CN102088748A - 基于自回归模型预测的用户切换触发时间选择方法 - Google Patents

基于自回归模型预测的用户切换触发时间选择方法 Download PDF

Info

Publication number
CN102088748A
CN102088748A CN2010106148790A CN201010614879A CN102088748A CN 102088748 A CN102088748 A CN 102088748A CN 2010106148790 A CN2010106148790 A CN 2010106148790A CN 201010614879 A CN201010614879 A CN 201010614879A CN 102088748 A CN102088748 A CN 102088748A
Authority
CN
China
Prior art keywords
user
signal strength
prediction
signal intensity
handover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010106148790A
Other languages
English (en)
Other versions
CN102088748B (zh
Inventor
赵林靖
闫继垒
李建东
侯蓉晖
李钊
李红艳
刘勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN 201010614879 priority Critical patent/CN102088748B/zh
Publication of CN102088748A publication Critical patent/CN102088748A/zh
Application granted granted Critical
Publication of CN102088748B publication Critical patent/CN102088748B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于自回归模型预测的用户切换触发时间选择方法。主要解决现有方法中用户过早或过晚触发切换导致切换失败的问题。其实现过程是:用户发起切换请求,终端开始监测其接收到切换目标网络的信号强度;终端利用AR模型对其接收切换目标网络的信号强度进行预测,确定用户触发切换时间的最早界限T1;终端利用AR模型对其接收当前服务网络的信号强度进行迭代预测,确定用户触发切换时间的最晚界限T2;根据预测得到的切换触发时间最早界限T1和最晚界限T2,确定出最佳切换触发时间T;用户在最佳切换触发时间T开始执行切换流程。本发明能够为用户切换选择最佳的触发时间,有效的降低切换失败概率,可用于移动用户在异构网络之间进行切换的触发时间选择。

Description

基于自回归模型预测的用户切换触发时间选择方法
技术领域
本发明属于通信技术领域,涉及一种在认知无线网络环境下,用户移动过程中的切换触发时间选择方法,可用于异构网络条件下用户的切换触发时间选择。
背景技术
近年来,无线通信行业得到了较大的发展,各种无线接入技术的涌现组成了一个复杂的异构无线网络环境。同时人们对无线业务服务质量的要求也越来越高,希望能够随时随地的获得网络服务。然而,由于不同接入网络工作在不同的频段,覆盖的范围大小也各不相同,如WLAN网络只覆盖城市的某些热点地区,WiMAX网络只在城市的某些核心区域实现覆盖,而GSM/GPRS蜂窝网络则基本可以实现陆地区域的全部覆盖。当用户移动出当前网络覆盖范围时,终端必须将正在连接的链路切换到另一个网络中去,从而保证用户正在进行的业务的连续性。切换选择的触发时间是否恰当直接影响到用户切换过程中所获得的服务质量和切换的成败与否。因此,如何为切换用户选择一个最佳的切换触发时间就显得极为重要。
切换触发时间选择与网络覆盖半径、用户移动速度、终端接收信号强度、切换类型和网络架构等密切相关。用户的移动速度与终端接收信号强度直接影响到用户切换过程中的业务体验,而不同切换类型和网络架构则导致切换的时间延迟不同。终端过早的触发切换,会导致当前服务网络资源的浪费,同时也可能由于切换目标网络尚未准备好等原因导致切换失败;终端过晚触发切换,会导致切换过程中用户数据的丢失,造成业务不连续甚至切换失败等。在认知无线网络环境下,用户和基站都具有认知功能。因此,最佳的切换触发时间选择方法必须在充分发挥系统认知功能的同时,综合考虑网络覆盖半径、用户移动速度、终端接收信号强度、切换类型和网络架构等因素。
目前,关于切换触发时间选择的研究基本可以分为基于门限方法和基于预测方法两类。在基于门限的方法中,终端首先设定一个稍大于其在当前服务网络中接收灵敏度的信号强度门限。在用户的移动过程中,终端周期性检测其接收到当前服务网络的信号强度,一旦发现该信号强度低于所设定的门限值时,就触发切换过程。如S.Woon在The 17th Annual IEEE International Symposium on Personal,Indoor and Mobile Radio Communications(PIMRC’06)《Effective Link Triggers to Improve Handover Performance》一文中就提出了基于门限的切换触发时间选择方法。首先在理想信道下,对以恒定参考速度移动的用户的切换过程进行理论分析后得到切换触发的门限,然后推导出以非参考速度移动的用户的切换触发门限。但是该方法在阴影衰落和信道状况变化影响下性能较差,不能够找到最佳的切换触发时间。同时针对用户不同的移动速度而设定相应的切换触发门限,导致算法适应性较差,。研究者们后来又提出基于预测的方法,终端利用接收到当前服务网络的信号强度信息预测未来信号强度的变化趋势,从而确定到最佳的切换触发时间。如Sang-Jo Yoo在Wireless personal communications,2010《Timely Effective Handover Mechanism in Heterogeneous Wireless Networks》一文中就提出了一种基于最小均方LMS预测的切换触发时间选择方法。该方法首先对切换过程的时延进行估计,然后采用LMS算法预测终端接收到当前网络的信号强度,预测步长根据切换耗时估计结果确定。但是该算法只考虑到了用户终端接收到当前服务网络的信号强度信息,并没有考虑到切换目标网络的状况。因而,该方法只能在一定程度上减小晚切换造成的影响,并不能实现为用户找到最佳的切换触发时间的目标。
此外,现有切换触发时间选择方法都没有考虑到网络覆盖状况变化情况下的切换触发时间选择问题,导致方法的适应性较差,在当前服务网络与切换目标网络的重叠覆盖区域较小时,用户的切换失败概率较高。
发明内容
本发明针对上述现有切换触发时间选择方法的不足,提出一种基于自回归模型预测的用户切换触发时间选择方法,以降低用户的切换失败概率,实现为切换用户选择最佳切换触发时间的目标。
实现本发明的技术关键在于利用自回归AR模型对终端接收到当前服务网络和切换目标网络的信号强度进行预测,并利用预测结果确定最佳的切换触发时间。具体实现步骤包括如下:
(1)用户发起切换请求,终端开始监测其接收到切换目标网络的信号强度,直到该信号强度值大于设定的预测门限时为止;
(2)终端利用自回归模型对其接收到切换目标网络的信号强度进行预测,确定用户触发切换时间的最早界限T1
(3)终端利用自回归模型对其接收到当前服务网络的信号强度进行如下迭代预测,确定用户触发切换时间的最晚界限T2
(3a)设定用户终端在当前服务网络中的接收灵敏度:Prxth
(3b)在T1时刻开始,用户终端以Tsamp为周期对当前服务网络的信号强度进行采样,得到采样序列xp(n);
(3c)对采样序列xp(n)进行加权平滑处理,得到平滑后的信号强度序列yp(n):
yp(n)=α*yp(n-1)+(1-α)*xp(n)
其中,α为加权平滑系数,它满足0≤α≤1;
(3d)根据平滑后得到的信号强度序列yp(n),终端对其接收到当前服务网络的信号强度进行迭代预测,设置初始迭代次数m=1,初始预测步长Th为切换时延估计值,Tsamp是信号强度采样周期;
(3e)设定预测步长为Km=m*K0,利用自回归模型预测终端接收到当前服务网络Km步之后的信号强度值:
Figure BDA0000041833820000032
n为开始预测时刻;
(3f)若预测值
Figure BDA0000041833820000033
满足
Figure BDA0000041833820000034
结束预测,反之令m自增,重新执行步骤(3e)直到结束预测;
(3g)将预测结束时刻作为用户触发切换的最晚界限T2
(4)根据预测得到的切换触发时间最早界限T1和最晚界限T2,确定最佳切换触发时间:
Figure BDA0000041833820000035
(5)用户在最佳切换触发时间T开始执行切换流程。
本发明与现有技术相比具有如下主要优点:
(1)本发明由于采用AR模型预测方法,能够较好的预测用户终端接收到当前服务网络与切换目标网络的信号强度,减小阴影衰落效应和信道状况变化对切换触发时间选择的影响,对具有不同运动速度的用户的切换具有很好的适应性,降低了用户切换的失败概率;
(2)本发明由于综合考虑终端接收到当前服务网络和切换目标网络的信号强度,通过AR模型预测方法分别确定用户触发切换的最早界限T1和最晚界限T2,最终选择
Figure BDA0000041833820000041
作为切换触发时间,在网络覆盖情况变化的条件下,具有很好的适应性,能够实现为用户选择最佳切换触发时间的目标。
附图说明
图1是本发明的应用场景图;
图2是本发明的实现流程图;
图3是本发明在用户切换分组丢失概率性能上的理论验证图;
图4是本发明在用户切换失败概率性能上的理论验证图;
图5是本发明与现有切换触发时间选择方法在不同网络覆盖条件下的用户切换分组丢失概率性能比较图;
图6是本发明与现有切换触发时间选择方法在不同网络覆盖条件下的用户切换失败概率性能比较图;
图7是本发明与现有切换触发时间选择方法在不同网络覆盖条件下切换触发时间选择结果的比较图。
具体实施方式
以下对本发明的原理以及技术方案做进一步的描述:
参照图2,本发明的实现流程包括如下:
步骤1,用户发起切换请求,终端监测其接收到切换目标网络的信号强度。
1.1终端设定开始预测切换目标网络信号强度的门限值P′init
1.2用户发起切换请求后,终端监测其接收到切换目标网络的信号强度,直到该信号强度高于预测门限P′init时为止。
步骤2,终端利用自回归模型对其接收到切换目标网络的信号强度进行预测,确定用户触发切换时间的最早界限T1
2.1)终端设定在切换目标网络中的接收灵敏度P′rxth
2.2)利用Sang-Jo Yoo在Military Communications Conference,2008(MILCOM 2008)《Predictive Handover Mechanism based on Required Time Estimation in HeterogeneousWireless Networks》一文中提出的方法,对用户切换的时延进行估计,得到估计值Th
2.3)用户终端以Tsamp为周期对切换目标网络的信号强度进行采样,得到采样序列xn(n);
2.4)对采样序列xn(n)进行加权平滑处理,得到平滑后的信号强度序列yn(n):
yn(n)=α*yn(n-1)+(1-α)*xn(n)
其中,α为加权平滑系数,它满足0≤α≤1;
2.5)根据平滑后得到的信号强度序列yn(n),终端利用自回归模型对其接收到切换目标网络的信号强度进行预测,设定预测步长为
Figure BDA0000041833820000051
得到K0步之后的信号强度预测值:
Figure BDA0000041833820000052
n为开始预测时刻;
2.6)若预测值满足
Figure BDA0000041833820000054
结束预测,反之令n自增,重新执行步骤2.5),直到预测值满足
Figure BDA0000041833820000056
时为止,结束预测;
2.7)将预测结束时刻作为用户触发切换的最早界限T1
步骤3,终端利用自回归模型对其接收到当前服务网络的信号强度进行迭代预测,确定用户触发切换时间的最晚界限T2
3.1)终端设定在当前服务网络中的接收灵敏度Prxth
3.2)在T1时刻开始,用户终端以Tsamp为周期对当前服务网络的信号强度的进行采样,得到采样序列xp(n);
3.3)对采样序列xp(n)进行加权平滑处理,得到平滑后的信号强度序列yp(n):
yp(n)=α*yp(n-1)+(1-α)*xp(n)
其中,α为加权平滑系数,它满足0≤α≤1;
3.4)根据平滑后得到的信号强度序列yp(n),终端对其接收到当前服务网络的信号强度进行迭代预测,设置初始迭代次数m=1,初始预测步长
Figure BDA0000041833820000057
Th为切换时延估计值,Tsamp是信号强度采样周期;
3.5)设定预测步长为Km=m*K0,利用自回归模型预测终端接收到当前服务网络Km步之后的信号强度值:
Figure BDA0000041833820000061
n为开始预测时刻;
3.6)若预测值
Figure BDA0000041833820000062
满足
Figure BDA0000041833820000063
结束预测,反之令m自增,重新执行步骤3.5),直到预测值
Figure BDA0000041833820000064
满足
Figure BDA0000041833820000065
时为止,结束预测;
3.7)将预测结束时刻作为用户触发切换的最晚界限T2
步骤4,确定最佳切换触发时间。
根据预测得到的切换触发的最早界限T1和最晚界限T2,确定最佳切换触发时间为 T = T 1 + T 2 2 .
步骤5,用户终端在最佳切换触发时刻T开始执行后续的切换流程。
以下通过一个仿真实验对本发明的技术效果做详细描述:
1)仿真的系统参数
仿真的场景如图1所示,考虑用户从GSM网络切换到WiMAX网络,它们的覆盖半径分别设定为3000m和1500m。GSM采用Okumura-Hata信道传输模型,WiMAX采用Cost231-Hata信道传输模型。信号在传输过程中受到的阴影衰落影响服从均值为0方差为2的高斯分布。用户接收信号强度的加权平滑系数设定为α=0.9。用户终端在GSM网络中的接收灵敏度设定为-110dBm,在WiMAX网络中的接收灵敏度设定为-100dBm。终端开始预测WiMAX网络信号强度的门限设定为-110dBm。
2)仿真内容与结果
仿真1,衡量用户选择不同时间触发切换对用户分组丢失概率和切换失败概率的影响。
固定GSM网络基站和WiMAX网络基站之间的距离为3000m,用户移动速度变化范围是1~20m/s,分别选择用户在T1
Figure BDA0000041833820000068
和T2不同时刻触发切换进行多次的切换仿真实验,衡量在不同时刻触发切换对用户分组丢失概率和切换失败概率的影响,得到图3和图4所示结果。从图3可以看出,过晚触发切换,导致切换过程中的用户分组丢失概率较高,而在
Figure BDA0000041833820000069
时刻之前触发切换,基本可以避免切换过程中的分组丢失。从图4可以看出,过早或者过晚触发切换都会导致较高的切换失败概率,只有在
Figure BDA0000041833820000071
时刻时触发切换得到的切换失败概率最低。
综合以上分析,确定
Figure BDA0000041833820000072
就是用户触发切换的最佳时间;此外,从图3和图4中还可以看出,具有不同移动速度的用户发起切换时,得到的用户分组丢失概率和切换失败概率性能基本维持不变,说明采用本发明能够很好的适应具有不同移动速度的用户的切换。
仿真2,衡量在网络覆盖状况变化条件下应用本发明方法时用户的切换性能。
固定用户移动速度为10m/s,分别设定GSM网络基站和WiMAX网络基站之间的距离为1500m、1800m、…和4500m。对比固定切换触发门限方法TH、单独预测当前服务网络信号强度方法SP和本发明方法PS的在用户分组丢失概率、切换失败概率和切换触发时间选择结果上的性能,得到如图5、图6和图7所示结果。
从图5中可以看出,本发明能够有效的降低用户切换失败的概率,在网络覆盖重叠区域较大时,切换失败概率基本维持在0左右;在网络覆盖重叠区域较小时,由于受到阴影衰落等的影响,可能会造成用户处于盲区,导致切换失败概率有所上升。
从图6中可以看出,由于TH和SP都只根据当前服务网络信号强度确定切换触发时间,所以切换过程的分组丢失概率基本维持不变。PS综合考虑当前服务网络和切换目标网络的信号强度,当网络重叠区域较小时,用户为了降低切换失败概率,只能在终端靠近当前服务网络覆盖区域的边缘时触发切换,而此时终端接收到当前服务网络的信号强度较低,导致切换过程中分组丢失率较高。
从图7中可以看出,在网络重叠覆盖情况变化时,现有TH和SP切换触发时间基本维持不变,而本发明PS的切换触发时间最为接近理想触发时间。说明本发明能够很好的适应网络覆盖条件变化的情况,实现为用户选择最佳切换触发时间的目标。

Claims (2)

1.一种基于自回归模型预测的用户切换触发时间选择方法,包括如下步骤:
(1)用户发起切换请求,终端开始监测其接收到切换目标网络的信号强度,直到该信号强度值大于设定的预测门限时为止;
(2)终端利用自回归模型对其接收到切换目标网络的信号强度进行预测,确定用户触发切换时间的最早界限T1
(3)终端利用自回归模型对其接收到当前服务网络的信号强度进行如下迭代预测,确定用户触发切换时间的最晚界限T2
(3a)设定用户终端在当前服务网络中的接收灵敏度:Prxth
(3b)在T1时刻开始,用户终端以Tsamp为周期对当前服务网络的信号强度进行采样,得到采样序列xp(n);
(3c)对采样序列xp(n)进行加权平滑处理,得到平滑后的信号强度序列yp(n):
yp(n)=α*yp(n-1)+(1-α)*xp(n)
其中,α为加权平滑系数,它满足0≤α≤1;
(3d)根据平滑后得到的信号强度序列yp(n),终端对其接收到当前服务网络的信号强度进行迭代预测,设置初始迭代次数m=1,初始预测步长
Figure FDA0000041833810000011
Th为切换时延估计值,Tsamp是信号强度采样周期;
(3e)设定预测步长为Km=m*K0,利用自回归模型预测终端接收到当前服务网络Km步之后的信号强度值:
Figure FDA0000041833810000012
n为开始预测时刻;
(3f)若预测值
Figure FDA0000041833810000013
满足结束预测,反之令m自增,重新执行步骤(3e)直到结束预测;
(3g)将预测结束时刻作为用户触发切换的最晚界限T2
(4)根据预测得到的切换触发时间最早界限T1和最晚界限T2,确定最佳切换触发时间:
Figure FDA0000041833810000021
(5)用户在最佳切换触发时间T开始执行切换流程。
2.根据权利要求1所述的基于自回归模型预测的用户切换触发时间选择方法,其中步骤(2)所述的利用自回归模型预测用户终端接收切换目标网络的信号强度,按如下步骤进行:
(2a)设定用户终端在切换目标网络中的接收灵敏度P′rxth
(2b)根据切换时延估计值Th和终端的信号强度采样周期Tsamp,确定进行信号强度预测的步长:
Figure FDA0000041833810000022
(2c)用户终端以Tsamp为周期对切换目标网络的信号强度进行采样,得到采样序列xn(n);
(2d)对采样序列xn(n)进行加权平滑处理,得到平滑后的信号强度序列yn(n):
yn(n)=α*yn(n-1)+(1-α)*xn(n)
其中,α为加权平滑系数,它满足0≤α≤1;
(2e)根据平滑后得到的信号强度序列yn(n),终端利用自回归模型对其接收切换目标网络的信号强度进行预测,设定预测步长为K0,得到K0步之后的信号强度预测值:n为开始预测时刻;
(2f)若预测值
Figure FDA0000041833810000024
满足
Figure FDA0000041833810000025
结束预测,反之令n自增,重新执行步骤(2e),直到结束预测;
(2g)将预测结束时刻作为用户触发切换的最早界限T1
CN 201010614879 2010-12-30 2010-12-30 基于自回归模型预测的用户切换触发时间选择方法 Expired - Fee Related CN102088748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010614879 CN102088748B (zh) 2010-12-30 2010-12-30 基于自回归模型预测的用户切换触发时间选择方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010614879 CN102088748B (zh) 2010-12-30 2010-12-30 基于自回归模型预测的用户切换触发时间选择方法

Publications (2)

Publication Number Publication Date
CN102088748A true CN102088748A (zh) 2011-06-08
CN102088748B CN102088748B (zh) 2013-04-03

Family

ID=44100301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010614879 Expired - Fee Related CN102088748B (zh) 2010-12-30 2010-12-30 基于自回归模型预测的用户切换触发时间选择方法

Country Status (1)

Country Link
CN (1) CN102088748B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547833A (zh) * 2012-02-22 2012-07-04 华北电力大学 基于移动预测的异构网络预切换方法
CN102934479A (zh) * 2012-06-15 2013-02-13 华为技术有限公司 一种切换方法、装置及系统
CN102984769A (zh) * 2011-09-06 2013-03-20 鼎桥通信技术有限公司 多流程嵌套场景下的切换方法及网络侧设备
CN103002498A (zh) * 2011-09-14 2013-03-27 华为技术有限公司 切换参数的配置方法及装置
CN104519540A (zh) * 2013-09-29 2015-04-15 中国移动通信集团广东有限公司 一种切换判决方法、装置及网络侧设备
CN105409278A (zh) * 2014-06-16 2016-03-16 华为技术有限公司 业务导向的处理方法和设备
CN106470443A (zh) * 2015-08-14 2017-03-01 中国电信股份有限公司 一种用于动态调整触发时间的方法和系统
CN111405586A (zh) * 2020-03-19 2020-07-10 长沙航空职业技术学院 一种基于Cost231-Hata模型的无线智能传播方法
US10999716B2 (en) 2015-12-31 2021-05-04 Huawei Technologies Co., Ltd. Call prompt method
WO2021189351A1 (zh) * 2020-03-26 2021-09-30 Oppo广东移动通信有限公司 一种小区切换方法、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409900A (zh) * 2008-11-25 2009-04-15 北京交通大学 一种wlan无缝切换中新链路建立的自适应触发方法
CN101631346A (zh) * 2009-06-05 2010-01-20 西安电子科技大学 基于信号强度和负载估计的区间切换方法
WO2010035121A1 (en) * 2008-09-29 2010-04-01 Nokia Corporation Handover decision procedure in a mobile communications system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035121A1 (en) * 2008-09-29 2010-04-01 Nokia Corporation Handover decision procedure in a mobile communications system
CN101409900A (zh) * 2008-11-25 2009-04-15 北京交通大学 一种wlan无缝切换中新链路建立的自适应触发方法
CN101631346A (zh) * 2009-06-05 2010-01-20 西安电子科技大学 基于信号强度和负载估计的区间切换方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984769A (zh) * 2011-09-06 2013-03-20 鼎桥通信技术有限公司 多流程嵌套场景下的切换方法及网络侧设备
CN103002498A (zh) * 2011-09-14 2013-03-27 华为技术有限公司 切换参数的配置方法及装置
CN103002498B (zh) * 2011-09-14 2015-01-21 华为技术有限公司 切换参数的配置方法及装置
CN102547833B (zh) * 2012-02-22 2014-06-18 华北电力大学 基于移动预测的异构网络预切换方法
CN102547833A (zh) * 2012-02-22 2012-07-04 华北电力大学 基于移动预测的异构网络预切换方法
CN102934479A (zh) * 2012-06-15 2013-02-13 华为技术有限公司 一种切换方法、装置及系统
WO2013185356A1 (zh) * 2012-06-15 2013-12-19 华为技术有限公司 一种切换方法、设备及系统
CN104519540B (zh) * 2013-09-29 2018-11-02 中国移动通信集团广东有限公司 一种切换判决方法、装置及网络侧设备
CN104519540A (zh) * 2013-09-29 2015-04-15 中国移动通信集团广东有限公司 一种切换判决方法、装置及网络侧设备
CN105409278A (zh) * 2014-06-16 2016-03-16 华为技术有限公司 业务导向的处理方法和设备
CN106470443A (zh) * 2015-08-14 2017-03-01 中国电信股份有限公司 一种用于动态调整触发时间的方法和系统
CN106470443B (zh) * 2015-08-14 2019-10-22 中国电信股份有限公司 一种用于动态调整触发时间的方法和系统
US10999716B2 (en) 2015-12-31 2021-05-04 Huawei Technologies Co., Ltd. Call prompt method
US11653184B2 (en) 2015-12-31 2023-05-16 Huawei Technologies Co., Ltd. Call prompt method
CN111405586A (zh) * 2020-03-19 2020-07-10 长沙航空职业技术学院 一种基于Cost231-Hata模型的无线智能传播方法
WO2021189351A1 (zh) * 2020-03-26 2021-09-30 Oppo广东移动通信有限公司 一种小区切换方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN102088748B (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN102088748B (zh) 基于自回归模型预测的用户切换触发时间选择方法
Goyal et al. Handover optimization scheme for LTE-Advance networks based on AHP-TOPSIS and Q-learning
CN104581849B (zh) 一种小区切换方法
CN103621139B (zh) 用于控制用户设备的切换决定的无线电网络节点中的方法
EP2272282B1 (en) Method and arrangement for handover or cell reselection evaluation
CN103907376A (zh) 用于在同信道网络中控制切换的方法和系统
Corazza et al. Characterization of handover initialization in cellular mobile radio networks
CN102572989A (zh) 一种根据终端的移动速度调整参数的方法及系统
CN107302778B (zh) 一种宏基站与家庭基站间的垂直向下切换判决方法
CN106856615B (zh) 一种基站切换方法
Chen et al. An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks
CN103024845B (zh) 一种基于umts和wlan的自适应垂直切换方法
WO2004025975A2 (en) Cellular network handoff decision mechanism
Zhu et al. A novel handoff algorithm for hierarchical cellular networks
Li et al. Mobility prediction based seamless RAN-cache handover in HetNet
Zhang et al. A novel self-optimizing handover mechanism for multi-service provisioning in LTE-advanced
Kunarak et al. Multi-criteria vertical handoff decision algorithm for overlaid heterogeneous mobile IP networks
Alablani et al. Applying a dwell time-based 5G V2X cell selection strategy in the City of Los Angeles, California
CN103476080A (zh) 基于滞留时间的自适应垂直切换方法
CN111107595B (zh) 一种异构超密集网络中的移动感知协同多点传输的切换方法
Yan et al. A prediction-based handover trigger time selection strategy in varying network overlapping environment
Ahmad et al. Performance of movement direction distance-based vertical handover algorithm under various femtocell distributions in HetNet
Pahal et al. Cross layer based dynamic handover decision in heterogeneous wireless networks
Ding et al. An effective handover scheme in heterogeneous networks
Mathonsi et al. Intelligent intersystem handover delay reduction algorithm for heterogeneous wireless networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130403

Termination date: 20181230

CF01 Termination of patent right due to non-payment of annual fee