的具体组成模块及功能在上述实施例中都已经做了详细说明,在此不再阐述。 Specifically, the monitoring center can be equipped with the local airport monitoring device in the above embodiment, and all the specific calculation process and monitoring operations of the satellite data in the monitoring center can be realized by the local airport monitoring device. The specific components and functions of the domain airport monitoring device have been described in detail in the above embodiments, and will not be described here. the
一机载用户3,与所述监测中心2相连接,用于根据所述监测中心发送的可见卫星组合和可见卫星组合的伪距校正值计算所述机载用户的位置。
An
具体地,在进近过程中,近似认为机载用户和地面监测站的可见卫星相同,由于机载用户的位置较高,所以其可见卫星数可能要多于地面监测站的可见卫星数,此时将多余的卫星“舍弃”。机载用户利用地面监测站发来的“最佳”卫星组合的子集和各颗卫星的伪距校正值,进行保护级的计算,并 根据计算结果得到所述机载用户的位置。对于机载用户的保护级计算,其可以根据监测中心提供的可见卫星的伪距校正值进行计算,且将该伪距校正值以零均值的高斯分布表示,由此得到的垂直方向的定位误差保护级由以下公式计算得到: Specifically, during the approach process, it is approximately considered that the visible satellites of the airborne user and the ground monitoring station are the same. Since the position of the airborne user is higher, the number of visible satellites of the airborne user may be more than the number of visible satellites of the ground monitoring station. When the redundant satellites are "abandoned". The airborne user uses the subset of the "best" satellite combination sent by the ground monitoring station and the pseudo-range correction value of each satellite to calculate the protection level, and obtain the position of the airborne user according to the calculation result. For the calculation of the protection level of the airborne user, it can be calculated according to the pseudo-range correction value of the visible satellite provided by the monitoring center, and the pseudo-range correction value is represented by a Gaussian distribution with zero mean value, and the positioning error in the vertical direction thus obtained is The protection level is calculated by the following formula:
其中,Kffmd为无故障漏检因子,取固定值5.847。 Among them, K ffmd is the no-fault missed detection factor, which takes a fixed value of 5.847.
本发明实施例提供一种局域机场监测系统,通过在地面的监测中心对机载用户进行伪距校正值引起的误差和监视系统引起的误差的检测,并据此定义得到地面监测保护级的概念,将机载用户自身的保护级计算转换到地面的监测中心对地面监测保护级的计算中,从而通过对地面检测站的保护级的检测完成了对机载用户最佳可见卫星组合的选取,与现有系统中机载用户自己进行卫星子集选择的方法相比,在保证系统精度的同时,还提高了系统的健壮性,减小了机载用户的计算负担,提高了实时性。 The embodiment of the present invention provides a local airport monitoring system, which detects the error caused by the pseudo-range correction value and the error caused by the monitoring system for the airborne user at the monitoring center on the ground, and obtains the ground monitoring protection level based on this definition concept, the calculation of the protection level of the airborne user itself is transferred to the calculation of the ground monitoring protection level by the monitoring center on the ground, so that the selection of the best visible satellite combination for the airborne user is completed through the detection of the protection level of the ground detection station , compared with the method in which the airborne user selects satellite subsets by himself in the existing system, while ensuring the system accuracy, it also improves the robustness of the system, reduces the calculation burden of the airborne user, and improves the real-time performance. the
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。 Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention. the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100885127A CN101598780B (en) | 2009-07-03 | 2009-07-03 | Local airport monitoring method, device and system therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100885127A CN101598780B (en) | 2009-07-03 | 2009-07-03 | Local airport monitoring method, device and system therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101598780A CN101598780A (en) | 2009-12-09 |
CN101598780B true CN101598780B (en) | 2011-12-28 |
Family
ID=41420284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100885127A Expired - Fee Related CN101598780B (en) | 2009-07-03 | 2009-07-03 | Local airport monitoring method, device and system therefor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101598780B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101839986B (en) * | 2010-05-11 | 2012-10-03 | 北京航空航天大学 | Satellite navigation monitoring method and system based on LAAS (Local Area Augmentation System) and WAAS (Wide Area Augmentation System) |
CN102735332B (en) * | 2012-07-16 | 2014-06-18 | 中国民航大学 | Airplane noise monitoring, covering and optimizing method and device |
CN104318089A (en) * | 2014-10-13 | 2015-01-28 | 中国电子科技集团公司第二十研究所 | Threshold value determining method for local enhanced system completeness monitoring |
CN104296743A (en) * | 2014-10-27 | 2015-01-21 | 重庆布伦坦茨航空技术进出口有限公司 | Passenger terminal guidance system |
US9945954B2 (en) * | 2014-11-20 | 2018-04-17 | Honeywell International Inc. | Using space-based augmentation system (SBAS) grid ionosphere vertical error (GIVE) information to mitigate ionosphere errors for ground based augmentation systems (GBAS) |
CN105549040A (en) * | 2015-12-04 | 2016-05-04 | 航天恒星科技有限公司 | Positioning resolving method and receiver |
CN105589083A (en) * | 2015-12-04 | 2016-05-18 | 航天恒星科技有限公司 | Navigation satellite positioning calculation method and device |
CN105866802B (en) * | 2016-03-24 | 2018-06-01 | 北京航空航天大学 | A kind of tropospheric delay completeness monitoring method and device |
CN108490459B (en) * | 2018-02-12 | 2022-08-05 | 千寻位置网络有限公司 | Method and system for applying precision and risk balance to GNSS position service |
CN108872932B (en) * | 2018-05-03 | 2021-04-02 | 中国人民解放军战略支援部队信息工程大学 | Beyond-visual-range target direct positioning result deviation rectifying method based on neural network |
CN113671549B (en) * | 2020-05-15 | 2024-09-27 | 深圳市时空导航科技有限公司 | Positioning method, device, system, electronic equipment and storage medium |
CN113777636B (en) * | 2021-08-24 | 2022-05-27 | 北京航空航天大学 | Double-smooth pseudo range domain detection method for GBAS ionosphere delay gradient |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7164383B2 (en) * | 2002-09-25 | 2007-01-16 | The Board Of Regents Of The University Of Oklahoma | Navigation system using locally augmented GPS |
CN101419275A (en) * | 2008-12-08 | 2009-04-29 | 北京航空航天大学 | Local airport monitoring method and system based on multi-receiver |
-
2009
- 2009-07-03 CN CN2009100885127A patent/CN101598780B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7164383B2 (en) * | 2002-09-25 | 2007-01-16 | The Board Of Regents Of The University Of Oklahoma | Navigation system using locally augmented GPS |
CN101419275A (en) * | 2008-12-08 | 2009-04-29 | 北京航空航天大学 | Local airport monitoring method and system based on multi-receiver |
Also Published As
Publication number | Publication date |
---|---|
CN101598780A (en) | 2009-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101598780B (en) | Local airport monitoring method, device and system therefor | |
CN104483678B (en) | A kind of many constellations satellite navigation integrity multistage monitoring method of air-ground coordination | |
CN106468774B (en) | An Ephemeris Clock Correction Parameter and Space Signal Integrity Parameter Method Applied in Satellite-Based Augmentation System | |
CN106168672B (en) | A kind of GNSS multimode single-frequency RTK Cycle Slips Detection and device | |
JP5122066B2 (en) | Method and apparatus for evaluating integrity of operation of data processing system using product limit | |
CN101419275B (en) | Local airport monitoring method and system based on multi-receiver | |
EP2746811B1 (en) | Methods for generating accuracy information on an ionosphere model for satellite navigation applications | |
CN110007317B (en) | Star-selection optimized advanced receiver autonomous integrity monitoring method | |
CN105676233B (en) | The RAS anomalous of the ionospheres monitoring method and system of air-ground coordination | |
US9945954B2 (en) | Using space-based augmentation system (SBAS) grid ionosphere vertical error (GIVE) information to mitigate ionosphere errors for ground based augmentation systems (GBAS) | |
CN104732085A (en) | Satellite navigation satellite-based augmentation system availability prediction method | |
CN110196434A (en) | A kind of constellation dynamic selection method of senior receiver autonomous integrity monitoring | |
CN105068088A (en) | Double-frequency satellite navigation satellite-based augmentation system (SBAS) availability predicting method | |
CN109061683A (en) | A kind of H-ARAIM system of optimum level protected level | |
CN106154291A (en) | SBAS availability Forecasting Methodology based on satellite geometry structure and device | |
CN101839986B (en) | Satellite navigation monitoring method and system based on LAAS (Local Area Augmentation System) and WAAS (Wide Area Augmentation System) | |
CN110988934A (en) | Multi-mode receiver satellite-based enhancement technology device and processing method | |
US20230176228A1 (en) | Apnt service positioning and integrity monitoring method and system | |
Rife et al. | Formulation of a time-varying maximum allowable error for ground-based augmentation systems | |
CN101598779B (en) | Distribution method of local area augmentation system (LAAS) protection level soundness value-at-risk (VAR) and device therefore | |
Felux et al. | Concept for a dual frequency dual constellation GBAS | |
US11022695B1 (en) | GBAS integrity risk allocation system based on key satellites | |
CN114895328B (en) | Beidou satellite orbit maneuver identification method and system based on Doppler observation value | |
US11852733B2 (en) | Method for the generation of satellite clock and orbit corrections for global navigation satellite systems (GNSS) | |
Skorkowski et al. | Analysis of EGNOS-augmented GPS receiver positioning accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111228 Termination date: 20210703 |