CN102071171B - Bifunctional glutathione synthetase and method for producing glutathione by using same - Google Patents

Bifunctional glutathione synthetase and method for producing glutathione by using same Download PDF

Info

Publication number
CN102071171B
CN102071171B CN2009101993453A CN200910199345A CN102071171B CN 102071171 B CN102071171 B CN 102071171B CN 2009101993453 A CN2009101993453 A CN 2009101993453A CN 200910199345 A CN200910199345 A CN 200910199345A CN 102071171 B CN102071171 B CN 102071171B
Authority
CN
China
Prior art keywords
leu
glu
ala
ile
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101993453A
Other languages
Chinese (zh)
Other versions
CN102071171A (en
Inventor
叶勤
李志敏
李娓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN2009101993453A priority Critical patent/CN102071171B/en
Publication of CN102071171A publication Critical patent/CN102071171A/en
Application granted granted Critical
Publication of CN102071171B publication Critical patent/CN102071171B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a method for producing glutathione by using bifunctional glutathione synthetase contained in actinobacillus pleuropneumonia, actinobacillus succinogenes, bacillus cereus, streptococcus sanguis, streptococcus gordonii, streptococcus uberis and streptococcus thermophilus. The method comprises heterologous expression by using the seven microbes or enzymes of the microbes in other microbes. The glutathione synthesized by using the method has the structure of natural glutathione, and has high response rate and high output and yield of the glutathione.

Description

A kind of difunctional glutathione synthetase and utilize it to produce the method for gsh
Technical field
The present invention relates to a kind of method of producing gsh, concretely, is to utilize a kind ofly to have the gamma-glutamylcysteine synthetic enzyme (γ-GCS) and the enzyme of two kinds of functions of glutathione synthetase (GS) are produced the method for gsh.
Background technology
Gsh (Glutathione, be called for short GSH) be a kind of compound that contains sulfydryl with important physiological function, the tripeptides that is formed by Pidolidone (L-Glu), Cys (L-Cys) and three amino acid of glycine (Gly).Gsh is distributed widely in animal, plant, the microorganism, participates in the synthetic of protein and Yeast Nucleic Acid in organism, the transportation of oxygen and nutritive substance, keep endogenous enzyme activity, tricarboxylic acid cycle and carbohydrate metabolism in the body are removed functions such as crossing polyradical in the body, have widely and use.Clinically, gsh be used for radioprotective, antitumor, anticancer, antioxygen poison, anti-ageing and coordinate endocrine treatment.As a kind of antioxidant, gsh also is used as foodstuff additive, is used for prolonging the quality guaranteed period of food and the aminoacid component in the nutrient fortified food.
The main production method of gsh has extraction method, chemical synthesis, fermentation method and enzyme process.
Extraction method (introducing such as United States Patent (USP) 3396033) is take the abundant animal and plant of glutathione content and yeast as raw material, by adding suitable solvent or in conjunction with the processing of amylase, proteolytic enzyme, separating obtaining through multistep again.Because the content of natural tissues GSH-PX activity is low, only be 0.5~1.0% of dry weight, and treatment step is many, so that the overall yield of the method is not high, so extraction method is substituted by other method gradually.
The gsh that chemical synthesis is produced is the raceme of D-type and L-type, and wherein, what have physiologically active is GSH, so, expect that activated gsh need to carry out optical resolution with the product of chemosynthesis.In addition, the step of chemical synthesis is various, and the time is longer, pollutes large.
In recent years, more to the report with Glutathione Production by Microbial Fermentation, the level of fermentation method is also improving gradually.Synthesizing glutathion needs two-step reaction in the organism: the first step is that Pidolidone and Cys are at Mg 2+And ATP exists, and lower (effect of γ-GCS) generates γ-L-glutamyl-Cys by the gamma-glutamylcysteine synthetic enzyme; Second step is that gamma-L-glutamine-cysteine and glycine are at Mg 2+And ATP exists lower effect by glutathione synthetase (GS) to generate γ-GSH, i.e. gsh.Two-step reaction all needs the participation of ATP.(γ-GCS) is subject to the feedback inhibition of reduced glutathion to first enzyme of synthesizing glutathion in most organisms, and in the production process of gsh, the feedback inhibition that solves product is to improve the key of gsh output.
At present, the research of much being devoted to make up the GSH superior strain being arranged, is to want the γ-GCS and the GS overexpression in Host Strains that utilize engineered method will derive from intestinal bacteria or yeast saccharomyces cerevisiae, thereby reaches the purpose of GSH high yield.Such as: γ-GCS and the GS of Chen Jian etc. (Letters in Applied Microbiology (2006) 43:211-214) in intestinal bacteria in the overexpression intestinal bacteria, in the situation of two copies of the gene gsh I of coding γ-GCS and a copy of coding GS gene gsh II, the GSH production level of recombinant bacterium JM109 (pVB03) can reach 34.8mg g -1Wet thallus; Chen Shaoxin etc. (Bioprocess Biosystem Engineering (2009) 32:729-735) express γ-GCS and the GS in the yeast saccharomyces cerevisiae in pichia spp, recombinant bacterium Pichia pastoris GS115 (pGAPZHGSH) carries out high density fermentation, cell concentration can reach 98.15g (dry weight)/L, and the concentration of contained GSH reaches 4.15g/L.These concentration of studying thalline main GSH content from the raising thalline or the raising fermenting process reach the purpose of GSH high yield.It is by protein engineering releasing GSH the feedback inhibition angle of γ-GCS to be set out to improve GSH output that research is also arranged.
The people such as Griffith find, the enzyme that a kind of γ of having-GCS and two kinds of functions of GS are arranged in streptococcus agalactiae (Streptococcus agalactiae), called after γ-GCS-GS, it is 32% identical that the N-terminal sequence of this enzyme and colibacillary γ-GCS have, 43% similar, its C-terminal sequence and the GS that reported be without any similarity, but with D-alanine-D-alanine ligase enzyme have 24% identical, 38% similar.Derive from γ-GCS-GS of streptococcus agalactiae to the feedback insensitive of GSH, and GSH do not have restraining effect to the activity of γ-GCS and GS, this organism glutathion inside synthetic enzyme from previous report is different.The people such as Aharonowitz have also reported a kind of enzyme of the same race that is present in the Listeria Monocytogenes (Listeria monocytogenes) subsequently, and called after GshF, its N-terminal sequence is similar to γ-GCS, the GS of its C-terminal sequence and report does not have obvious homology, and is similar to ATP in conjunction with albumen.Also there is same enzyme in the discoveries such as Van Beeumen Pasteurella multocida (Pasteurella multocida), GSH is little to the more colibacillary γ-GCS of feedback inhibition of the GshF in Pasteurella multocida source, GSH is 13.6mM to the inhibition constant K i of GshF, and GSH is about 3.mM to the Ki of colibacillary γ-GCS, and GSH is about 140mM to the Ki of γ-GCS-GS of streptococcus agalactiae.
Summary of the invention
The object of the present invention is to provide by some microorganisms, have gamma-glutamylcysteine synthetic enzyme (γ-GCS) and a glutathione synthetase of two kinds of functions of glutathione synthetase (GS) simultaneously.
Second purpose of the present invention is to provide a kind of described method of being produced gsh by the difunctional glutathione synthetase of microorganisms of utilizing.
The 3rd purpose of the present invention is to provide a kind of method of utilizing described microbial enzyme to produce gsh at other microorganism heterogenous expressions.
For achieving the above object, the present invention realizes by the following technical programs one by one:
A kind of difunctional glutathione synthetase (is continued to use forefathers' name; be referred to as GshF); have simultaneously two kinds of functions of gamma-glutamylcysteine synthetic enzyme and glutathione synthetase, described difunctional glutathione synthetase is by one or more generations in the following microorganism:
Actinobacillus pleuropneumoniae (Actinobacillus pleuropneumonia), Actinobacillus succinogenes (Actinobacillus succinogenes), bacillus cereus (Bacillus cereus), Streptococcus sanguis (Streptococcus sanguinis), Gall's chain coccus (Streptococcusgordonii), streptococcus uberis (Streptococcus uberis), thermophilus streptococcus (Streptococcusthermophilus).
The aminoacid sequence of described difunctional glutathione synthetase is respectively such as SEQ ID NO:1---shown in the SEQ IDNO:7.
Described difunctional glutathione synthetase is encoded by gshF, and its gene order is respectively such as SEQ ID NO:8---shown in the SEQ ID NO:14.
A kind of method of utilizing difunctional glutathione synthetase synthesizing glutathion is the catalyzer synthesizing glutathion by actinobacillus pleuropneumoniae, Actinobacillus succinogenes, bacillus cereus, Streptococcus sanguis, Gall's chain coccus, streptococcus uberis and thermophilus streptococcus; Or be the catalyzer synthesizing glutathion by the difunctional glutathione synthetase that utilizes these microorganisms to extract.
A kind of method of utilizing difunctional glutathione synthetase synthesizing glutathion is the catalyzer synthesizing glutathion by the genetic engineering bacterium of expressing actinobacillus pleuropneumoniae, Actinobacillus succinogenes, bacillus cereus, Streptococcus sanguis, Gall's chain coccus, streptococcus uberis and thermophilus streptococcus gshF; Or the difunctional glutathione synthetase that is extracted by the genetic engineering bacterium of expressing actinobacillus pleuropneumoniae, Actinobacillus succinogenes, bacillus cereus, Streptococcus sanguis, Gall's chain coccus, streptococcus uberis and thermophilus streptococcus gshF is the catalyzer synthesizing glutathion.
A kind of method of utilizing difunctional glutathione synthetase synthesizing glutathion is produced by the genetic engineering bacterium fermentation of cultivating actinobacillus pleuropneumoniae, Actinobacillus succinogenes, bacillus cereus, Streptococcus sanguis, Gall's chain coccus, streptococcus uberis and thermophilus streptococcus or culture expression actinobacillus pleuropneumoniae, Actinobacillus succinogenes, bacillus cereus, Streptococcus sanguis, Gall's chain coccus, streptococcus uberis and thermophilus streptococcus gshF.
Utilize described difunctional glutathione synthetase, with the precusor amino acids synthesizing glutathion, this difunctional glutathione synthetase is produced by wild mushroom or genetic engineering bacterium; The wild mushroom cell of the described difunctional glutathione synthetase of utilization expression or genetically engineered mycetocyte are as catalyzer, with the precusor amino acids synthesizing glutathion; The wild mushroom of the described difunctional glutathione synthetase of culture expression or genetic engineering bacterium glutathion production by fermentation.The gene of described difunctional glutathione synthetase can require 1 described microorganism amplification to obtain by the PCR Accessory Right, also can obtain by full gene is synthetic, can replace the codon of non-preference according to host's codon preference.
The synthetic GSH method that the present invention proposes can directly be utilized the above-mentioned wild mushroom that contains difunctional GSH synthetic enzyme, also can by round pcr with the gshF gene amplification in vitro in the bacterial strain of above several different sourcess after, be connected in the expression vector, these recombinant vectorss are converted into heterogenous expression GshF albumen in the recipient bacterium.Various microorganisms be used to carrying out genetic expression all can be used as the recipient bacterium of overexpression gshF gene, comprise bacterium (such as intestinal bacteria, Bacillus subtillis, pseudomonas etc.), yeast (such as yeast saccharomyces cerevisiae, pichia pastoris phaff, multiple-shaped nuohan inferior yeast etc.), mould (such as aspergillus oryzae, aspergillus niger etc.).Collect the recombinant bacterium cell of wild mushroom or overexpression GshF, pass through penetratingization processing as catalyzer, or separate its GshF as catalyzer, add again and contain three kinds of precusor amino acids and Mg 2+Damping fluid in, add ATP or utilize cell itself or other microbial metabolism glucose produce ATP, biocatalysis precusor amino acids Pidolidone, Cys and glycine generation gsh.
These GshF genes can adopt conventional genetic engineering means to obtain, as obtaining by PCR take above-mentioned strain chromosome DNA as template, or synthetic according to its sequence.When adopting synthetic method, can according to the preference of different expression systems to codon, the codon of host's preference will be replaced with for the rare codon of host partly or entirely in these GshF genes of coding.Replace to the codon of intestinal bacteria preference such as the leucic codon CTA that will wherein encode when the expression in escherichia coli, coding arginic codon AGG, CGA; Also can be with intestinal bacteria rare codon AGG all in the sequence, CGA, CTA, ATA, CCC, TGT, TGC, GGA, GGG replace to the codon of intestinal bacteria preference.
Said gshF gene can be introduced host cell by expression vector independently duplicated in host cell, also can be by being incorporated on the recipient bacterium karyomit(e) such as methods such as homology restructuring.Usually being used for the Host Strains that carries out genetic expression can comprise bacterium as the recipient bacterium of overexpression GshF, such as intestinal bacteria, Bacillus subtillis, pseudomonas, actinomycetes etc.; Yeast is such as yeast saccharomyces cerevisiae, pichia pastoris phaff, multiple-shaped nuohan inferior yeast etc.; Mould comprises aspergillus oryzae, aspergillus niger etc.The expression of gshF gene can be adopted general efficient inducible promoter, constitutive promoter, such as P L, lac, trc, gap, AOX1, MOX, gpd, the promotors such as gla, amy, also can adopt the promotor of gshF gene self.
Containing the wild mushroom of difunctional GSH synthetic enzyme or the recombinant bacterium of overexpression gshF gene can adopt conventional method to cultivate, as adopt the fed batch cultivation method to carry out high-density culture, the somatic cells that acquisition has high GshF activity in a large number is as the biological catalyst of synthetic GSH.Enter the efficient that cell is participated in the glutathione synthesis reaction in order to improve substrate, the cell of the above-mentioned GshF of containing activity can carry out penetratingization processing, and synthetic GSH mainly is present in the reaction solution, is convenient to its separation and purification.Penetratingization processing can be adopted ordinary method, as thalline is freezed cell in-20 ℃, keep certain hour after, in 37 ℃ of thawings, one to three time repeatedly; Or carry out penetratingization processing with toluene etc.Also the GshF that recombinant bacterium or wild mushroom are expressed can be separated, with the GshF after separating as biological catalyst or immobilization after as catalyzer, synthetic GSH.The wild mushroom with GshF activity of above-mentioned penetratingization or the GshF biological catalyst of recombinant bacterium cell or separation carry out the synthetic of GSH in the damping fluid that contains Pidolidone, Cys and three kinds of precusor amino acids of glycine.Synthesize in the reaction of GSH at the GshF with full cell or separation, reaction solution is 0.01-.8mol/L potassium phosphate buffer (pH7.0-8.0), adds Mg 2+5-30mmol/L, ATP10-120mmol/L, and precusor amino acids Pidolidone 5-80mmol/L, Cys 5-60mmol/L, glycine 5-80mmol/L was 28-42 ℃ of reaction 2-10 hour.During take somatic cells as catalyzer, the wet thallus add-on is 5-25% (w/v).Also can not add ATP, metabolic activity by cell self is with glucose degradation and produce ATP, or the metabolic reaction coupling that the glucose degradation that adds in the reaction solution is produced ATP with other cells (such as yeast saccharomyces cerevisiae), provide synthetic GSH reaction required ATP, the amount that glucose adds is 0.1-1.0mol/L.
The invention has the beneficial effects as follows this production level that can obviously be improved gsh by the difunctional glutathione synthetase of described seven kinds of microorganisms; Utilize the recombinant microorganism of the difunctional glutathione synthetase of the described microorganism of overexpression to produce gsh, production level more is improved largely.
Description of drawings
Fig. 1 is the PCR product electrophorogram of actinobacillus pleuropneumoniae gshF;
Fig. 2 is the structure of recombinant plasmid pTrc99A-gshFap;
Fig. 3 is the structure of recombinant plasmid pET28a-gshFap;
Fig. 4 is the structure of recombinant plasmid pYES2-gshFap;
Fig. 5 is the PCR product electrophorogram of thermophilus streptococcus gshF;
Fig. 6 is the PCR product electrophorogram of Actinobacillus succinogenes gshF;
Fig. 7 is the PCR product electrophorogram of bacillus cereus gshF;
Fig. 8 is the PCR product electrophorogram of Streptococcus sanguis gshF;
Fig. 9 is the PCR product electrophorogram of Gall's chain coccus gshF;
Embodiment
Below in conjunction with accompanying drawing and 14 embodiment to further instruction of the present invention.
Experiment material and working method brief description:
1, enzyme and main agents
Used biomaterial comprises bacterial strain actinobacillus pleuropneumoniae with gshF gene and thermophilus streptococcus etc., e. coli jm109, e. coli bl21 (DE3), bacillus coli DH 5 alpha, plasmid pTrc99A, pET28A, yeast saccharomyces cerevisiae INVSc1, plasmid pYES2.Restriction enzyme EcoR I, Hind III, NotI, T4 ligase enzyme etc. are available from Takara company.Genome extraction agent box, dna gel reclaim test kit, the plasmid extraction test kit is purchased from Shanghai and gives birth to worker company.
2, molecular biology operation
PCR reaction conditions, intestinal bacteria and yeast saccharomyces cerevisiae competence are made and method for transformation reference " molecular cloning experiment guide ".The purifying of the extraction of genomic dna, plasmid extraction, DNA, enzyme are cut and are connected all and operate by product description.
Embodiment 1 utilizes the Actinobacillus succinogenes synthesizing glutathion
1, the cultivation of Actinobacillus succinogenes (Actinobacillus succinogenes)
Actinobacillus succinogenes 130Z (CICC 11014) is pressed 1% inoculum size access fermention medium from the glycerine pipe of-20 ℃ of preservations, and concrete composition is (containing among the 1L): wood sugar 5g, yeast extract 5g, corn steep liquor 5g, Na 2HPO 412H 2O 0.5g, NaH 2PO 42H 2O 0.5g, 6.5,37 ℃ of pH, 220rpm, shaking culture 24 hours.
2, cell pretreatment
Cultured Actinobacillus succinogenes nutrient solution at the centrifugal 5min collecting cell of 8000rpm, is used 0.05mol/L, and the phosphoric acid buffer of pH7.0 washs centrifugal three times under same condition.Cell in-20 ℃ freezing 2 hours, carry out penetratingization processing.
3, glutathione synthesis reaction
The 2g wet thallus that takes by weighing penetratingization processing adds in the 20mL reaction solution, and reaction solution is 0.2mol/L (pH7.0) potassium phosphate buffer, contains Pidolidone 40mmol/L, Cys 20mmol/L, glycine 40mmol/L, MgCl 26H 2O 20mmol/L, ATP 40mmol/L, in 37 ℃ of reactions 8 hours, glutathione concentrations can reach 343.7mg/L; E. coli jm109 glutathione synthesis amount is 63.6mg/L under the same terms.
Embodiment 2 utilizes the bacillus cereus synthesizing glutathion
With Bacillus cereus (CGMCC 1.932) from the glycerine pipe of-20 ℃ of preservations by 1% inoculum size access fermention medium, concrete composition is (containing among the 1L): Tryptones 10g, yeast extract 5g, NaCl10g, 37 ℃, 220rpm, shaking culture 12 hours, by embodiment 1 described method bacillus cereus is carried out penetratingization processing and glutathione synthesis reaction, reacted 8 hours, gsh can accumulate 163mg/L.
The structure of embodiment 3 recombination bacillus coli JM109 (pTrc99a-gshFap)
1, the extraction of actinobacillus pleuropneumoniae Actinobacillus pleuropneumonia genomic dna
With Actinobacillus pleuropneumonia (CVCC 259) from the glycerine pipe of-20 ℃ of preservations by 1% inoculum size access fermention medium, concrete composition is (containing among the 1L): peptone 10.0g, yeast extract 5g, NaCl 10g, NAD 0.2g, pH 7.4,37 ℃, leave standstill and cultivate after 24 hours, in 13400 * g, 4 ℃ centrifugal 2 minutes, collect thalline.Adopt BBI complete genome DNA extraction agent box to extract Actinobacillus pleuropneumonia complete genome DNA.
2, actinobacillus pleuropneumoniae gshF gene clone
Upstream primer is: 5 '-GCGC GGATCCATGAAATTACAACAAC-3 ', underscore partly are BamH I restriction enzyme sites.
Downstream primer is 5 '-GAT GTCGACTTAAGGCAGTTCTGGGAA-3 ', underscore partly are Sal I restriction enzyme sites.
Take the full genome of Actinobacillus pleuropneumonia as template, with above primer PCR amplification gshF gene.
The PCR condition is: unwind in advance 94 ℃, 5min; Unwind 94 ℃, 1min anneals 52 ℃, and 1min extends 72 ℃, 3min, cycle number 30; 72 ℃ are extended 10min.Obtain length and be the dna segment about 2.3kb.PCR product electrophorogram as shown in Figure 1.The pig pleuropneumonia unwrapping wire bar gshF gene order sequencing result that the present invention uses is shown in SEQ ID NO:8, and the aminoacid sequence AA1 of the GshF of the actinobacillus pleuropneumoniae of coding sees SEQ ID NO:1.
The gshF that derives from pig pleuropneumonia unwrapping wire bar CVCC 259 has submitted NCBI to, numbering GU138097.
3, the structure of recombinant expression plasmid pTrc99A-gshFap
The gshF gene of pcr amplification and expression vector pTrc99A cut in 37 ℃ of enzymes with restriction enzyme BamH I, SalI spend the night, reclaim respectively the purpose band after the agarose electrophoresis, two fragments are under the effect of T4 ligase enzyme, and 16 ℃ of ligations 12 hours obtain the pTrc99A-gshFap plasmid.Building process as shown in Figure 2.
4, the conversion of the competent making of e. coli jm109 and recombinant plasmid
E. coli jm109 is received in the LB substratum (containing Tryptones 10g/L among the 1L, yeast extract 5g/L, NaCl 10g/L) 37 ℃, the 220rpm incubated overnight, get 30 μ l and be seeded to 3ml LB substratum, 37 ℃, the 220rpm cultivation reached between the 0.4-0.6 OD in about 2 hours, culture is placed 1.5ml eppendorf pipe, behind the ice bath 20min in 4 ℃, 5000rpm, centrifugal 5min, abandon supernatant, add the CaCl of the 100mmol/L of 0.75ml precooling 2, with washing after the thalline suspension, again in 4 ℃, 5000rpm, centrifugal 5min abandons supernatant, and same method is washed once again, uses at last 100 μ l, the CaCl of 100mmol/L 2Thalline is suspended, put for subsequent use on ice.
The recombinant plasmid pTrc99A-gshFap that 10 μ l are connected adds in the 100 μ l competent cells, ice bath 30 minutes, heat shock is 90 seconds in 42 ℃ of water-baths, rear rapidly placement on ice, the LB substratum that adds 1mL after 5 minutes, in 37 ℃ of recoveries 1 hour, with the recovery after culture in 3000rpm, centrifugal 10 minutes, take out the wherein supernatant liquor of 1mL, the LB that remaining nutrient solution is coated the amicillin resistance that contains 100mg/L is dull and stereotyped, cultivates the screening recon for 37 ℃, take out plasmid enzyme restriction checking and order-checking, show that pTrc99A-gshFap successfully is converted into e. coli jm109.
The structure of embodiment 4 recombination bacillus coli BL21 (pET28a-gshFap)
PCR product and plasmid pET28a BamH I and Sal with actinobacillus pleuropneumoniae gshF
I cuts at 37 ℃ of enzymes and spends the night; Reclaim the purpose band after the agarose electrophoresis, with the fragment of gshF gene and pET28a under the effect of T4 ligase enzyme, 16 ℃ are spent the night, get pET28a-gshFap.Building process as shown in Figure 3.Press the method for transformation of embodiment 3, change recombinant plasmid pET28a-gshFap over to e. coli bl21, select recon at the kantlex flat board that contains 10mg/L.Extract plasmid, cutting checking and check order by enzyme proves that gshF correctly inserts.
The structure of embodiment 5 recombinant Saccharomyces cerevisiae INVSc (pYES2-gshFap)
Recombinant plasmid pET28a-gshFap and plasmid pYES2 cut at 37 ℃ of enzymes with BamH I and Not I spend the night, cut glue after the agarose electrophoresis and reclaim, with the fragment of gshF gene and pYES2 under the effect of T4DNA ligase enzyme, 16 ℃ are spent the night, get plasmid pYES2-gshFap, its building process as shown in Figure 4.Method with recombinant plasmid pYES2-gshFap presses embodiment 1 changes bacillus coli DH 5 alpha over to, selects recon at the penbritin flat board that contains 100mg/L.The plasmid of being with cut by enzyme and check order the proof plasmid be correct recombinant plasmid pYES2-gshFap.
The recombinant shuttle plasmid pYES2-gshFap of intestinal bacteria and yeast saccharomyces cerevisiae changes uracil auxotrophy yeast saccharomyces cerevisiae INVSc1 over to by the electric shock conversion method, at SC-UD nutrient agar (YNB 6.7g/L, glucose 20g/L, adenosine 0.1g/L, arginine 0.1g/L, halfcystine 0.1g/L, leucine 0.1g/L, Threonine 0.1g/L, tryptophane 0.1g/L, 0.1g/L, aspartic acid 0.05g/L, Histidine 0.05g/L, Isoleucine 0.05g/L, methionine(Met) 0.05g/L, phenylalanine 0.05g/L, proline(Pro) 0.05g/L, Serine 0.05g/L, tyrosine 0.05g/L, α-amino-isovaleric acid 0.05g/L, agar 20g/L) upper screening recon.Method validation with bacterium colony PCR.
The structure of embodiment 6 recombination bacillus coli JM109 (pTrc99a-gshFst)
1, the extraction of thermophilus streptococcus Streptococcus thermophilus genomic dna
Streptococcus thermophilus (SIIM B218) is pressed 1% inoculum size access fermention medium from the semisolid medium (containing the 1L: skim-milk 100g, 20% murphy juice 100mL, yeast extract paste 5g) of 4 ℃ of preservations, and concrete composition is (containing among the 1L): casein 10g, beef extract 10g, yeast extract 5g, glucose 5g, sodium acetate 5g, dibasic ammonium citrate 2g, Tween 801g, K 2HPO 42g, MgSO 47H 2O 0.2g, MnSO 4H 2O 0.05g, CaCO 36.8,37 ℃ of 20g, pH, the 220rpm shaking culture is after 12 hours, in 13400 * g, 4 ℃ centrifugal 2 minutes, collect thalline.Press the same method extracting Streptococcus thermophilus complete genome DNA of embodiment 3.
2, thermophilus streptococcus gshF gene clone
Upstream primer is: 5 '-CGGC GAATTCACGATGACATTAAACCA-3 ', underscore partly are EcoR I restriction enzyme sites.
Downstream primer is 5 '-GGC AAGCTTTTAAGTTT GACCAGCCACT-3 ', underscore partly are Hind III restriction enzyme sites.
Take the full genome of Streptococcus thermophilus as template, with above primer PCR amplification gshF gene.
The PCR condition is: unwind in advance 94 ℃, 5min; Unwind 94 ℃, 1min anneals 52 ℃, and 1min extends 72 ℃, 3min, cycle number 30; 72 ℃ are extended 10min.Obtain length and be the DNA about 2.3kb.PCR product electrophorogram as shown in Figure 5.The thermophilus streptococcus gshF gene order sequencing result that the present invention uses is shown in SEQ ID NO:14, and the aminoacid sequence AA7 of the GshF of coding sees SEQ ID NO:7.
The gshF that derives from thermophilus streptococcus SIIM B218 has submitted NCBI to, numbering GU138096.
3, the structure of recombinant expression plasmid pTrc99A-gshFst
The thermophilus streptococcus gshF gene of pcr amplification and expression vector pTrc99A cut in 37 ℃ of enzymes with restriction enzyme EcoR I, Hind III spend the night, reclaim respectively the purpose band after the agarose electrophoresis, two fragments are under the effect of T4 ligase enzyme, 16 ℃ of ligations 12 hours obtain the pTrc99A-gshFst plasmid.Prove that by extracting plasmid enzyme restriction checking and order-checking gshF correctly inserts.By embodiment 3 methods pTrc99A-gshFst is transformed JM109 and get JM109 (pTrc99A-gshFst).
The structure of embodiment 7 recombination bacillus coli BL21 (pET28-gshFst)
Plasmid pTrc99A-gshFst and plasmid pET28a cut at 37 ℃ of enzymes with EcoR I and Hind III spend the night; Cut glue after the agarose electrophoresis and reclaim, with the fragment of gshF gene and pET28a under the effect of T4DNA ligase enzyme, 16 ℃ are spent the night, get pET28a-gshFst.Press the method for transformation of embodiment 3, change recombinant plasmid pET28a-gshFst over to e. coli bl21, select recon at the kantlex flat board that contains 10mg/L.Prove that by extracting plasmid enzyme restriction checking and order-checking gshF correctly inserts.
The structure of embodiment 8 recombinant Saccharomyces cerevisiae INVSc (pYES2-gshFst)
Recombinant plasmid pET28a-gshFst and plasmid pYES2 cut at 37 ℃ of enzymes with Hind III and Not I spend the night, cutting glue after the agarose electrophoresis reclaims, with with the fragment of gshF gene and pYES2 under the effect of T4DNA ligase enzyme, 16 ℃ are spent the night, and get plasmid pYES2-gshFst.Method with recombinant plasmid pYES2-gshF presses embodiment 3 changes bacillus coli DH 5 alpha over to, selects recon at the penbritin flat board that contains 100mg/L.Prove that by extracting plasmid enzyme restriction checking and order-checking plasmid is correct recombinant plasmid.
Change recombinant plasmid pYES2-gshFst over to yeast saccharomyces cerevisiae INVSc1 by the method for embodiment 5 again, and select recon.Insertion with the method validation gshF of bacterium colony PCR.
The structure of embodiment 9 recombination bacillus coli BL21 (pET28a-gshFas)
1, the extraction of Actinobacillus succinogenes Actinobacillus succinogenes genomic dna
Actinobacillus succinogenes 130Z (CICC 11014) is pressed 1% inoculum size access fermention medium from the glycerine pipe of-20 ℃ of preservations, and concrete composition is (containing among the 1L): wood sugar 5g, yeast extract 5g, corn steep liquor 5g, Na 2HPO 412H 2O 0.5g, NaH 2PO 42H 2O 0.5g, 6.5,37 ℃ of pH, 220rpm, shaking culture is after 24 hours, in 13400 * g, 4 ℃ centrifugal 2 minutes, collect thalline.Adopt BBI complete genome DNA extraction agent box to extract Actinobacillus succinogenes complete genome DNA.
2, Actinobacillus succinogenes gshF gene clone
Upstream primer is: 5 '-GCG GAGCTCATGAATTTACGGCATATA-3 ', underscore partly are Sac I restriction enzyme sites.
Downstream primer is 5 '-GCG CTCGAGTCATGCATTTAATAATTCC-3 ', underscore partly are Xho I restriction enzyme sites.
Take the full genome of Actinobacillus succinogenes 130Z as template, with above primer PCR amplification gshF gene fragment.
The PCR condition is: unwind in advance 94 ℃, 5min; Unwind 94 ℃, 1min anneals 52 ℃, and 1min extends 72 ℃, 3min, cycle number 30; 72 ℃ are extended 10min.Obtain length and be the DNA about 2.3kb.PCR product electrophorogram as shown in Figure 6.The Actinobacillus succinogenes gshF gene order sequencing result that the present invention uses is shown in SEQ ID NO:9, identical with the gshF gene order of the Actinobacillus succinogenes130Z that reports among the NCBI, the aminoacid sequence AA2 of the GshF of coding sees SEQ ID NO:2.
3, the structure of recombinant expression plasmid pET28a-gshFas
Actinobacillus succinogenes gshF gene and expression vector pET28a restriction enzyme Sac I with pcr amplification, Xho I cuts in 37 ℃ of enzymes and spends the night, reclaim respectively the purpose band after the agarose electrophoresis, two fragments are under the effect of T4 ligase enzyme, 16 ℃ of ligations 12 hours obtain the pET28a-gshFas plasmid.Prove that by extracting plasmid enzyme restriction checking and order-checking gshF correctly inserts.
Method with recombinant plasmid pET28a-gshFas presses embodiment 3 is converted into e. coli bl21, namely obtains recombinant bacterium BL21 (pET28a-gshFas).
The structure of embodiment 10 other source gshF recombinant bacteriums
1, the structure of recombination bacillus coli BL21 (pET28a-gshFbc)
(1) extraction of bacillus cereus Bacillus cereus genomic dna
With Bacillus cereus (CGMCC 1.932) from the glycerine pipe of-20 ℃ of preservations by 1% inoculum size access fermention medium, concrete composition is (containing among the 1L): peptone 10g, yeast extract 5g, NaCl10g, 37 ℃, 220rpm, after the shaking culture 12 hours, in 13400 * g, 4 ℃ centrifugal 2 minutes, collect thalline.Adopt BBI complete genome DNA extraction agent box to extract Bacillus cereus complete genome DNA.
(2) bacillus cereus gshF gene clone
Upstream primer is: 5 '-GCG GGATCCATGGAAATGAAAAAAATG-3 ', underscore partly are BamH I restriction enzyme sites.
Downstream primer is 5 '-GGGCGG AAGCTTTTATTTTTTTGGTAG-3 ', underscore partly are Hind III restriction enzyme sites.
Take the full genome of Bacillus cereus as template, with above primer PCR amplification gshF gene.
The PCR condition is: unwind in advance 94 ℃, 5min; Unwind 94 ℃, 1min anneals 52 ℃, and 1min extends 72 ℃, 3min, cycle number 30; 72 ℃ are extended 10min.Obtain length and be the DNA about 2.3kb.PCR product electrophorogram as shown in Figure 7.The bacillus cereus gshF gene order that the present invention uses is shown in SEQID NO:10, and the aminoacid sequence AA3 of the GshF of coding sees SEQ ID NO:3.
(3) structure of recombinant expression plasmid pET28a-gshFbc and conversion
GshF gene and expression vector pET28a restriction enzyme BamH I with pcr amplification, Hind III cuts in 37 ℃ of enzymes and spends the night, and cuts respectively band after the agarose electrophoresis and reclaims, and two fragments are under the effect of T4 ligase enzyme, 16 ℃ of ligations 12 hours obtain the pET28a-gshFbc plasmid.Method with recombinant plasmid pET28a-gshFbc presses embodiment 3 is converted into e. coli bl21, namely obtains recombinant bacterium BL21 (pET28a-gshFbc).Prove that by extracting plasmid enzyme restriction checking and order-checking gshF correctly inserts.
2, the structure of recombination bacillus coli BL21 (pET28a-gshFss)
(1) extraction of Streptococcus sanguis Streptococcus sanguinis genomic dna
With Streptococcus sanguinis (CGMCC 1.2497) from the glycerine pipe of-20 ℃ of preservations by 1% inoculum size access fermention medium, concrete composition is (containing among the 1L): heart extract 5.0g, brain extract 10g, show peptone 10g, glucose 2g, NaCl 5g, Na 2HPO 42.5g 7.4,37 ℃ of pH leave standstill and cultivate after 24 hours, in 13400 * g, 4 ℃ centrifugal 2 minutes, collect thalline.Adopt BBI complete genome DNA extraction agent box to extract Streptococcus sanguinis complete genome DNA.
(2) Streptococcus sanguis gshF gene clone
Upstream primer is: 5 '-GCGA GGATCCATGATGACGATTAATC-3 ', underscore partly are BamH I restriction enzyme sites.
Downstream primer is 5 '-GTAC AAGCTTTCAGTCCATTTCTGGGA-3 ', underscore partly are Hind III restriction enzyme sites.
Take the full genome of Streptococcus sanguinis as template, with above primer PCR amplification gshF gene.
The PCR condition is: unwind in advance 94 ℃, 5min; Unwind 94 ℃, 1min anneals 52 ℃, and 1min extends 72 ℃, 3min, cycle number 30; 72 ℃ are extended 10min.Obtain length and be the DNA about 2.3kb.PCR product electrophorogram as shown in Figure 8.The Streptococcus sanguis gshF gene order NA4 that the present invention uses is shown in SEQID NO:11, and the aminoacid sequence AA4 of the GshF of coding sees SEQ ID NO:4.
(3) structure of recombinant expression plasmid pET28a-gshFss and conversion
The gshF gene of pcr amplification and expression vector pET28a cut in 37 ℃ of enzymes with restriction enzyme BamH I, HindIII spend the night, cutting respectively band after the agarose electrophoresis reclaims, two fragments are under the effect of T4 ligase enzyme, and 16 ℃ of ligations 12 hours obtain the pET28a-gshFss plasmid.The method of pressing embodiment 3 with recombinant plasmid transformed to e. coli bl21, by extracting the plasmid enzyme restriction checking and order-checking proof gshF correctly inserts.
3, the structure of recombination bacillus coli BL21 (pET28a-gshFag)
(1) extraction of Gall's chain coccus Streptococcus gordonii genomic dna
With Streptococcus gordonii (CGMCC 1.2496) from the glycerine pipe of-20 ℃ of preservations by 1% inoculum size access fermention medium, concrete composition is (containing among the 1L): heart extract 5.0g, brain extract 10g, show peptone 10g, glucose 2g, NaCl 5g, Na 2HPO 42.5g 7.4,37 ℃ of pH leave standstill and cultivate after 24 hours, in 13400 * g, 4 ℃ centrifugal 2 minutes, collect thalline.Adopt BBI complete genome DNA extraction agent box to extract Streptococcus gordonii complete genome DNA.
(2) Gall's chain coccus gshF gene clone
Upstream primer is: 5 '-GCG GGATCCATGACGATTAATCAAT-3 ', underscore partly are BamH
The I restriction enzyme site.
Downstream primer is 5 '-GTT GTCGACTTACAGGTCCATTTCTG-3 ', underscore partly are Sal
The I restriction enzyme site.
Take the full genome of Streptococcus gordonii as template, with above primer PCR amplification gshF gene.
The PCR condition is: unwind in advance 94 ℃, 5min; Unwind 94 ℃, 1min anneals 52 ℃, and 1min extends 72 ℃, 3min, cycle number 30; 72 ℃ are extended 10min.Obtain length and be the DNA about 2.3kb.PCR product electrophorogram as shown in Figure 9.The Gall's chain coccus gshF gene order that the present invention uses is shown in SEQ IDNO:12, and the aminoacid sequence AA5 of the GshF of coding sees SEQ ID NO:5.
(3) structure of recombinant expression plasmid pET28a-gshFsg and conversion
GshF gene and expression vector pET28a restriction enzyme BamH I with pcr amplification, SalI cuts in 37 ℃ of enzymes and spends the night, and reclaims respectively the purpose segment after the agarose electrophoresis, and two fragments are under the effect of T4 ligase enzyme, 16 ℃ of ligations 12 hours obtain the pET28a-gshFsg plasmid.Method with recombinant plasmid pET28a-gshFsg presses embodiment 3 is converted into e. coli bl21, namely obtains recombinant bacterium BL21 (pET28a-gshFsg).Prove that by extracting plasmid enzyme restriction checking and order-checking gshF correctly inserts.
Embodiment 11 utilizes recombination bacillus coli JM109 (pTrc99A-gshFap) synthesizing glutathion
With recombination bacillus coli JM109 (pTrc99A-gshFap) in the LB of the penbritin that contains 100mg/L substratum (containing peptone 10g, yeast extract 5g, NaCl 10g among the 1L) 37 ℃, the 220rpm shaking culture is to OD 600Be 0.4-0.6, add 0.2mmol/L IPTG, in 30 ℃, the 220rpm shaking culture is induced 10h.Nutrient solution at the centrifugal 5min collecting cell of 8000rpm, is used 0.05mol/L, and the phosphoric acid buffer of pH7.0 washs centrifugal three times under same condition.Cell in-20 ℃ freezing 2 hours, carry out penetratingization processing.Take by weighing the 2g wet thallus and add in the 20mL reaction solution, reaction solution is 0.2mol/L (pH7.0) potassium phosphate buffer, contains Pidolidone 40mmol/L, Cys 20mmol/L, glycine 40mmol/L, MgCl 26H 2O 20mmol/L, ATP 40mmol/L, in 37 ℃ of reactions 6 hours, the glutathione concentrations that obtains was 3.35g/L.
The GSH that e. coli jm109 (pTrc99a-gshFap) synthesizes than the reaction of wild-type e. coli JM109 similarity condition is high more than 40 times.The GSH measuring method that adopts is DTNB-circulation method (Tietze F (1969) Anal Biochem 27:502-522).Reaction solution is centrifugal, the concentration of GSH in the mensuration supernatant liquor; Reaction solution was heated 3 minutes in 100 ℃ of boiling water baths, and cool to room temperature is centrifugal rapidly, measures the GSH in the supernatant liquor, i.e. total GSH.Residual GSH seldom generally is no more than 20% of total GSH in the cell.
Embodiment 12 lactose-induced JM109 (pTrc99A-gshFap) synthesizing glutathions
The substratum that adopts contains: peptone 10g/L, yeast extract 5g/L, 50mM phosphoric acid buffer (pH 7.6), NH 4Cl 50mM, Na 2SO 45mM, MgSO 42mM, 0.2x metal ion (FeCl 350 μ mol/L, CaCl 220 μ mol/L, MnCl 24H 2O 10 μ mol/L, ZnSO 47H 2O 10 μ mol/L, CoCl 26H 2O 2 μ mol/L, CuCl 22H 2O 2 μ mol/L, NiCl 26H 2O 2 μ mol/L, Na 2MoO 45H 2O 2 μ mol/L, Na 2SeO 35H 2O 2 μ mol/L, H 3BO 32 μ mol/L), glycerine 54mM, glucose 2.8mM, alpha-lactose 5.6mM.
With e. coli jm109 (pTrc99A-gshFap) in this substratum in 30 ℃, 220rpm shaking culture 16 hours, centrifugation and the washing thalline, carry out penetrating processing 1 time by embodiment 1 freeze thawing.Take by weighing the 2g wet cell and add 20mL reaction solution composed as follows: Pidolidone 60mmol/L, Cys 40mmol/L, glycine 60mmol/L, MgCl 26H 2O 20mmol/L, ATP 80mmol/L, Tris-HCl damping fluid 0.1mol/L (pH8.0), in 37 ℃ of reactions 6 hours, the glutathione concentrations that obtains was 7.1g/L.
Embodiment 13 provides the ATP synthesizing glutathion by glucose degradation
Adopt the cell culture processes of embodiment 12 and penetratingization of the cell treatment process of embodiment 1 to cultivate and process e. coli jm109 (pTrc99A-gshFap) cell, take by weighing the 2g wet cell and add in the 20mL reaction solution, reaction solution specifically consists of: Pidolidone 40m mol/L, Cys 20mmol/L, glycine 40mmol/L, MgCl 26H 2O 20mmol/L, glucose 0.15mol/L, potassium phosphate buffer 0.2mol/L (pH8.0), in 37 ℃ of reactions 4 hours, the glutathione concentrations that obtains was 1.95g/L.
Embodiment 14 utilizes recombination bacillus coli BL21 (pET28a-gshFap) synthesizing glutathion
Press the method for embodiment 12 and cultivate e. coli bl21 (pET28a-gshFap), separate and washed cell, carry out penetrating processing.Taking by weighing the 2g wet cell adds in the 20mL reaction solution composed as follows: Pidolidone 40mmol/L, Cys 20mmol/L, glycine 40mmol/L, MgCl 26H 2O 20mmol/L, glucose 0.15mol/L, potassium phosphate buffer 0.2mol/L (pH8.0) under 37 ℃, reacted 5 hours, and the glutathione concentrations that obtains is 2.23g/L.
SEQUENCE LISTING
<110〉East China University of Science
<120〉a kind of difunctional glutathione synthetase and utilize it to produce the method for gsh
<130>/
<160>14
<170>PatentIn version 3.5
<210>1
<211>757
<212>PRT
<213>Actinobacillus pleuropneumonia
<400>1
Met Lys Leu Gln Gln Leu Ile Lys Thr His His Leu Gly Leu Leu Phe
1 5 10 15
Gln Gln Gly Lys Phe Gly Ile Glu Lys Glu Ser Gln Arg Ile Asp Asn
20 25 30
Lys Gly Asn Ile Val Thr Thr Ala His Pro Ser Val Phe Gly Asn Arg
35 40 45
Ser Tyr His Pro Tyr Ile Gln Thr Asp Phe Ala Glu Ser Gln Leu Glu
50 55 60
Leu Ile Thr Pro Pro Asn Asp Thr Leu Glu Asp Thr Tyr Arg Trp Leu
65 70 75 80
Ser Ala Ile His Glu Val Thr Leu Arg Ser Leu Pro Asp Asp Glu Tyr
85 90 95
Ile Phe Pro Phe Ser Met Pro Ala Gly Leu Pro Pro Glu Phe Glu Ile
100 105 110
Lys Glu Ala Gln Leu Asp Asn Glu Trp Asp Val Lys Tyr Arg Glu His
115 120 125
Leu Ser Ala Ile Tyr Gly Lys Tyr Lys Gln Met Val Ser Gly Ile His
130 135 140
Tyr Asn Phe Gln Ile Ser Glu Glu Phe Val Glu Ser Thr Phe Ala Leu
145 150 155 160
Gln Thr Glu Tyr Arg Asp Lys Ile Ala Phe Arg Asn Ala Leu Tyr Met
165 170 175
Glu Leu Ala Asn Asn Phe Leu Arg Tyr Gln Trp Ile Leu Val Tyr Leu
180 185 190
Leu Ala Ala Thr Pro Thr Val Glu Ala Gln Tyr Phe Gly Lys Asn Ser
195 200 205
Pro Leu Ala Glu Gly Gln Leu Val Arg Ser Leu Arg Ser Gly Pro Tyr
210 215 220
Gly Tyr Val Asn Ala Pro His Ile Val Ile Asn His Asp Ser Leu Gln
225 230 235 240
Gln Tyr Val Glu Ser Leu Glu His Phe Val Ala Thr Gly Asp Leu Leu
245 250 255
Ala Glu Lys Glu Phe Tyr Ser Asn Val Arg Leu Arg Gly Ala Lys Lys
260 265 270
Ala Arg Lys Leu Leu Glu Lys Gly Val Lys Tyr Ala Glu Phe Arg Leu
275 280 285
Phe Asp Leu Asn Pro Phe Ser Pro Tyr Gly Ile Glu Leu Ala Asp Ala
290 295 300
Lys Phe Ile His Leu Phe Leu Leu Ala Met Leu Trp Met Asp Glu Thr
305 310 315 320
Ser Gly Gln Arg Glu Val Glu Ile Gly Thr Gln Lys Leu Tyr Gln Val
325 330 335
Ala Leu Glu Asp Pro Arg Ser His Thr Ala Phe Gln Ala Glu Gly Glu
340 345 350
Ala Ile Leu Asn Leu Met Leu Ala Met Leu Asp Asp Leu Ser Val Pro
355 360 365
Gln Asn Glu Lys Asp Leu Leu Gln Gln Lys Leu Ala Gln Phe Ala Asp
370 375 380
Pro Ser Gln Thr Val Asn Gly Arg Leu Leu Ala Ala Val Glu Gln Ala
385 390 395 400
Gly Ser Tyr Lys Ala Leu Gly Ala Gln Leu Ala Gln Gln Tyr Lys Ala
405 410 415
Gln Ala Phe Glu Arg Phe Tyr Ala Ile Ser Ala Phe Asp Asn Met Glu
420 425 430
Leu Ser Thr Gln Ala Leu Leu Phe Asp Ala Ile Gln Gln Gly Leu Gln
435 440 445
Ile Glu Leu Leu Asp Glu Asn Asp Gln Phe Leu Ala Leu Lys Phe Gly
450 455 460
Asp His Leu Glu Tyr Val Lys Asn Gly Asn Met Thr Ser His Asp Gln
465 470 475 480
Tyr Ile Ser Pro Leu Ile Met Glu Asn Lys Val Val Thr Lys Lys Val
485 490 495
Leu Ala Lys Ala Gly Phe Asn Val Pro Lys Ser Val Glu Phe Thr Ser
500 505 510
Val Glu Gln Ala Val Ala His Tyr Pro Leu Phe Glu Gly Lys Ala Val
515 520 525
Val Ile Lys Pro Lys Ser Thr Asn Tyr Gly Leu Gly Ile Thr Ile Phe
530 535 540
Gln Gln Gly Val Thr Asp Lys Ala Asp Phe Ala Lys Ala Ile Glu Ile
545 550 555 560
Ala Phe Arg Glu Asp Lys Glu Val Met Val Glu Asp Tyr Leu Val Gly
565 570 575
Thr Glu Tyr Arg Phe Phe Val Leu Gly Asp Glu Thr Leu Ala Val Leu
580 585 590
Leu Arg Val Pro Ala Asn Val Lys Gly Asp Cys Ile His Thr Val Arg
595 600 605
Glu Leu Val Glu Ala Lys Asn Ser Asp Pro Leu Arg Gly Asp Gly Ser
610 615 620
Arg Ser Pro Leu Lys Lys Ile Ala Leu Gly Asp Ile Glu Leu Leu Gln
625 630 635 640
Leu Lys Glu Gln Gly Leu Thr Pro Asp Ser Ile Pro Ala Asp Gly Gln
645 650 655
Ile Val Gln Leu Arg Ala Asn Ser Asn Ile Ser Thr Gly Gly Asp Ser
660 665 670
Ile Asp Met Thr Asp Gln Met His Asp Ser Tyr Lys Gln Leu Ala Val
675 680 685
Gly Ile Ala Lys Glu Met Gly Ala Lys Val Cys Gly Val Asp Leu Ile
690 695 700
Ile Pro Asp Leu Thr Lys Ala Ala Glu Pro Ser Leu Arg Ser Trp Gly
705 710 715 720
Val Ile Glu Ala Asn Phe Asn Pro Met Met Met Met His Ile Phe Pro
725 730 735
Tyr Gln Gly Lys Ser Arg Arg Leu Thr Lys Ala Val Leu Lys Met Leu
740 745 750
Phe Pro Glu Leu Pro
755
<210>2
<211>759
<212>PRT
<213>Actinobacillus succinogenes
<40O>2
Met Asn Leu Arg His Ile Ile Lys Gln Asn His Leu Glu Leu Leu Phe
1 5 10 15
Gln Gln Gly Ser Phe Gly Leu Glu Lys Glu Ser Gln Arg Val Arg His
20 25 30
Asp Gly Ser Val Val Thr Ser Ala His Pro Lys Ala Phe Gly Asn Arg
35 40 45
Ser Phe His Pro Tyr Ile Gln Thr Asp Phe Ala Glu Ser Gln Leu Glu
50 55 60
Leu Ile Thr Pro Pro Asn Lys Lys Leu Glu Asp Thr Phe Arg Trp Leu
65 70 75 80
Gln Thr Ile His Glu Val Val Trp Arg Thr Leu Pro Glu Asp Glu Phe
85 90 95
Ile Phe Pro Leu Ser Met Pro Ala Gly Leu Pro Pro Glu Lys Asp Ile
100 105 110
Lys Val Ala Gln Leu Asp Asn Ser Val Asp Val Ala Tyr Arg Glu His
115 120 125
Leu Val Lys Ser Tyr Gly Ala Tyr Lys Gln Met Val Ser Gly Ile His
130 135 140
Tyr Asn Phe Gln Leu Asp Pro Ala Leu Ile Glu Ala Leu Phe Lys Ala
145 150 155 160
Gln Ser Asp Cys Arg Ser Ala Val Glu Phe Gln Asn Ser Leu Tyr Leu
165 170 175
Lys Met Ala Lys Asn Phe Leu Arg Tyr Gln Trp Ile Leu Leu Tyr Leu
180 185 190
Leu Ser Ala Thr Pro Thr Val Asp Ala Asn Tyr Phe Arg Glu Gly Thr
195 200 205
Ala Leu Lys Pro Asn Gln Tyr Val Arg Ser Leu Arg Ser Ser Gln Tyr
210 215 220
Gly Tyr Val Asn Ala Pro Glu Ile Val Val Ser Phe Asp Ser Ile Pro
225 230 235 240
Gln Tyr Val Glu Thr Leu Glu His Trp Val Asn Ser Gly Lys Leu Ile
245 250 255
Ala Glu Lys Glu Phe Tyr Ser Asn Val Arg Leu Arg Gly Ala Lys Lys
260 265 270
Ala Arg Glu Phe Leu His Thr Gly Ile Gln Tyr Leu Glu Phe Arg Leu
275 280 285
Phe Asp Leu Asn Pro Phe Glu Pro Tyr Gly Met Ser Leu His Asp Ala
290 295 300
Gln Phe Ile His Tyr Phe Ile Leu Leu Met Ile Trp Leu Asp Glu Thr
305 310 315 320
Ala Asp Gln Ala Gly Val Glu Leu Gly Lys Ala Arg Leu Leu Glu Val
325 330 335
Ala Phe Glu Asp Pro Arg Gln Glu Thr Val Tyr Arg Asp Glu Gly Glu
340 345 350
Arg Ile Leu Asn Ala Leu Ile Thr Met Leu Lys Asp Leu Gly Thr Asp
355 360 365
Glu Asn Ala Val Lys Ser Ala Gln Glu Lys Leu Ser Gln Phe Ala Tyr
370 375 380
Pro Glu Arg Thr Leu Cys Ala Arg Leu Val Ala Ala Ile Glu Gln Ala
385 390 395 400
Gly Gly Tyr Gln Lys Leu Gly Ala Glu Leu Ala Gln Arg Asn Lys Ala
405 410 415
Gln Ala Phe Glu Arg Phe Tyr Ala Leu Thr Ala Phe Asp Asn Met Glu
420 425 430
Leu Ser Thr Gln Ala Leu Met Phe Asp Ala Ile Gln Lys Gly Leu Gln
435 440 445
Met Glu Ile Leu Asp Glu Asn Asp Gln Phe Leu Arg Leu Gln Phe Gly
450 455 460
Glu His Phe Glu Tyr Val Lys Asn Gly Asn Met Thr Ser Arg Asp Ser
465 470 475 480
Tyr Ile Ser Pro Leu Ile Met Glu Asn Lys Val Val Thr Lys Lys Val
485 490 495
Leu Asp Lys Ala Gly Phe Asn Val Pro Lys Ser Leu Glu Phe Thr Thr
500 505 510
Leu Glu Gln Ala Val Ala Ser Tyr Ser Leu Phe Glu Gly Arg Ala Val
515 520 525
Val Ile Lys Pro Lys Ser Thr Asn Tyr Gly Leu Gly Ile Thr Ile Phe
530 535 540
Gln Gln Gly Val His Asp Arg Asp Asp Phe Ala Lys Ala Val Glu Ile
545 550 555 560
Ala Phe Arg Glu Asp Lys Glu Val Met Val Glu Asp Tyr Leu Ser Gly
565 570 575
Thr Glu Tyr Arg Phe Phe Val Leu Gly Asp Glu Thr Leu Ala Val Leu
580 585 590
Leu Arg Val Pro Ala Asn Val Val Gly Asp Gly Val Arg Thr Val Ala
595 600 605
Glu Leu Val Ala Ala Lys Asn Asp His Pro Leu Arg Gly Asp Gly Ser
610 615 620
Arg Thr Pro Leu Lys Lys Ile Thr Leu Gly Glu Ile Glu Arg Leu Gln
625 630 635 640
Leu Lys Glu Gln Gly Leu Thr Val Asp Ser Val Pro Ala Glu Gly Leu
645 650 655
Leu Val Gln Leu Arg Ala Asn Ser Asn Ile Ser Thr Gly Gly Asp Ser
660 665 670
Ile Asp Met Thr Asp Glu Met His Pro Ser Tyr Lys Ala Leu Ala Val
675 680 685
Asp Ile Thr Lys Ala Met Gly Ala Ala Val Cys Gly Val Asp Leu Ile
690 695 700
Ile Pro Asp Leu Asn Lys Pro Ala Glu Asn Arg Leu Ser Ser Trp Gly
705 710 715 720
Val Ile Glu Ala Asn Phe Asn Pro Met Met Met Met His Ile Phe Pro
725730735
Tyr Gln Gly Lys Ser Arg Arg Leu Thr Gln Asn Val Ile Lys Met Leu
740 745 750
Phe Pro Glu Leu Leu Asn Ala
755
<210>3
<211>755
<212>PRT
<213>Bacillus cereus
<400>3
Met Glu Met Lys Lys Met Leu Asn Asn Asp Arg Ile Lys Pro Tyr Leu
1 5 10 15
Leu Lys Ala Arg Phe Gly Val Glu Lys Glu Ser Gln Arg Val Asp Leu
20 25 30
Ser Gly Ser Leu Ala Lys Thr Glu His Pro Lys Ser Ile Ser Val Arg
35 40 45
Asp Glu His Pro Tyr Ile Gln Arg Asp Phe Ser Glu Thr Gln Met Glu
50 55 60
Leu Ile Thr Pro Val Thr Glu Thr Leu Gly Asp Leu Phe Asn Tyr Leu
65 70 75 80
Ala Ala Ile His Asp Val Ala Tyr Arg Ser Met Gly Asn Asn Glu Met
85 90 95
Leu Trp Pro Leu Ser Met Pro Pro Gln Leu Pro Glu Lys Glu Glu Asp
100 105 110
Ile Val Ile Ala Lys Leu Asn Asn His Glu Asn Val Leu Tyr Arg Arg
115 120 125
Tyr Leu Ser Asn Ser Tyr Gly Arg Arg Lys Gln Met Ile Ser Gly Ile
130 135 140
His Tyr Asn Phe Glu Phe Ser Asp Asn Leu Ile Gln Ala Leu Phe Glu
145 150 155 160
Leu Gln Ser Glu Ile Lys Asp Tyr His Gln Phe Lys Thr Glu Ile Tyr
165 170 175
Leu Lys Val Thr Arg Asn Tyr Leu His Tyr Arg Trp Leu Ile Thr Tyr
180 185 190
Phe Phe Gly Ala Ser Pro Ser Ser Glu Lys Asn Phe Phe Glu Ile Asn
195 200 205
Pro Leu Asn Asp Ala Val Arg Ser Ile Arg Asn Ser Lys Tyr Gly Tyr
210 215 220
Ser Asn Glu Asn Asp Val Gln Val Ser Tyr Ser Ser Leu Gln Asn Tyr
225 230 235 240
Ile Ser Asp Leu Ser Ser Leu Val Ser Lys Gly Val Leu Leu Glu Glu
245 250 255
Lys Glu Phe Tyr Ala Ser Val Arg Leu Arg Gly Gly Pro Gln Val Ser
260 265 270
Asp Leu Lys Asn His Gly Ile Arg Tyr Ile Glu Leu Arg Asn Leu Asp
275 280 285
Leu Asn Pro Phe Glu Thr Tyr Gly Ile Ser His Glu Gln Ala Glu Phe
290 295 300
Leu His Leu Phe Leu Ile Tyr Leu Leu Trp Ile Asp Gln Asp Asp Asn
305 310 315 320
Asn Asp Glu Trp Val Lys Ile Gly Asp Phe Gln Asn Asn Leu Val Ala
325 330 335
Leu Glu His Pro Leu Glu His Thr Gln Phe Lys Thr Asp Ala Glu Arg
340 345 350
Ile Ile Asp Glu Met Glu His Leu Thr Gly Leu Leu Asp Ile Thr Val
355 360 365
Ser Asn Thr Leu Phe Val Asn Leu Arg Glu Met Leu Thr Asp Pro Ser
370 375 380
Lys Thr Leu Ala Gly Arg Leu Tyr Lys Glu Ile Ile Lys Ser Ser Gln
385 390 395 400
Ser Gln Val Ala Ser Arg Ile Ala Lys Glu Asn Tyr Lys Lys Ala Trp
405 410 415
Asp Lys Pro Tyr Gln Leu Ser Gly Phe Thr Asp Met Glu Leu Ser Thr
420 425 430
Gln Ile Leu Met Phe Asp Ala Ile Gln Gln Gly Leu Gln Val Asp Val
435 440 445
Leu Asp Arg Gln Asp Gln Phe Leu Lys Leu Gln Leu Gly Asn His Val
450 455 460
Glu Tyr Val Lys Asn Gly Asn Met Thr Ser Lys Asp Ser Tyr Ile Ser
465 470 475 480
Pro Leu Ile Met Glu Asn Lys Thr Val Thr Lys Lys Ile Leu Gln Gln
485 490 495
His Gly Phe Arg Val Pro Ile Gly Glu Glu Phe Ser Asp Ile Glu Lys
500 505 510
Ala Leu Arg Ser Tyr Asp Ile Phe Ala Gly Lys Pro Phe Val Val Lys
515 520 525
Pro Lys Thr Thr Asn Tyr Gly Leu Gly Ile Ser Ile Phe Lys Glu Asn
530 535 540
Gly Ala Ser Tyr Glu Asp Tyr Gln Lys Ala Leu Thr Ile Ala Phe Lys
545 550 555 560
Glu Asp Ser Ser Val Leu Ile Glu Glu Phe Ile Asn Gly Thr Glu Tyr
565 570 575
Arg Phe Phe Val Leu Asp Gly Lys Val Ser Ala Val Leu Leu Arg Ile
580 585 590
Pro Ala Asn Val Ile Gly Asp Gly Ser His Thr Ile Glu Glu Leu Val
595 600 605
Ala Gln Lys Asn Leu Asn Ser Leu Arg Gly Met Asp His Arg Thr Pro
610 615 620
Leu Glu Asn Ile Gln Leu Gly Glu Leu Glu Val Leu Met Leu Lys Ala
625 630 635 640
Gln Gly Tyr Arg Lys Asp Ser Ile Pro Thr Ser Asp Glu Ile Val Phe
645 650 655
Leu Arg Glu Asn Ser Asn Val Ser Thr Gly Gly Asp Ser Ile Asp Met
660 665 670
Thr Asp Gln Ile Pro Asp Asp Tyr Lys Lys Ile Ala Val Asp Ala Val
675 680 685
Ser Ala Leu Gly Ala Asn Ile Ser Gly Ile Asp Leu Ile Ile Glu Asn
690 695 700
Thr Glu Val Pro Ala Ala Asn Lys Asn Ala Tyr Gly Ile Ile Glu Ala
705 710 715 720
Asn Phe Asn Pro Ser Met Tyr Met His Ile Tyr Pro Tyr Lys Gly Lys
725 730 735
Ser Arg Arg Leu Thr Ile Cys Ile Leu His Tyr Leu Phe Pro Glu Leu
740 745 750
Pro Lys Lys
755
<210>4
<211>751
<212>PRT
<213>Streptococcus sanguinis
<400>4
Met Met Thr Ile Asn Gln Leu Leu Gln Lys Leu Asp Thr Ala Ser Pro
1 5 10 15
Ile Leu Gln Ala Thr Phe Gly Leu Glu Arg Glu Asn Leu Arg Val Thr
20 25 30
Thr Asp Gly His Leu Ala Gln Thr Ala His Pro Ser Gln Leu Gly Ser
35 40 45
Arg Asn Phe His Pro Thr Ile Gln Thr Asp Phe Ser Glu Gln Gln Leu
50 55 60
Glu Leu Ile Thr Pro Ile Ala His Ser Thr Lys Glu Ala Arg Arg Leu
65 70 75 80
Leu Gly Ala Ile Ser Asp Val Ala Gly Arg Ser Ile Asp Gln Asn Glu
85 90 95
Arg Leu Trp Pro Met Ser Met Pro Pro Gln Leu Thr Glu Glu Glu Ile
100 105 110
Ala Ile Ala His Leu Glu Asn Asp Tyr Glu Arg His Tyr Arg Glu Gly
115 120 125
Leu Ala Lys Lys Tyr Gly Lys Lys Leu Gln Ala Ile Ser Gly Ile His
130 135 140
Tyr Asn Met Glu Leu Gly Lys Asp Leu Val Thr Ser Leu Phe Gln Val
145 150 155 160
Ser Ser Tyr His Ser Leu Lys Asp Phe Lys Asn Asp Leu Tyr Leu Lys
165 170 175
Leu Ala Arg Asn Phe Leu Arg Phe Arg Trp Ile Leu Thr Tyr Leu Tyr
180 185 190
Gly Ala Ala Pro Trp Ala Glu Ala Gly Phe Tyr Ser Gln Glu Ile Ser
195 200 205
Gln Pro Ile Arg Ser Phe Arg Asn Ser Asp Tyr Gly Tyr Val Asn Asp
210 215 220
Glu Asn Ile Gln Val Ser Tyr Ala Ser Leu Glu Gln Tyr Ile Thr Asp
225 230 235 240
Ile Glu Asn Tyr Val Gln Ser Gly Glu Leu Ser Ala Glu Lys Glu Phe
245 250 255
Tyr Ser Ala Val Arg Phe Arg Gly Gln Lys His Asn His Ala Tyr Leu
260 265 270
Glu Gln Gly Ile Thr Tyr Leu Glu Phe Arg Cys Phe Asp Leu Asn Pro
275 280 285
Phe Asp His Leu Gly Ile Ser Gln Glu Thr Leu Asp Thr Val His Leu
290 295 300
Phe Leu Leu Ser Leu Leu Trp Leu Asp Asp Val Glu Asn Val Asp Thr
305 310 315 320
Ala Leu Lys Ala Ala His Asp Leu Asn Gln Lys Ile Ala Cys Ser His
325 330 335
Pro Leu Thr Ala Leu Pro Asp Glu Ala Asp Ser Ser Ala Leu Leu Gln
340 345 350
Ala Met Glu Glu Leu Ile Gln His Phe Glu Leu Pro Thr Tyr Tyr Gln
355 360 365
Thr Leu Leu Gln Gln Leu Lys Glu Ala Leu Leu Asn Pro Gln Leu Thr
370 375 380
Leu Ser Gly Gln Leu Leu Pro His Ile Gln Gln Asp Ser Leu Met Ala
385 390 395 400
Phe Gly Leu Glu Lys Ala Glu Glu Tyr His Arg Tyr Ala Trp Thr Ala
405 410 415
Pro Tyr Ala Leu Lys Gly Tyr Glu Asn Met Glu Leu Ser Thr Gln Met
420 425 430
Leu Leu Phe Asp Ala Ile Gln Lys Gly Leu Asn Val Asp Ile Leu Asp
435 440 445
Glu Asn Asp Gln Phe Leu Lys Leu Trp His Gly His His Val Glu Tyr
450 455 460
Val Lys Asn Gly Asn Met Thr Ser Lys Asp Asn Tyr Val Ile Pro Leu
465 470 475 480
Ala Met Ala Asn Lys Thr Val Thr Lys Lys Ile Leu Ala Glu Ala Asp
485 490 495
Phe Pro Val Pro Ala Gly Ala Glu Phe Ser Ser Leu Glu Glu Gly Leu
500 505 510
Ala Tyr Tyr Pro Leu Ile Arg Asp Arg Gln Ile Val Val Lys Pro Lys
515 520 525
Ser Thr Asn Phe Gly Leu Gly Ile Ser Ile Phe Gln Glu Pro Ala Ser
530 535 540
Leu Glu Ser Tyr Arg Lys Ala Leu Glu Ile Ala Phe Ser Glu Asp Ala
545 550 555 560
Ala Val Leu Val Glu Glu Phe Ile Ala Gly Thr Glu Tyr Arg Phe Phe
565 570 575
Val Leu Asp Gly Gln Cys Glu Ala Val Leu Leu Arg Val Ala Ala Asn
580 585 590
Val Val Gly Asp Gly Gln His Thr Val Arg Glu Leu Val Ala Ile Lys
595 600 605
Asn Asp Asn Pro Leu Arg Gly Arg Asp His Arg Ser Pro Leu Glu Ile
610 615 620
Ile Glu Leu Gly Asp Ile Glu Leu Leu Met Leu Asp Gln Gln Gly Tyr
625 630 635 640
Gly Pro Asp Asp Ile Leu Pro Asp Gly Val Lys Val Asp Leu Arg Arg
645 650 655
Asn Ser Asn Ile Ser Thr Gly Gly Asp Ser Ile Asp Val Thr Asp Ser
660 665 670
Met His Pro Ser Tyr Lys Glu Leu Ala Ala Asp Met Ala Lys Ala Met
675 680 685
Gly Ala Trp Ala Cys Gly Val Asp Leu Ile Ile Pro Asp Ser Ser Ala
690 695 700
Ile Ser Thr Lys Glu Asn Pro Asn Cys Thr Cys Ile Glu Leu Asn Phe
705 710 715 720
Asn Pro Ser Met Tyr Met His Thr Tyr Cys Ala Glu Gly Pro Gly Gln
725 730 735
Ser Ile Thr Pro Lys Ile Leu Ala Lys Leu Phe Pro Glu Met Asp
740 745 750
<210>5
<211>751
<212>PRT
<213>Streptococcus gordonii
<400>5
Met Thr Ile Asn Gln Leu Leu Gln Lys Leu Asp Thr Ser Ser Pro Ile
1 5 10 15
Leu Gln Ala Thr Phe Gly Leu Glu Arg Glu Asn Leu Arg Val Thr Pro
20 25 30
Asp Gly His Leu Ala Gln Thr Ala His Pro Asn Lys Leu Gly Ser Arg
35 40 45
Asn Phe His Pro Ser Ile Gln Thr Asp Phe Ser Glu Gln Gln Leu Glu
50 55 60
Leu Ile Thr Pro Val Ala His Ser Thr Lys Glu Ala Arg Arg Leu Leu
65 70 75 80
Gly AlaIle Ser Asp Val Ala Ala Arg Ser Ile Asp Gln Asn Glu Arg
85 90 95
Leu Trp Pro Leu Ser Met Pro Pro Gln Leu Thr Glu Glu Glu Ile Val
100 105 110
Ile Ala Arg Leu Glu Asn Ala Tyr Glu Arg His Tyr Arg Glu Gly Leu
115 120 125
Ala Glu Lys Tyr Gly Lys Lys Leu Gln Ala Ile Ser Gly Ile His Tyr
130 135 140
Asn Met Glu Leu Gly Lys Asp Leu Val Thr Ala Leu Phe Arg Val Ser
145 150 155 160
Ser His His Ser Leu Lys Asp Phe Lys Asn Asp Leu Tyr Leu Lys Leu
165 170 175
Ala Arg Asn Phe Leu Arg Phe Arg Trp Ile Leu Thr Tyr Leu Tyr Gly
180 185 190
Ala Ala Pro Leu Ala Glu Ala Gly Phe Tyr Ser Gln Asp Ser Ser Gln
195 200 205
Pro Ile Arg Ser Phe Arg Asn Ser Asp Tyr Gly Tyr Val Asn Asp Glu
210 215 220
Asn Ile Lys Val Ser Tyr Ala Ser Leu Glu Gln Tyr Val Thr Asp Ile
225 230 235 240
Glu Asn Tyr Val Gln Ser Gly Lys Leu Ser Ala Glu Lys Glu Phe Tyr
245 250 255
Ser Ala Val Arg Phe Arg Gly Gln Lys His Asn Arg Val Tyr Leu Glu
260 265 270
Gln Gly Ile Thr Tyr Leu Glu Phe Arg Cys Phe Asp Leu Asn Pro Phe
275 280 285
Asp His Leu Gly Ile Ser Gln Glu Thr Leu Asp Thr Val His Leu Phe
290 295 300
Leu Leu Ser Leu Leu Trp Leu Asp Asp Val Glu Asn Val Asp Val Ala
305 310 315 320
Leu Lys Ala Ala His Asp Leu Asn Gln Lys Ile Ala Cys Ser His Pro
325 330 335
Leu Thr Ala Leu Pro Asp Glu Ala Asp Ser Ser Thr Leu Leu Gln Ala
340 345 350
Met Glu Glu Leu Ile Gln His Phe Glu Leu Pro Thr Tyr Tyr Gln Ser
355 360 365
Leu Leu Glu Gln Leu Lys Glu Ser Leu Leu Asn Pro Gln Leu Thr Leu
370 375 380
Ser Gly Gln Leu Leu Pro His Ile Gln Gln Asp Ser Leu Met Asp Phe
385 390 395 400
Gly Leu Glu Lys Ala Glu Glu Tyr His His Tyr Ala Trp Ser Ala Pro
405 410 415
Tyr Ala Leu Lys Gly Tyr Glu Asn Met Glu Leu Ser Thr Gln Met Leu
420 425 430
Leu Phe Asp Ala Ile Gln Arg Gly Leu Asn Phe Glu Ile Leu Asp Glu
435 440 445
Asn Asp Gln Phe Leu Lys Leu Trp Tyr Gly Pro His Val Glu Tyr Val
450 455 460
Lys Asn Gly Asn Met Thr Ser Lys Asp Asn Tyr Val Ile Pro Leu Ala
465 470 475 480
Met Ala Asn Lys Ile Val Thr Lys Lys Ile Leu Ala Ala Ala Asp Phe
485 490 495
Pro Val Pro Ala Gly Ala Glu Phe Thr Thr Leu Glu Glu Gly Ile Leu
500 505 510
Tyr Tyr Pro Leu Ile Lys Asp Arg Gln Ile Val Val Lys Pro Lys Ser
515 520 525
Thr Asn Phe Gly Leu Gly Ile Ser Ile Phe Gln Glu Pro Ala Ser Leu
530 535 540
Glu Ala Tyr Arg Lys Ala Leu Glu Ile Ala Phe Ser Glu Asp Thr Ala
545 550 555 560
Val Leu Val Glu Glu Phe Ile Ala Gly Thr Glu Tyr Arg Phe Phe Val
565 570 575
Leu Asp Gly Gln Cys Glu Ala Val Leu Leu Arg Val Ala Ala Asn Val
580 585 590
Val Gly Asp Gly Gln His Thr Val Arg Glu Leu Val Ala Ile Lys Asn
595 600 605
Asp Asn Pro Leu Arg Gly Arg Asp His Arg Ser Pro Leu Glu Ile Ile
610 615 620
Glu Leu Gly Asp Ile Glu Leu Leu Met Leu Asp Gln Gln Gly Tyr Gly
625 630 635 640
Pro Asp Asp Ile Leu Pro Ala Gly Val Lys Val Asp Leu Arg Arg Asn
645 650 655
Ser Asn Ile Ser Thr Gly Gly Asp Ser Ile Asp Val Thr Asp Ser Met
660 665 670
His Pro Ser Tyr Lys Glu Leu Ala Ala Asp Met Ala Lys Ala Met Gly
675 680 685
Ala Trp Ala Cys Gly Val Asp Leu Ile Ile Pro Asp Ser Ser Ala Ile
690 695 700
Ser Thr Lys Glu Asn Pro Asn Cys Thr Cys Ile Glu Leu Asn Phe Asn
705 710 715 720
Pro Ser Met Tyr Met His Thr Tyr Cys Ala Glu Gly Pro Gly Gln Ser
725 730 735
Ile Thr Pro Lys Ile Leu Ala Lys Leu Phe Pro Glu Met Asp Leu
740 745 750
<210>6
<211>753
<212>PRT
<213>Streptococcus uberis
<400>6
Met Leu Asn Gln Leu Leu Gln Lys Leu Pro Gln Asn Thr Asp Ile Leu
1 5 10 15
Glu Ala Thr Phe Gly Leu Glu Arg Glu Gly Leu Arg Leu Thr Gln Glu
20 25 30
Gly Thr Leu Ala Gln Thr Asp His Pro Lys Ala Leu Gly Ser Arg Ser
35 40 45
Phe His Pro Tyr Ile Gln Thr Asp Phe Ser Glu Gln Gln Leu Glu Leu
50 55 60
Ile Thr Pro Ile Ser Gln Ser Thr Gln Glu Ala Arg Arg Arg Leu Gly
65 70 75 80
Ala Ile Phe Asp Val Ala Gln Arg Ser Leu Glu Glu Asp Gln Val Ile
85 90 95
Trp Pro Leu Ser Ile Pro Pro Tyr Ile Glu Glu Asp Gln Ile Gln Ile
100 105 110
Ala Lys Leu Asp Lys Ala Glu Glu Val Arg Tyr Arg Glu Gln Leu Ala
115 120 125
Gln Thr Tyr Gly Lys Lys Leu Gln Ser Ile Ser Gly Ile His Tyr Asn
130 135 140
Ile Glu Leu Gly Lys Asn Leu Thr Gln Asn Leu Phe Ala Leu Ser Asp
145 150 155 160
Gln Glu Asp Leu Lys Asp Phe Lys Asn Ala Ile Tyr Met Lys Leu Ala
165 170 175
Arg Gln Phe Leu Asn Tyr Gln Trp Leu Val Thr Tyr Leu Phe Gly Ala
180 185 190
Ser Pro Leu Ala Glu Lys Asp Phe Tyr Pro Gln Met Pro Thr Glu Leu
195 200 205
Val Arg Ser Leu Arg Ala Ser Arg Arg Tyr Gly Tyr Ser Asn His Glu
210 215 220
Glu Leu Ser Ile Ser Phe Ser Ser Leu Glu Asn Tyr Val Lys Asp Met
225 230 235 240
Glu Asn Ala Leu Ala Thr Gly Ile Leu Ser Leu Glu Lys Glu Phe Tyr
245 250 255
Ser Pro Val Arg Leu Arg Gly Ser Lys His Ser Arg Asp Tyr Leu Ser
260 265 270
Glu Gly Ile Thr Tyr Leu Glu Phe Arg Asn Phe Asp Ile Asn Pro Phe
275 280 285
Asp Lys Leu Gly Ile Ser Gln Lys Thr Leu Asp Ser Phe His Leu Phe
290 295 300
Leu Leu Ser Leu Leu Trp Leu Asp Asp Leu Lys Asp Ser Asp Gln Glu
305 310 315 320
Leu Thr Lys Ala Arg Gln Ile Asn Glu Glu Val Ala Leu Ala His Pro
325 330 335
Met Ser Pro Leu Pro Asp Pro Glu Leu Ala Arg Pro Val Leu Lys Ala
340 345 350
Met Thr Glu Leu Ile Gln His Phe Gly Leu Asp Ala Tyr Tyr Gln Asp
355 360 365
Leu Val Ala Asp Leu Glu Leu Ala Ile Lys Glu Pro Glu Arg Thr Ile
370 375 380
Ser Gly His Leu Phe Gly Lys Ile Ala Asn Ala Ser Leu Ala Ala Phe
385 390 395 400
Gly Leu Asp Gln Ala Lys Thr Tyr His Gln Glu Ala Thr Gln Ala Pro
405 410 415
Tyr Ala Leu Lys Gly Tyr Glu Ser Met Glu Leu Ser Thr Gln Met Leu
420 425 430
Met Phe Asp Ala Ile Gln Lys Gly Leu His Leu Asp Ile Leu Asp Glu
435 440 445
Asn Asp Gln Phe Leu Lys Ile Trp His Gly Asp His Val Glu Tyr Val
450 455 460
Lys Asn Gly Asn Met Thr Ser Arg Asp Asn Tyr Val Val Pro Leu Ala
465 470 475 480
Met Ala Asn Lys Thr Val Thr Lys Lys Ile Leu Asp Gln Ala Gly Phe
485 490 495
Pro Thr Pro Lys Gly Gln Glu Phe Ala Ser Lys Asp Gln Ala Ile Arg
500 505 510
Tyr Phe Asn Gln Ile Ala Asp Lys Ala Ile Val Val Lys Pro Lys Ser
515 520 525
Thr Asn Phe Gly Leu Gly Ile Ser Ile Phe Gln Lys Pro Ala Ser Gln
530 535 540
Ala Asp Tyr Glu Lys Ala Val Glu Ile Ala Phe Ala Glu Asp Arg Asp
545 550 555 560
Ile Leu Val Glu Glu Phe Ile Ala Gly Thr Glu Tyr Arg Phe Phe Thr
565 570 575
Leu Asn Gly Lys Cys Glu Ala Val Leu Leu Arg Leu Pro Ala Asn Val
580 585 590
Val Gly Asp Gly Ile His Thr Val Lys Glu Leu Ile Asp Leu Lys Asn
595 600 605
Gln Asn Pro Leu Arg Gly Leu Asp His Arg Ser Pro Leu Glu Lys Ile
610 615 620
Gln Leu Gly Asp Ile Glu Lys Leu Met Leu Ala Gln Glu Gly Tyr Gly
625 630 635 640
Pro Asp Ser Val Leu Ala Lys Gly Val Lys Val Glu Leu Arg Arg Asn
645 650 655
Ser Asn Ile Ser Thr Gly Gly Asp Ser Val Asp Met Thr Asp Glu Met
660 665 670
Asp Pro Ser Tyr Lys Ala Leu Ala Ala Gln Met Ala Asp Ala Met Gly
675 680 685
Ala Trp Val Cys Gly Val Asp Leu Ile Ile Pro Asp Pro Ser Gln Lys
690 695 700
Ala Ser Leu Glu Glu Pro Asn Cys His Cys Ile Glu Leu Asn Phe Asn
705 710 715 720
Pro Ser Met Tyr Met His Thr Tyr Cys Gln Glu Gly Pro Gly Gln Ala
725 730 735
Ile Thr Pro Lys Ile Leu Gln Ala Leu Phe Pro Glu Leu Pro Ile Tyr
740 745 750
Pro
<210>7
<211>754
<212>PRT
<213>Streptococcus thermophilus
<400>7
Met Thr Leu Asn Gln Leu Leu Gln Lys Leu Glu Ala Thr Ser Pro Ile
1 5 10 15
Leu Gln Ala Asn Phe Gly Ile Glu Arg Glu Ser Leu Arg Val Asp Arg
20 25 30
Gln Gly Gln Leu Val His Thr Pro His Pro Ser Cys Leu Gly Ala Arg
35 40 45
Ser Phe His Pro Tyr Ile Gln Thr Asp Phe Cys Glu Phe Gln Met Glu
50 55 60
Leu Ile Thr Pro Val Ala Lys Ser Thr Thr Glu Ala Arg Arg Phe Leu
65 70 75 80
Gly Ala Ile Thr Asp Val Ala Gly Arg Ser Ile Ala Thr Asp Glu Val
85 90 95
Leu Trp Pro Leu Ser Met Pro Pro Arg Leu Lys Ala Glu Glu Ile Gln
100 105 110
Val Ala Gln Leu Glu Asn Asp Phe Glu Arg His Tyr Arg Asn Tyr Leu
115 120 125
Ala Glu Lys Tyr Gly Thr Lys Leu Gln Ala Ile Ser Gly Ile His Tyr
130 135 140
Asn Met Glu Leu Gly Lys Asp Leu Val Glu Ala Leu Phe Gln Glu Ser
145 150 155 160
Gly Gln Thr Asp Met Ile Ala Phe Lys Asn Ala Leu Tyr Leu Lys Leu
165 170 175
Ala Gln Asn Tyr Leu Arg Tyr Arg Trp Val Ile Thr Tyr Leu Phe Gly
180 185 190
Ala Ser Pro Ile Ala Glu Gln Gly Phe Phe Asp Gln Glu Val Pro Glu
195 200 205
Pro Val Arg Ser Phe Arg Asn Ser Asp His Gly Tyr Val Asn Lys Glu
210 215 220
Glu Ile Gln Val Ser Phe Val Ser Leu Glu Asp Tyr Val Ser Ala Ile
225 230 235 240
Glu Thr Tyr Ile Glu Gln Gly Asp Leu Asn Ala Glu Lys Glu Phe Tyr
245 250 255
Ser Ala Val Arg Phe Arg Gly Gln Lys Val Asn Arg Ser Phe Leu Asp
260 265 270
Lys Gly Ile Thr Tyr Leu Glu Phe Arg Asn Phe Asp Leu Asn Pro Phe
275 280 285
Glu Arg Ile Gly Ile Ser Gln Thr Thr Met Asp Thr Val His Leu Leu
290 295 300
Ile Leu Ala Phe Leu Trp Leu Asp Ser Pro Glu Asn Val Asp Gln Ala
305 310 315 320
Leu Ala Gln Gly His Ala Leu Asn Glu Lys Ile Ala Leu Ser His Pro
325 330 335
Leu Glu Pro Leu Pro Ser Glu Ala Lys Thr Gln Asp Ile Val Thr Ala
340 345 350
Leu Asp Gln Leu Val Gln His Phe Gly Leu Gly Asp Tyr His Gln Asp
355 360 365
Leu Val Lys Gln Val Lys Ala Ala Phe Ala Asp Pro Asn Gln Thr Leu
370 375 380
Ser Ala Gln Leu Leu Pro Tyr Ile Lys Asp Lys Ser Leu Ala Glu Phe
385 390 395 400
Ala Leu Asn Lys Ala Leu Ala Tyr His Asp Tyr Asp Trp Thr Ala His
405 410 415
Tyr Ala Leu Lys Gly Tyr Glu Glu Met Glu Leu Ser Thr Gln Met Leu
420 425 430
Leu Phe Asp Ala Ile Gln Lys Gly Ile His Phe Glu Ile Leu Asp Glu
435 440 445
Gln Asp Gln Phe Leu Lys Leu Trp His Gln Asp His Val Glu Tyr Val
450 455 460
Lys Asn Gly Asn Met Thr Ser Lys Asp Asn Tyr Val Val Pro Leu Ala
465 470 475 480
Met Ala Asn Lys Thr Val Thr Lys Lys Ile Leu Ala Asp Ala Gly Phe
485 490 495
Pro Val Pro Ser Gly Asp Glu Phe Thr Ser Leu Glu Glu Gly Leu Ala
500 505 510
Tyr Tyr Pro Leu Ile Lys Asp Lys Gln Ile Val Val Lys Pro Lys Ser
515 520 525
Thr Asn Phe Gly Leu Gly Ile Ser Ile Phe Gln Glu Pro Ala Ser Leu
530 535 540
Asp Asn Tyr Gln Lys Ala Leu Glu Ile Ala Phe Ala Glu Asp Thr Ser
545 550 555 560
Val Leu Val Glu Glu Phe Ile Pro Gly Thr Glu Tyr Arg Phe Phe Ile
565 570 575
Leu Asp Gly Arg Cys Glu Ala Val Leu Leu Arg Val Ala Ala Asn Val
580 585 590
Ile Gly Asp Gly Lys His Thr Ile Arg Glu Leu Val Ala Gln Lys Asn
595 600 605
Ala Asn Pro Leu Arg Gly Arg Asp His Arg Ser Pro Leu Glu Ile Ile
610 615 620
Glu Leu Gly Asp Ile Glu Gln Leu Met Leu Ala Gln Gln Gly Tyr Thr
625 630 635 640
Pro Asp Asp Ile Leu Pro Glu Gly Lys Lys Val Asn Leu Arg Arg Asn
645 650 655
Ser Asn Ile Ser Thr Gly Gly Asp Ser Ile Asp Ile Thr Glu Thr Met
660 665 670
Asp Ser Ser Tyr Gln Glu Leu Ala Ala Ala Met Ala Thr Ser Met Gly
675 680 685
Ala Trp Ala Cys Gly Val Asp Leu Ile Ile Pro Asp Glu Thr Gln Ile
690 695 700
Ala Thr Lys Glu Asn Pro His Cys Thr Cys Ile Glu Leu Asn Phe Asn
705 710 715 720
Pro Ser Met Tyr Met His Thr Tyr Cys Ala Glu Gly Pro Gly Gln Ala
725 730 735
Ile Thr Thr Lys Ile Leu Asp Lys Leu Phe Pro Glu Ile Val Ala Gly
740 745 750
Gln Thr
<210>8
<211>2274
<212>DNA
<213>Actinobacillus pleuropneumonia
<400>8
atgaaattac aacaactgat taaaactcat caccttggtt tactatttca acaaggtaaa 60
tttggcatcg aaaaagaaag ccaacgcatt gataataaag ggaatattgt tactaccgcc 120
catcctagcg tttttggtaa ccgcagttat catccgtata ttcaaaccga ttttgcagaa 180
agtcagttag aacttatcac accaccaaac gatacattgg aagacacata tcgttggcta 240
tcggctattc acgaggtaac gttacgttcg ttgcccgatg atgaatatat tttcccattc 300
agcatgcctg ccggtttacc gccggaattc gaaatcaaag aagcacaatt agataacgaa 360
tgggacgtga aatatcgtga acacctttct gccatttatg gcaaatacaa gcaaatggtg 420
agcggtattc actataattt ccaaatttcc gaagaatttg tcgaaagcac atttgcatta 480
caaacggaat accgcgataa aattgcgttc cgcaatgcgc tatatatgga attagccaat 540
aactttttac gttatcaatg gattttagtt tatttgcttg ccgcaacccc aactgtagaa 600
gcgcaatatt tcggtaaaaa ctcaccgctt gcagaagggc aattagtacg tagtttacgt 660
tccggccctt atggttatgt aaatgcgcca catattgtga tcaaccacga cagcttgcaa 720
caatatgtcg agtcgctaga acattttgta gcaaccggcg atttgttggc agaaaaagaa 780
ttctattcaa acgttcgttt acgtggtgcg aaaaaagcac gcaaattgct tgagaaaggg 840
gttaaatatg cggaattccg tttatttgat cttaatccgt tctcgcctta cggtatcgag 900
cttgcagacg cgaaatttat tcatctgttc ttacttgcga tgttgtggat ggatgaaaca 960
agcggtcaaa gagaagtcga aatcggcaca caaaaactat accaagttgc ccttgaagat 1020
cctcgttcgc acactgcgtt ccaagcagag ggtgaggcga tccttaacct gatgctggca 1080
atgctggacg atctttctgt accacaaaac gagaaagatt tattacaaca aaaactggca 1140
caatttgccg atcctagtca aacggtaaac ggtcgtttat tagccgcagt cgaacaagcc 1200
ggcagctata aagctctcgg tgcacaactt gctcaacaat ataaagcgca agcattcgag 1260
cgtttttatg cgatttccgc tttcgataat atggagcttt ctacacaggc tttgttattt 1320
gatgcgatcc aacaaggctt acagatcgaa ttgcttgatg aaaacgatca gttcctcgca 1380
ctcaaattcg gcgatcatct cgaatatgtg aaaaacggca atatgaccag ccacgatcag 1440
tatatttcgc cattaattat ggaaaacaaa gtcgtaacca aaaaagtgtt ggcgaaagcc 1500
ggttttaatg tgccgaaaag tgttgaattt acctctgtag aacaagcggt ggcacactat 1560
ccgttatttg aaggtaaagc ggtggtaatt aagccgaaat caactaatta cggcttaggt 1620
attacaattt tccagcaagg cgtgacggat aaagccgact ttgccaaagc gattgaaatt 1680
gcgttccgtg aagataaaga agtgatggtg gaagactatt tagtcggcac cgaataccgt 1740
ttctttgtgt taggcgatga aacactggcg gtattgttac gtgtgccggc aaatgtgaaa 1800
ggtgactgca tacatacagt gcgtgaattg gtggaagcga aaaacagtga tccgctacga 1860
ggtgacggct ctcgttcacc attgaagaaa atcgccctcg gtgacattga attgcttcag 1920
cttaaagagc aaggtttaac gcctgattcg attccggctg acgggcaaat cgtacaatta 1980
cgtgccaact ctaatattag taccggcggc gattcaatcg atatgaccga tcaaatgcat 2040
gacagttata aacaattagc ggtcggtatt gccaaagaga tgggggcaaa agtctgcggt 2100
gtggatttaa tcattccgga tttaaccaaa gccgccgagc cgtctctgcg ttcatggggt 2160
gtgattgaag caaactttaa tccgatgatg atgatgcata ttttccctta ccaaggaaaa 2220
tctcgccgct taaccaaagc cgtgttaaaa atgctgttcc cagaactgcc ttaa 2274
<210>9
<211>2280
<212>DNA
<213>Actinobacillus succinogenes
<400>9
atgaatttac ggcatattat taaacaaaat catcttgaat tgttattcca acaggggtct 60
ttcgggctgg aaaaagagag ccagcgcgtc cgtcacgacg gttcggtggt gacatccgcc 120
cacccgaagg ctttcggtaa ccgctctttt catccgtata tacaaacgga ttttgccgaa 180
agccagcttg aattgattac accgccgaat aagaaactgg aagatacgtt tcgttggctg 240
caaactatcc atgaagtggt atggcgaacc ttgccggaag acgaattcat ctttcccctg 300
agcatgcctg cgggtttgcc gccggaaaaa gacattaaag tcgcccaact ggataattct 360
gttgatgtgg cataccgcga acatttagtg aaatcttacg gtgcctacaa gcaaatggta 420
agcggaattc attataattt tcagcttgat cccgcgttga ttgaggcctt attcaaggca 480
cagagcgatt gtcgaagtgc ggtggaattt cagaacagtt tatatctgaa aatggcaaaa 540
aatttcctgc gctatcaatg gattctgttg tatttgttat ccgctactcc gacggtggac 600
gccaattact tcagagaggg aacagcgctg aaaccgaatc aatatgtgcg cagcctgcgt 660
tccagtcaat acgggtatgt caatgcgcct gaaatcgtgg tgtctttcga cagcattccc 720
caatatgtgg aaacccttga gcactgggtg aattcgggca aattgattgc ggaaaaagaa 780
ttttattcca atgtacgttt gcgcggggcg aaaaaagccc gcgaattttt gcatacgggg 840
atccaatatc tggaattccg tttattcgat ttaaatccgt tcgaaccgta cggcatgagc 900
ttacatgatg cgcaatttat ccactatttt atcctgttga tgatttggct ggatgaaacg 960
gcggatcaag ccggcgtaga attaggaaaa gcgcgtttgc tggaagtcgc gtttgaagac 1020
ccgcgtcagg aaaccgttta tcgcgacgaa ggcgaacgga ttttgaatgc tttaattacc 1080
atgttaaaag acctcggcac agatgaaaat gcggtgaaaa gcgcacagga aaaactgagc 1140
cagtttgctt atccggaacg aacgctgtgc gcccggttgg ttgccgccat cgaacaagcc 1200
ggcggctatc aaaaactggg ggcggaattg gcgcagcgta ataaagcgca ggctttcgaa 1260
cgtttttacg ccctgaccgc tttcgataat atggaattgt ctacgcaggc tttaatgttt 1320
gatgcgattc aaaaagggtt acaaatggaa attctggatg aaaacgatca gtttctgcgt 1380
ctgcaattcg gcgagcattt cgaatacgtg aaaaacggca acatgacaag ccgcgacagc 1440
tacatttcgc cgcttattat ggaaaataaa gtggtgacta aaaaagtatt ggataaagcc 1500
ggattcaacg taccgaaaag tctggaattc actacccttg aacaagcggt ggcaagttac 1560
agcctgtttg aagggcgcgc tgtggtgatt aaaccgaaat ccaccaatta cggcttaggc 1620
atcaccattt ttcaacaggg cgtgcatgat cgcgacgatt tcgccaaagc cgttgaaatc 1680
gcgttccgtg aagataaaga agtgatggtg gaagattatt tgagcggtac ggaataccgg 1740
tttttcgtgt tgggcgatga aacccttgcg gtattgctgc gcgtgccggc gaatgtcgtg 1800
ggtgacggtg tacgcacggt ggcggaactg gttgcggcga aaaacgatca tccgttacgt 1860
ggcgacggca gccgtactcc gctgaaaaaa atcacgttag gcgagattga acggttgcag 1920
cttaaagagc aaggtttgac cgtcgacagc gtgccggccg aagggctgct tgtacaactt 1980
cgggcaaact ctaatatcag caccggcggc gatagtatcg acatgacgga tgaaatgcat 2040
ccgagctata aagcgcttgc cgtagacatt accaaagcca tgggggcggc ggtttgcggt 2100
gtggatctta ttattccgga tttgaataag ccggcggaaa accgcttatc gtcttgggga 2160
gttatcgaag ctaatttcaa tccgatgatg atgatgcaca ttttcccata tcaaggaaaa 2220
tccagacgtt tgacgcagaa tgtgattaag atgctgtttc cggaattatt aaatgcatga 2280
<210>10
<211>2268
<212>DNA
<213>Bacillus cereus
<400>10
atggaaatga aaaaaatgtt aaacaatgac cgtattaaac catatttatt aaaagcacgt 60
tttggagttg aaaaagaaag tcaacgagtt gacctatcag gaagtttagc taaaacggaa 120
catcccaaaa gtatttcagt aagagatgaa catccttata ttcagcgaga tttctctgaa 180
acacaaatgg aattaatcac accagttact gagacactag gagatttatt taattattta 240
gcagctatcc atgatgttgc ctatcgttct atgggaaata acgaaatgct ttggccatta 300
agcatgccac cacagttgcc cgaaaaagaa gaagatattg ttattgcgaa acttaataat 360
catgaaaatg ttttatatcg tcgatattta tctaattctt atggtcgacg aaaacaaatg 420
attagtggta ttcattacaa ttttgaattt agcgataatt tgattcaggc attatttgaa 480
ttacaatcag aaataaaaga ttatcatcaa tttaaaacag aaatttatct gaaagtcaca 540
aggaattatt tacactatcg atggttaata acttatttct tcggtgcttc tcctagtagt 600
gaaaagaatt tctttgaaat aaatccttta aatgacgccg taagaagcat tagaaatagt 660
aaatatggtt atagtaatga aaatgatgtt caagtatcct atagtagttt acagaactat 720
atatctgatc tttcttcgct ggtaagtaaa ggggttttat tagaagaaaa agaattttat 780
gcatctgtcc gtttaagggg cggtcctcaa gtttcagatt taaaaaatca tgggattcgt 840
tatattgaat taagaaacct agatttaaat ccttttgaaa catatggaat tagccatgaa 900
caagcagaat ttctacatct tttcctcatc tatttactct ggattgatca agacgataat 960
aatgatgaat gggtaaaaat cggtgatttt caaaataatt tagtggctct tgaacatccg 1020
ttagaacata cgcaatttaa aacagatgct gagcgtatta ttgatgagat ggaacattta 1080
acagggctgt tagacataac tgtttcgaat accttatttg ttaacttgag agaaatgcta 1140
acagatccaa gtaagacttt agctggaaga ctttataaag agattataaa aagtagtcaa 1200
agtcaggtag cttcccgtat tgctaaagaa aattataaaa aagcatggga taaaccatat 1260
caactatcag gatttactga catggagttg tctacacaaa ttttaatgtt tgatgctatt 1320
caacaaggat tacaagtaga cgttttagat cgacaagatc aatttttaaa actacagtta 1380
ggaaatcatg ttgaatatgt gaaaaatggg aatatgacaa gtaaagatag ttatatatca 1440
ccattaatta tggaaaataa aacagtaaca aagaaaattc ttcaacagca tggatttcgt 1500
gtaccaatag gtgaggaatt tagtgatata gaaaaagcct tacgttccta tgatatattt 1560
gcaggaaagc cttttgtcgt taaaccaaaa acaacaaatt atggtttagg aatatctatc 1620
tttaaagaaa acggagcaag ttacgaagac tatcaaaaag cactcacaat agcatttaaa 1680
gaggactcat cagtattaat agaagaattt attaatggaa cagaatatcg attttttgtg 1740
ctagatggca aagtttctgc cgttttatta cgaattccag ccaatgttat aggagacggt 1800
tcacatacga ttgaagagtt agtcgctcaa aagaacctga attcattaag aggaatggac 1860
catagaacac ctttagaaaa tatacaatta ggtgaattag aggtcctaat gcttaaagct 1920
caagggtatc gaaaagattc tattccaaca agtgatgaaa ttgtttttct gcgagaaaat 1980
tctaatgtca gtacaggtgg agactcaatt gatatgacag atcaaattcc cgatgattat 2040
aagaaaattg ccgtagatgc tgtgtcggca cttggagcaa atattagtgg tattgatttg 2100
attattgaaa atacagaagt tcctgcagct aataaaaatg cttatggaat tattgaggca 2160
aactttaatc catcgatgta tatgcatata tatccgtata aaggcaaatc cagacgtttg 2220
accatctgta tattacatta tttattccct gaactaccaa aaaaataa 2268
<210>11
<211>2256
<212>DNA
<213>Streptococcus sanguinis
<400>11
atgatgacga ttaatcaatt attgcagaaa ctggatacag caagccccat tctccaagcg 60
acctttggtc tggagagaga aaatctgcgg gtaacaactg acggacactt agctcaaact 120
gcccatccga gtcagctggg ttcccgcaat ttccacccga ccatccaaac agacttcagc 180
gagcaacaac tggaactaat tacacctatc gctcactcga ctaaggaagc acgacgcttg 240
ctgggagcta tcagcgatgt ggctggccgc tcgattgacc agaatgaacg cctctggccc 300
atgtccatgc caccacagct gacggaagaa gagattgcca tcgctcatct ggaaaacgac 360
tacgaacgcc actaccgaga gggtttagcg aaaaaatatg gcaaaaaact acaggccatc 420
tctggcatcc actacaacat ggagctagga aaagatctgg tcacttctct ctttcaagtc 480
agctcctacc attcactcaa ggactttaaa aatgacctct atctcaagct ggctcgaaac 540
tttctgcgtt tccgctggat tttaacctat ctctacgggg ctgccccttg ggcagaagcc 600
ggtttctaca gtcaggaaat ttcccagcct atccgctctt ttcgtaacag cgactatggc 660
tatgtcaatg acgagaatat tcaggtatcc tacgcttctt tggaacaata tataactgat 720
attgaaaact acgttcagtc aggcgagctc agcgctgaaa aagaatttta ctcagccgtt 780
cgcttccgag gacagaagca caatcacgcc tatctggagc agggtatcac ctatctggaa 840
ttccgctgtt ttgacctcaa tccttttgac catttaggca ttagccagga aaccttagat 900
actgtccatc tctttttact gagcctgctc tggctagatg atgtagaaaa tgttgatact 960
gcattaaaag ctgcccacga cttgaaccaa aaaattgctt gtagccaccc gctgactgcc 1020
ctgccagatg aggcagacag ctcagcactt ctccaagcca tggaagagct catccagcat 1080
tttgaactgc cgacatacta ccaaaccttg cttcagcaac ttaaggaggc actactaaat 1140
cctcagctaa ccctatctgg tcaactcctg cctcatatcc agcaggattc cttaatggcc 1200
tttggactag aaaaagcaga ggaatatcac cgctatgctt ggacggctcc ttatgctctt 1260
aaaggctacg aaaatatgga actgtccacc cagatgctgc tctttgatgc tattcaaaag 1320
gggctgaatg tcgacatctt agatgaaaat gaccaatttc tcaaactttg gcatggtcac 1380
catgtggagt atgtcaagaa cggcaacatg acctccaagg ataactatgt tattcctctg 1440
gctatggcca ataaaacagt caccaaaaag attttggcag aagctgactt tcccgttcca 1500
gctggagcag aattttcttc tcttgaagag ggactggcct attacccttt gattagggac 1560
cgacaaattg ttgtcaaacc taagtcaacc aacttcggac tgggcatctc catcttccaa 1620
gaaccagcta gcctggaatc ttatcgcaag gctttagaga ttgccttttc agaagacgct 1680
gctgtcttag tcgaagaatt catcgctgga acggaatacc gcttctttgt cttagacggt 1740
caatgtgagg cagtcctctt acgagtggcg gctaatgtcg ttggagacgg tcaacatacc 1800
gtgagagaat tggtggccat caaaaacgac aatcccctgc gggggcgcga tcatcgctcg 1860
ccgctcgaaa tcattgaact gggtgatatt gaactgctta tgctggatca gcaaggctat 1920
ggaccagatg atatcctgcc tgatggagtc aaggttgact tgcggcgcaa ttccaacatt 1980
tctactggcg gagactcgat tgacgtcaca gacagcatgc acccatctta taaggaactt 2040
gctgctgaca tggcaaaggc tatgggagct tgggcttgtg gcgttgacct gattatccct 2100
gacagctctg ctatttccac aaaggaaaat cccaactgta cctgcatcga gctcaacttc 2160
aacccctcta tgtatatgca cacctattgt gctgagggac cgggacaaag catcacacct 2220
aaaatactgg ccaaactttt cccagaaatg gactga 2256
<210>12
<211>2256
<212>DNA
<213>Streptococcus gordonii
<400>12
atgacgatta atcaattact gcagaaactg gatacatcaa gccctattct tcaagcgacc 60
tttggtctgg agagggaaaa tctccgagtg acgccagatg gacacttggc tcaaactgcc 120
catccgaaca agcttggttc ccgtaatttc cacccaagca tccaaacaga tttcagcgag 180
caacaactag aactaataac acctgtcgct cattcaacta aggaggcacg acgcttactg 240
ggggctatta gtgacgtggc ggcccgctcg attgatcaga acgagcgcct ctggcctctg 300
tccatgccac cgcagctgac tgaagaggag attgtcattg ctcgtctaga aaacgcctat 360
gagcgccact accgagaggg cttggcggaa aaatatggca aaaaactaca ggctatctct 420
ggtatccact acaacatgga gctagggaaa gatctggtaa ctgctctctt ccgagtcagc 480
tcccaccatt cgctaaaaga ttttaaaaat gacctctatc tcaagctagc tcgaaacttt 540
ctgcgtttcc gctggatctt aacctatctc tacggcgctg ctcctctagc agaagctggc 600
ttctacagtc aggacagttc ccagcctatc cgctcttttc gtaacagcga ctatggctat 660
gtcaatgacg agaacattaa agtttcttac gcttctttgg agcaatatgt aactgatatt 720
gaaaactacg ttcagtcagg caagctcagc gctgaaaagg aattttactc agccgttcgc 780
ttccgtggac aaaagcacaa tcgtgtctat ctggaacaag gtatcactta tctagaattc 840
cgctgcttcg atctcaatcc ttttgaccat ttaggcatta gccaagagac cttagatact 900
gtccatctct ttttactgag cctgctttgg ctagatgatg ttgaaaatgt tgatgtggca 960
ttaaaagctg cccatgactt gaaccaaaag attgcttgta gccatccgct aactgccctg 1020
ccagatgagg cagacagctc aacactgctc caagccatgg aagagctcat ccagcacttt 1080
gaactgccaa cttactacca aagcttgctt gagcagctta aagaatcact tctgaatcct 1140
cagctaaccc tatctggtca gctcctgcct catatccagc aggattcctt aatggacttt 1200
ggattagaaa aagcagagga gtatcaccac tatgcttggt cggctcctta tgctctcaaa 1260
ggctacgaga atatggaatt atctactcaa atgctactct ttgatgccat acaaagaggt 1320
ctaaattttg aaattttaga tgaaaacgat caatttctca agctttggta tggtccccat 1380
gtggagtatg tcaagaacgg caatatgacc tccaaggata actatgtcat ccctctggcc 1440
atggccaata aaatagtcac aaaaaagatt ttggctgcag ctgactttcc tgttcctgct 1500
ggagcagaat ttaccacact tgaagagggg atactctact atcctttgat taaagaccga 1560
cagatcgttg tcaaacccaa gtcaaccaac ttcggactgg gcatctccat cttccaagaa 1620
ccagctagcc tggaagctta tcgcaaggct ttggagattg ctttttcaga agacaccgcc 1680
gttttggtgg aggaatttat cgcaggaacg gagtaccgat tctttgtctt agatggtcag 1740
tgtgaggcag tcctcttgcg agtagcagcc aatgtcgtcg gagacggtca gcataccgtg 1800
agagaattag ttgccatcaa aaacgacaat cccctgcgcg gtcgagacca tcgttcaccg 1860
ctcgaaatca tcgaactggg cgacattgaa ctgctcatgc tggaccagca aggttatgga 1920
ccagacgata tcctgcctgc tggagtcaag gttgacttgc gacgcaattc caatatttct 1980
accggcggag actcgattga tgtcacagac agcatgcacc catcttataa ggaactcgct 2040
gcggacatgg caaaggctat gggagcttgg gcttgtggcg ttgacctgat catccctgac 2100
agctctgcta tttctaccaa ggaaaatccc aactgcacct gcattgagct caatttcaac 2160
ccctctatgt atatgcatac ctattgtgct gaggggccgg gacaaagcat cacccctaaa 2220
atactggcta aacttttccc agaaatggac ctgtaa 2256
<210>13
<211>2262
<212>DNA
<213>Streptococcus uberis
<400>13
atgcttaatc agctcttaca aaaactccct caaaatacag acattttgga ggcaactttc 60
ggcttggaac gtgaaggcct tcgcctaaca caagaaggga cactggcaca aacagaccac 120
cccaaagccc ttggttcacg aagcttccac ccttatatcc aaaccgactt tagtgagcaa 180
caactggaat tgattacccc catttctcag tcgacacagg aggctagaag acgcctaggc 240
gccatctttg atgtcgcaca gcgtagcctt gaagaagacc aggtcatctg gccactttcc 300
atacccccct atatcgaaga agatcagatt cagattgcta aactggacaa agccgaagag 360
gttcgctacc gggaacaact cgcccaaact tatggcaaaa aacttcaatc catttcaggc 420
atccattaca acatagaact aggtaaaaac ttaacccaaa acctgtttgc ccttagcgac 480
caagaagacc ttaaagactt caaaaatgcc atctacatga agttagctcg ccaattcctc 540
aactaccaat ggctggttac ctaccttttt ggcgctagcc cactagctga aaaagacttc 600
taccctcaga tgccaacaga gctcgtccgt tccttaagag ctagccgccg ttacggatac 660
agcaaccacg aggaattgtc catttccttc tcctcccttg aaaactatgt caaggatatg 720
gaaaatgcct tggccaccgg tatcctgtcc ctagaaaaag aattctactc cccagtccgc 780
ctccgcggca gcaaacatag ccgtgactac ttgtcagaag gcatcaccta cctagaattc 840
cgcaacttcg acatcaaccc cttcgacaag ctaggcatca gccaaaaaac cttagacagc 900
ttccacctct tcctcctcag cctcctatgg ctagacgacc taaaagacag cgaccaagaa 960
ctgacaaaag cccgtcaaat caacgaagaa gtggccttag cccaccccat gagcccactg 1020
cctgacccag aactggcaag accggtcctc aaggccatga cagaactaat ccaacacttc 1080
ggtttagatg cttactacca agacttggtg gcagacctag aactagctat caaggaacct 1140
gaaagaacca tctctggaca cctttttggc aaaatcgcta acgcttcttt ggctgccttt 1200
ggcttagacc aagcaaaaac ttaccaccaa gaggctaccc aggctcccta cgcactcaaa 1260
ggttatgaaa gcatggagtt gtctacgcaa atgctcatgt tcgatgccat ccaaaagggg 1320
cttcatctgg acatcctgga tgaaaatgac caatttttga agatctggca cggcgaccat 1380
gtcgagtatg tcaaaaacgg caacatgacc tcacgtgaca actacgtggt tcctctggcc 1440
atggccaaca aaacggtgac caagaaaatc ttggatcagg ctggttttcc aactccgaag 1500
gggcaggaat ttgccagcaa agaccaggct atccgttact tcaatcagat agcggacaag 1560
gccattgtgg tcaagcctaa atcaaccaac tttggactgg gcatttccat cttccaaaag 1620
ccggccagtc aagctgacta tgaaaaagcc gtggaaattg cctttgcgga agaccgcgac 1680
atcttggtgg aagaatttat tgccggtact gaataccgct tcttcacctt gaatggcaag 1740
tgtgaggccg ttttactgcg tttaccggct aatgtggtgg gcgacggtat ccatacggtc 1800
aaagaattga ttgacctcaa aaatcaaaac ccacttcgag gactagacca ccgttcaccc 1860
ttagagaaaa tccaattagg tgatattgaa aaactgatgt tagctcaaga gggatacggt 1920
cccgactccg tcttagccaa aggggttaag gtcgaacttc gccgcaactc caacatttca 1980
actgggggcg actcggttga tatgaccgat gagatggacc cttcttacaa agcattagca 2040
gctcaaatgg cggatgccat gggagcctgg gtctgtggtg tggacctgat tattcctgac 2100
ccaagtcaaa aggctagtct tgaagagcct aactgccatt gcattgagct caacttcaac 2160
ccttccatgt acatgcatac ttactgtcag gaagggcccg gccaagccat cacccctaaa 2220
attttacaag ccctcttccc agagttgcct atttatccat ag 2262
<210>14
<211>2265
<212>DNA
<213>Streptococcus thermophilus
<400>14
atgacattaa accaacttct tcaaaaactg gaagctacca gccctattct ccaagctaat 60
tttggaatcg agcgcgagag tctacgtgtc gataggcaag gacaactggt gcatacacct 120
cacccatcct gtctaggagc tcgtagtttc cacccctata ttcagactga tttttgcgag 180
tttcagatgg aactcatcac accagttgcc aaatctacta ctgaggctcg ccgatttctg 240
ggagctatta ctgatgtagc tggccgctct attgctacag acgaggttct ctggccttta 300
tccatgccac ctcgtctaaa ggcagaggag attcaagttg ctcaactgga aaatgacttc 360
gaacgccatt atcgtaacta tttggctgaa aaatacggaa ctaaactaca agctatctca 420
ggtatccact ataatatgga actgggtaaa gatttagttg aggccttgtt ccaagaaagt 480
ggtcagaccg atatgattgc cttcaaaaac gccctctatc ttaagctggc tcagaactac 540
ttgcgctacc gttgggtgat tacctatctc tttggggcct cacccatcgc cgaacaaggt 600
ttctttgacc aggaagttcc agaacctgtg cgttccttcc gtaacagtga ccacggctat 660
gtcaataagg aagagattca agtatccttt gtaagtctag aagattatgt ctcagccatt 720
gaaacctata tcgaacaagg agatttgaat gcagagaaag aattttactc agctgttcgt 780
ttccgtggac aaaaggttaa tcgttccttc cttgacaaag gaatcaccta cctagagttc 840
cgtaatttcg accttaaccc ttttgagcgt atcggtatta gtcagactac tatggacact 900
gtgcacttac tcattttagc cttcctttgg cttgatagcc ctgaaaatgt cgaccaagct 960
cttgcacaag gccacgcgtt aaatgagaaa attgccctct ctcatcctct agaacctcta 1020
ccttcggagg ctaaaactca ggacattgta actgccctag accaactggt gcaacacttt 1080
ggacttggtg actatcatca agatctggtt aagcaagtta aggcagcctt tgcggatcca 1140
aatcaaacgc tctctgccca gctcttaccc tatatcaaag acaaatctct agccgaattt 1200
gctttaaaca aggctcttgc ctatcatgat tacgactgga ctgcccacta tgctctcaag 1260
ggctatgaag agatggaact ctccacccag atgttgctct ttgatgccat ccaaaagggg 1320
attcactttg aaatattgga tgagcaagat caattcctaa aactttggca ccaagaccat 1380
gttgaatacg tcaaaaacgg taacatgacc tcaaaagaca actacgtggt tccccttgct 1440
atggctaata agaccgtaac caagaagatt ctagcagatg ctggctttcc agttccttca 1500
ggagacgaat ttaccagtct tgaggaagga cttgcctact accctcttat caaggataag 1560
caaattgttg tcaaacccaa gtcaactaac tttggtctgg gaatttccat tttccaagaa 1620
cctgccagtc ttgacaacta tcaaaaagcc cttgaaattg ctttcgcaga agatacctct 1680
gtccttgttg aagaatttat tccaggaacc gaataccgtt tcttcatctt ggatgggcgt 1740
tgtgaggctg ttcttctgcg tgtcgctgcc aatgttattg gtgatggcaa acacaccatt 1800
cgtgaactag tcgctcagaa aaatgctaat ccattgcgtg gccgtgatca ccggtcacct 1860
ctggaaatca ttgagctagg agacatcgaa caactaatgt tagctcaaca gggttacaca 1920
cctgatgata ttctcccaga aggaaaaaag gtcaatctgc gtcgtaattc caacatctct 1980
acaggtggtg actctattga tatcactgag accatggatt cctcttacca agaattagcc 2040
gcagccatgg caactagcat gggcgcctgg gcttgcgggg ttgatctgat aattccagat 2100
gaaactcaaa ttgccaccaa ggaaaatcct cattgcacct gcattgagct caactttaac 2160
ccttcgatgt atatgcacac ctactgtgct gagggtcctg gccaagctat cactactaaa 2220
atcctagata aactttttcc agaaatagtg gctggtcaaa cttaa 2265

Claims (7)

1. a difunctional glutathione synthetase has two kinds of functions of gamma-glutamylcysteine synthetic enzyme and glutathione synthetase simultaneously, and it is characterized in that: the aminoacid sequence of described difunctional glutathione synthetase is shown in SEQ ID NO:1.
2. difunctional glutathione synthetase according to claim 1, it is characterized in that: described difunctional glutathione synthetase is encoded by gshF, and its gene order is shown in SEQ ID NO:8.
3. method of utilizing difunctional glutathione synthetase synthesizing glutathion claimed in claim 1 is characterized in that: be the catalyzer synthesizing glutathion by the genetic engineering bacterium of expressing actinobacillus pleuropneumoniae (Actinobacillus pleuropneumonia) gshF; Or the difunctional glutathione synthetase that is extracted by the genetic engineering bacterium of expressing actinobacillus pleuropneumoniae (Actinobacillus pleuropneumonia) gshF is the catalyzer synthesizing glutathion, and the aminoacid sequence of described actinobacillus pleuropneumoniae (Actinobacillus pleuropneumonia) gshF is shown in SEQ ID NO:1.
4. the method for synthesizing glutathion according to claim 3 is characterized in that: utilize efficient promoter to regulate and control described actinobacillus pleuropneumoniae (Actinobacillus pleuropneumonia) gshF genetic transcription.
5. the method for synthesizing glutathion according to claim 3, it is characterized in that: the Host Strains of described genetic engineering bacterium is bacterium, yeast or mould.
6. the method for synthesizing glutathion according to claim 5, it is characterized in that: described bacterium is intestinal bacteria (Escherichia coli), Bacillus subtilus (Bacillus subtilis), in the pseudomonas (Pseudomonas) one or more, described yeast is yeast saccharomyces cerevisiae (Saccharomyces cerevisiae),), pichia pastoris phaff (Pichia pastoris), in the multiple-shaped nuohan inferior yeast (Hansenula polymorpha) one or more, described mould are aspergillus oryzae (Aspergillus oryzae) or aspergillus niger (Aspergillus niger).
7. method of utilizing difunctional glutathione synthetase synthesizing glutathion claimed in claim 1, it is characterized in that: the genetic engineering bacterium fermentation by culture expression actinobacillus pleuropneumoniae (Actinobacillus pleuropneumonia) gshF produces, and the aminoacid sequence of described actinobacillus pleuropneumoniae (Actinobacillus pleuropneumonia) gshF is shown in SEQ ID NO:1.
CN2009101993453A 2009-11-25 2009-11-25 Bifunctional glutathione synthetase and method for producing glutathione by using same Expired - Fee Related CN102071171B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101993453A CN102071171B (en) 2009-11-25 2009-11-25 Bifunctional glutathione synthetase and method for producing glutathione by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101993453A CN102071171B (en) 2009-11-25 2009-11-25 Bifunctional glutathione synthetase and method for producing glutathione by using same

Publications (2)

Publication Number Publication Date
CN102071171A CN102071171A (en) 2011-05-25
CN102071171B true CN102071171B (en) 2013-04-10

Family

ID=44029929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101993453A Expired - Fee Related CN102071171B (en) 2009-11-25 2009-11-25 Bifunctional glutathione synthetase and method for producing glutathione by using same

Country Status (1)

Country Link
CN (1) CN102071171B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586369B (en) * 2011-01-10 2014-03-19 华东理工大学 Method for producing glutathione by fermentation of recombinant Escherichia coli
CN104611396B (en) * 2013-11-04 2018-09-04 中国科学院上海生命科学研究院 A method of producing glutathione
KR101745346B1 (en) 2015-01-16 2017-06-09 서강대학교산학협력단 A method for continuous production of glutathione by photosynthetic membrane vesicle
CN105274065B (en) * 2015-11-10 2018-03-30 深圳市古特新生生物科技有限公司 A kind of purification process of difunctional glutathione synthetase
CN108949796A (en) * 2018-07-27 2018-12-07 张家港市华天药业有限公司 It is a kind of for the recombinant bacterium of synthesizing glutathion and the synthetic method of glutathione
CN109055291A (en) * 2018-07-31 2018-12-21 张家港市华天药业有限公司 For the recombinant bacterium of synthesizing glutathion and the synthetic method of glutathione
CN109593735B (en) * 2019-01-26 2019-10-29 珠海天香苑生物科技发展股份有限公司 The mutant of difunctional glutathione synthetase and its application in glutathione synthesis
CN110343651A (en) * 2019-06-11 2019-10-18 张家港市华天药业有限公司 A kind of recombinant bacterium and preparation method thereof for synthesizing glutathion
CN110272930A (en) * 2019-06-11 2019-09-24 张家港市华天药业有限公司 A kind of synthetic method of glutathione
CN110294787A (en) * 2019-06-11 2019-10-01 张家港市华天药业有限公司 A kind of recombinant plasmid and preparation method thereof for synthesizing glutathion
CN110373370B (en) * 2019-07-16 2022-11-18 大连医诺生物股份有限公司 Catalytic system coupled with ATP regeneration system and application of catalytic system in glutathione production process
CN110387379B (en) * 2019-07-16 2022-11-22 大连医诺生物股份有限公司 Mixed culture process and application of recombinant escherichia coli for producing glutathione
CN112779229B (en) * 2019-11-04 2022-07-26 华东理工大学 Thermostable bifunctional glutathione synthetase mutant and application thereof
CN112662720B (en) * 2020-12-31 2024-06-11 上海青平药业有限公司 Preparation method of recombinant bacillus subtilis and glutathione
CN112779173B (en) * 2021-01-06 2023-03-14 江南大学 High-yield glutathione pichia pastoris strain G3-SF and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABR75295;Copeland,A等;《Genbank》;20070705;第1-759位 *
Copeland,A等.ABR75295.《Genbank》.2007,第1-759位.

Also Published As

Publication number Publication date
CN102071171A (en) 2011-05-25

Similar Documents

Publication Publication Date Title
CN102071171B (en) Bifunctional glutathione synthetase and method for producing glutathione by using same
AU2019250216B2 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
CN102586369B (en) Method for producing glutathione by fermentation of recombinant Escherichia coli
CN111893126A (en) Alkaline protease gene, alkaline protease, preparation method and application thereof
CN107406821A (en) For producing the mutation host cell of 3 hydracrylic acids
CN111893125A (en) Chitosan enzyme gene, chitosanase, preparation method and application thereof
CN110607313A (en) Recombinant strain for high yield of L-lysine and construction method and application thereof
JPH05507843A (en) Recombinant yeast strain containing DNA sequences encoding xylose reductase and xylitol dehydrogenase
CN109182310B (en) Application of radiation-resistant Gobi deinococcus keratin gene
KR101262999B1 (en) Recombinant yeast by overexpression of pyruvate decarboxylase and alcohol dehydrogenase for improving productivity of bioethanol and Method for producing ethanol using the same
CN116334050B (en) Artificially designed lysyl endonuclease, coding sequence and fermentation method
CN106011093A (en) Glucose oxidase mutant GOD-M01 with improved enzymatic activity and expression vector and application of glucose oxidase mutant GOD-M01
CN112391300B (en) Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof
CN110195088B (en) Arginine hydrolase, and coding gene and application thereof
CN110343688A (en) Alkali protease PA3 and its encoding gene and application
CN109266634B (en) Application of deinococcus radiodurans keratinase gene kerA
CN109161557B (en) Application of radiation-resistant deinococcus gobi alkaline protease gene KerB
Papagianni et al. Cloning and functional expression of the mitochondrial alternative oxidase gene (aox1) of Aspergillus niger in Lactococcus lactis and its induction by oxidizing conditions
CN114350643B (en) Recombinant strain for producing aminopeptidase and application of recombinant strain in efficient proteolysis
CN113493785A (en) High-strength promoter suitable for corynebacterium glutamicum and application
AU2004272775B2 (en) An NADH dependent L-xylulose reductase
Zhang et al. Cloning and prokaryotic expression of a salt-induced cDNA encoding a chloroplastic fructose-1, 6-diphosphate aldolase in Dunaliella salina (Chlorophyta)
CN115074303B (en) Genetically engineered bacterium capable of degrading feathers, construction method and application thereof
JP6020875B2 (en) Method for producing glutathione
CN114806899B (en) Trichoderma reesei engineering bacteria for producing L-malic acid and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20110525

Assignee: Shanghai Tengrui Pharmaceutical Co.,Ltd.

Assignor: East China University of Science and Technology

Contract record no.: 2013310000113

Denomination of invention: Bifunctional glutathione synthetase and method for producing glutathione by using same

Granted publication date: 20130410

License type: Exclusive License

Record date: 20130905

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130410

Termination date: 20191125

CF01 Termination of patent right due to non-payment of annual fee