CN102063615A - Beacon light optimizing and recognizing denoising method based on spot noise distribution topological characteristic - Google Patents

Beacon light optimizing and recognizing denoising method based on spot noise distribution topological characteristic Download PDF

Info

Publication number
CN102063615A
CN102063615A CN 201010611190 CN201010611190A CN102063615A CN 102063615 A CN102063615 A CN 102063615A CN 201010611190 CN201010611190 CN 201010611190 CN 201010611190 A CN201010611190 A CN 201010611190A CN 102063615 A CN102063615 A CN 102063615A
Authority
CN
China
Prior art keywords
spot
centroid
moment
beacon light
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010611190
Other languages
Chinese (zh)
Other versions
CN102063615B (en
Inventor
王强
马晶
谭立英
于思源
韩琦琦
付森
宋义伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN 201010611190 priority Critical patent/CN102063615B/en
Publication of CN102063615A publication Critical patent/CN102063615A/en
Application granted granted Critical
Publication of CN102063615B publication Critical patent/CN102063615B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

一种基于点噪声分布拓扑特性的信标光优化识别降噪方法,涉及一种信标光优化识别降噪方法。它解决了现有的信标光优化识别降噪方法由于计算量大导致实时性较差的问题。其方法:采用CCD相机对当前时刻的信标光图像并进行阈值分割处理,获得光斑质心分布图像;计算每个光斑的质心分布的特征值向量的半圆面积判别量ΔS3、特征值向量的弧长判别量ΔL3和质心坐标变化率判别量ΔC;并进行判断。从而实现对背景光和信标光的连续跟踪识别降噪。本发明适用于信标光优化识别降噪。

Figure 201010611190

A beacon light optimal recognition noise reduction method based on point noise distribution topology characteristics relates to a beacon light optimal recognition noise reduction method. It solves the problem of poor real-time performance due to the large amount of calculation in the existing beacon light optimization identification and noise reduction methods. The method: use the CCD camera to perform threshold segmentation processing on the beacon light image at the current moment to obtain the spot centroid distribution image; calculate the semicircle area discriminant ΔS 3 of the eigenvalue vector of the centroid distribution of each spot, and the arc of the eigenvalue vector Long discriminant ΔL 3 and centroid coordinate change rate discriminant ΔC; and judge. In this way, continuous tracking, identification and noise reduction of background light and beacon light are realized. The invention is suitable for beacon light optimization identification and noise reduction.

Figure 201010611190

Description

一种基于点噪声分布拓扑特性的信标光优化识别降噪方法 A Beacon Light Optimization Recognition and Noise Reduction Method Based on Topological Characteristics of Point Noise Distribution

技术领域technical field

本发明涉及一种信标光优化识别降噪方法。The invention relates to a beacon light optimization identification noise reduction method.

背景技术Background technique

卫星激光通信系统光电图像识别需要在空间恒星背景下进行,恒星在光电探测器上形成点像,探测器需要在诸多点像中甄别实际需要跟踪的光束点像,这些光束点像即为点噪声。这些点噪声会使得信标光的识别变得较困难,严重时会使得卫星光通信系统的指向偏差,影响链路的建立和稳定。消除点噪声影响的通常采用的方法是查询星表,具体过程是,将点噪声与恒星背景进行匹配,判断其是否为恒星背景光,这种方法的缺点是计算量比较大,实时性较差,不便于在卫星光通信中应用。The photoelectric image recognition of the satellite laser communication system needs to be carried out in the background of space stars. The stars form point images on the photodetector. The detector needs to identify the actual beam point images that need to be tracked among many point images. These beam point images are point noises. . These point noises will make it difficult to identify the beacon light, and in severe cases, it will cause the pointing deviation of the satellite optical communication system, affecting the establishment and stability of the link. The usual method to eliminate the influence of point noise is to query the star catalog. The specific process is to match the point noise with the star background to determine whether it is the star background light. The disadvantage of this method is that the calculation amount is relatively large and the real-time performance is poor. , it is not convenient to apply in satellite optical communication.

发明内容Contents of the invention

本发明是为了解决现有的信标光优化识别降噪方法由于计算量大导致实时性较差的问题,从而提供一种基于点噪声分布拓扑特性的信标光优化识别降噪方法。The present invention aims to solve the problem of poor real-time performance due to large amount of calculation in the existing beacon light optimization identification and noise reduction method, thereby providing a beacon light optimization identification noise reduction method based on point noise distribution topology characteristics.

一种基于点噪声分布拓扑特性的信标光优化识别降噪方法,它的方法是:A beacon light optimization identification noise reduction method based on point noise distribution topological characteristics, its method is:

采用CCD相机从初始时刻开始连续采集多幅图像,CCD相机的采样周期为n,CCD相机的采样率为fCCDAdopt the CCD camera to start collecting multiple images continuously from the initial moment, the sampling period of the CCD camera is n, and the sampling rate of the CCD camera is fCCD ;

将初始时刻的下一时刻作为当前时刻,将该时刻所采集到的图像作为当前时刻的图像;Taking the moment next to the initial moment as the current moment, and the image collected at this moment as the image of the current moment;

步骤一、将当前时刻的图像进行阈值分割处理,获得光斑质心分布图像;Step 1. Perform threshold segmentation processing on the image at the current moment to obtain a spot centroid distribution image;

步骤二、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 2. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula:

SS 33 ′′ SS 33 == 11 ++ ΔΔ SS 33

计算每个光斑的质心分布的特征值向量的半圆面积判别量ΔS3;式中:S′3和S3分别为当前时刻的前一时刻和后一时刻下的CCD相机所采集图像的点噪声分布的特征值向量的半圆面积参量;Calculate the semicircle area discriminant ΔS 3 of the eigenvalue vector of the centroid distribution of each spot; where: S′ 3 and S 3 are the point noise of the image collected by the CCD camera at the previous moment and the next moment of the current moment respectively the semicircle area parameter of the eigenvalue vector of the distribution;

步骤三、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 3. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula:

LL 33 ′′ LL 33 == 11 ++ ΔΔ LL 33

计算每个光斑的质心分布的特征值向量的弧长判别量ΔL3;式中:L′3和L3分别为当前时刻的前一时刻和后一时刻下的CCD相机所采集图像中点噪声分布的特征值向量的弧长参量;Calculate the arc length discriminant ΔL 3 of the eigenvalue vector of the centroid distribution of each spot; where: L′ 3 and L 3 are the point noise in the image collected by the CCD camera at the previous moment and the next moment of the current moment respectively the arc length parameter of the eigenvalue vector of the distribution;

步骤四、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 4. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula:

(( xx ii 11 -- xx ii 22 )) 22 ++ (( ythe y ii 11 -- ythe y ii 22 )) 22 nno ·· 11 ff CCDCCD == 11 ++ ΔCΔC

计算该光斑的质心坐标变化率判别量ΔC;式中:(xi1,yi1)为第i个光斑初始时刻的质心坐标,(xi2,yi2)为第n个采样周期中获得的光斑质心坐标,K为CCD相机视域内的光斑个数,i、n均为正整数;Calculate the discriminant ΔC of the centroid coordinate change rate of the spot; where (x i1 , y i1 ) is the centroid coordinate of the i-th spot at the initial moment, (x i2 , y i2 ) is the spot obtained in the n-th sampling period Centroid coordinates, K is the number of spots in the field of view of the CCD camera, i and n are both positive integers;

步骤五、遍历光斑质心分布图像中的每个光斑,进行信标光识别,对每个光斑的识别过程为:判断该光斑的质心分布的特征值向量的半圆面积判别量ΔS3、计算光斑质心分布的特征值向量的弧长判别量ΔL3是否均小于5个像素,如果判断结果为是,则执行步骤五一;如果判断结果为否,则执行步骤五二;Step 5. Traversing each spot in the spot centroid distribution image to identify the beacon light. The identification process for each spot is: judging the semicircle area discriminant ΔS 3 of the eigenvalue vector of the centroid distribution of the spot, and calculating the spot centroid Whether the arc length discrimination quantity ΔL 3 of the distributed eigenvalue vector is less than 5 pixels, if the judgment result is yes, then execute step 51; if the judgment result is no, then execute step 52;

步骤五一、判断该光斑的质心坐标变化率判别量ΔC是否小于五个像素/每秒钟,如果判断结果为是,则该光斑为恒星背景光斑,当遍历所有的光斑均为恒星背景光斑时,表示当前时刻的图像中没有信标光光斑,执行步骤六;如果判断结果为否,则执行步骤五二;Step 51. Determine whether the discriminant value ΔC of the centroid coordinate change rate of the spot is less than five pixels per second. If the judgment result is yes, the spot is a star background spot. When all the spots traversed are stellar background spots , indicating that there is no beacon light spot in the image at the current moment, go to step 6; if the judgment result is no, go to step 52;

步骤五二、将所有光斑的质心坐标变化率判别量ΔC进行比较,其中质心坐标变化率判别量ΔC最大者所对应的光斑为当前时刻的信标光光斑,实现信标光识别降噪,并执行步骤六;Step 52: Compare the discriminant amount ΔC of the centroid coordinate change rate of all light spots, and the spot corresponding to the largest discriminant amount ΔC of the centroid coordinate change rate is the beacon light spot at the current moment, so as to realize beacon light recognition and noise reduction, and Execute step six;

步骤六、将下一个时刻对应的图像作为当前时刻的图像,返回步骤一继续进行信标光识别。Step 6. Use the image corresponding to the next moment as the image at the current moment, and return to step 1 to continue beacon light recognition.

有益效果:本发明提出一种基于点噪声分布拓扑特性的信标光优化识别降噪方法,充分利用CCD图像点噪声分布拓扑结构的特征值,实现了对信标光的准确识别,由于此种方法的计算量很小,所以具有良好的实时性。Beneficial effects: the present invention proposes a beacon light optimization identification noise reduction method based on point noise distribution topological characteristics, fully utilizes the characteristic value of the CCD image point noise distribution topology structure, and realizes accurate identification of beacon light. The calculation amount of the method is very small, so it has good real-time performance.

附图说明Description of drawings

图1是具体实施方式一中点噪声分布特征值计算示意图。Fig. 1 is a schematic diagram of the calculation of the characteristic value of the midpoint noise distribution in the specific embodiment one.

具体实施方式Detailed ways

具体实施方式一、一种基于点噪声分布拓扑特性的信标光优化识别降噪方法,它的方法是:Specific embodiments 1. A beacon light optimization identification and noise reduction method based on point noise distribution topology characteristics, its method is:

采用CCD相机从初始时刻开始连续采集多幅图像,CCD相机的采样周期为n,CCD相机的采样率为fCCDAdopt the CCD camera to start collecting multiple images continuously from the initial moment, the sampling period of the CCD camera is n, and the sampling rate of the CCD camera is fCCD ;

将初始时刻的下一时刻作为当前时刻,将该时刻所采集到的图像作为当前时刻的图像;Taking the moment next to the initial moment as the current moment, and the image collected at this moment as the image of the current moment;

步骤一、将当前时刻的图像进行阈值分割处理,获得光斑质心分布图像;Step 1. Perform threshold segmentation processing on the image at the current moment to obtain a spot centroid distribution image;

步骤二、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 2. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula:

SS 33 ′′ SS 33 == 11 ++ ΔΔ SS 33

计算每个光斑的质心分布的特征值向量的半圆面积判别量ΔS3;式中:S′3和S3分别为当前时刻的前一时刻和后一时刻下的CCD相机所采集图像的点噪声分布的特征值向量的半圆面积参量;Calculate the semicircle area discriminant ΔS 3 of the eigenvalue vector of the centroid distribution of each spot; where: S′ 3 and S 3 are the point noise of the image collected by the CCD camera at the previous moment and the next moment of the current moment respectively the semicircle area parameter of the eigenvalue vector of the distribution;

步骤三、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 3. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula:

LL 33 ′′ LL 33 == 11 ++ ΔΔ LL 33

计算每个光斑的质心分布的特征值向量的弧长判别量ΔL3;式中:L′3和L3分别为当前时刻的前一时刻和后一时刻下的CCD相机所采集图像中点噪声分布的特征值向量的弧长参量;Calculate the arc length discriminant ΔL 3 of the eigenvalue vector of the centroid distribution of each spot; where: L′ 3 and L 3 are the point noise in the image collected by the CCD camera at the previous moment and the next moment of the current moment respectively the arc length parameter of the eigenvalue vector of the distribution;

步骤四、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 4. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula:

(( xx ii 11 -- xx ii 22 )) 22 ++ (( ythe y ii 11 -- ythe y ii 22 )) 22 nno ·&Center Dot; 11 ff CCDCCD == 11 ++ ΔCΔC

计算该光斑的质心坐标变化率判别量ΔC;式中:(xi1,yi1)为第i个光斑初始时刻的质心坐标,(xi2,yi2)为第n个采样周期中获得的光斑质心坐标,K为CCD相机视域内的光斑个数,i、n均为正整数;Calculate the discriminant ΔC of the centroid coordinate change rate of the spot; where (x i1 , y i1 ) is the centroid coordinate of the i-th spot at the initial moment, (x i2 , y i2 ) is the spot obtained in the n-th sampling period Centroid coordinates, K is the number of spots in the field of view of the CCD camera, i and n are both positive integers;

步骤五、遍历光斑质心分布图像中的每个光斑,进行信标光识别,对每个光斑的识别过程为:判断该光斑的质心分布的特征值向量的半圆面积判别量ΔS3、计算光斑质心分布的特征值向量的弧长判别量ΔL3是否均小于5个像素,如果判断结果为是,则执行步骤五一;如果判断结果为否,则执行步骤五二;Step 5. Traversing each spot in the spot centroid distribution image to identify the beacon light. The identification process for each spot is: judging the semicircle area discriminant ΔS 3 of the eigenvalue vector of the centroid distribution of the spot, and calculating the spot centroid Whether the arc length discrimination quantity ΔL 3 of the distributed eigenvalue vector is less than 5 pixels, if the judgment result is yes, then execute step 51; if the judgment result is no, then execute step 52;

步骤五一、判断该光斑的质心坐标变化率判别量ΔC是否小于五个像素/每秒钟,如果判断结果为是,则该光斑为恒星背景光斑,当遍历所有的光斑均为恒星背景光斑时,表示当前时刻的图像中没有信标光光斑,执行步骤六;如果判断结果为否,则执行步骤五二;Step 51. Determine whether the center of mass coordinate change rate discrimination value ΔC of the spot is less than five pixels per second. If the judgment result is yes, the spot is a star background spot. , indicating that there is no beacon light spot in the image at the current moment, go to step 6; if the judgment result is no, go to step 52;

步骤五二、将所有光斑的质心坐标变化率判别量ΔC进行比较,其中质心坐标变化率判别量ΔC最大者所对应的光斑为当前时刻的信标光光斑,实现信标光识别降噪,并执行步骤六;Step 52: Compare the discriminant amount ΔC of the centroid coordinate change rate of all light spots, and the spot corresponding to the largest discriminant amount ΔC of the centroid coordinate change rate is the beacon light spot at the current moment, so as to realize beacon light recognition and noise reduction, and Execute step six;

步骤六、将下一个时刻对应的图像作为当前时刻的图像,返回步骤一继续进行信标光识别。Step 6. Use the image corresponding to the next moment as the image at the current moment, and return to step 1 to continue beacon light recognition.

重复上述步骤,实现对信标光的跟踪。Repeat the above steps to realize the tracking of the beacon light.

工作原理:首先定义遍历CCD图像全部光斑的半圆弧封闭曲线长度和各个半圆面积总和为光斑分布的特征值向量,前者称为弧长参量,后者称为半圆参量,显然,这个特征值向量是一个二维向量。在图1中所示,各个半圆弧段长度之和为P01+P20+P12,如果S1是由光斑0和光斑1所成直线段与连接这两个光斑的半圆弧线P01围成的半圆盘面积,其余记号的理解同理。那么,全部半圆面积总和为S1+S2+S3。此时,点噪声分布的特征值向量就是二维向量(P01+P20+P12,S1+S2+S3)。如果光斑1在光斑0和光斑2所形成的直线段上运动,点噪声分布的特征值向量(P01+P20+P12,S1+S2+S3)将会发生变化,即特征值向量能够体现点噪声分布的变化。Working principle: First, define the length of the closed curve of the semicircle that traverses all the spots of the CCD image and the sum of the areas of each semicircle as the eigenvalue vector of the spot distribution. The former is called the arc length parameter, and the latter is called the semicircle parameter. Obviously, this eigenvalue vector is a two-dimensional vector. As shown in Figure 1, the sum of the lengths of each semicircle segment is P 01 + P 20 + P 12 , if S 1 is a straight line segment formed by spot 0 and spot 1 and the semicircle arc line P connecting these two spots The area of the semi-disc surrounded by 01 , the understanding of other symbols is the same. Then, the sum of the areas of all semicircles is S 1 +S 2 +S 3 . At this time, the eigenvalue vector of the point noise distribution is a two-dimensional vector (P 01 +P 20 +P 12 , S 1 +S 2 +S 3 ). If spot 1 moves on the straight line segment formed by spot 0 and spot 2, the eigenvalue vector (P 01 +P 20 +P 12 , S 1 +S 2 +S 3 ) of the point noise distribution will change, that is, the characteristic The value vector can reflect the change of point noise distribution.

为了给出利用图像点噪声分布的特征值的信标光捕获识别方法,先从连续两帧采样图像点噪声分布特征值构造捕获识别信标光的两个判别量。In order to give a beacon light capture and recognition method using the eigenvalues of image point noise distribution, two discriminants for capturing and identifying beacon light are constructed from the eigenvalues of image point noise distribution in two consecutive frames.

令:make:

SS 33 ′′ SS 33 == 11 ++ ΔΔ SS 33

其中,S′3和S3分别为前后两时刻CCD采集图像所得点噪声分布的特征值向量的半圆面积参量,ΔS3是半圆面积判别量,它主要由系统的综合误差、点噪声和信标光的移动共同决定。令:Among them, S′ 3 and S 3 are the semicircle area parameters of the eigenvalue vectors of the point noise distribution obtained from the images collected by the CCD at two moments before and after, respectively. The move is jointly decided. make:

LL 33 ′′ LL 33 == 11 ++ ΔΔ LL 33

其中,L′3和L3分别为前后两时刻CCD采集图像所得点噪声分布的特征值向量的弧长参量,ΔL3是弧长判别量,它主要由系统的综合误差、点噪声和信标光的移动共同决定。Among them, L′ 3 and L 3 are the arc length parameters of the eigenvalue vectors of the point noise distribution obtained from the images collected by the CCD at two moments before and after, respectively, and ΔL 3 is the discriminant quantity of the arc length, which is mainly determined by the comprehensive error of the system, point noise and beacon light. The move is jointly decided.

(( xx ii 11 -- xx ii 22 )) 22 ++ (( ythe y ii 11 -- ythe y ii 22 )) 22 nno ·· 11 ff CCDCCD == 11 ++ ΔCΔC (( ii == 1,2,31,2,3 ,, .. .. .. .. .. .. ,, KK ))

其中,(xi1,yi1)为第i个光斑初始时刻的质心坐标,n为CCD的采样周期,fCCD为CCD的采样率,(xi2,yi2)为第n个采样周期时的质心坐标,ΔC是利用点噪声分布中质心坐标缓慢变化特性进行信标光捕获识别的坐标变化率判别量,它是一个补充判别量,主要由系统综合误差所决定,K为CCD视域内的光斑个数。Among them, (x i1 , y i1 ) is the centroid coordinates of the i-th spot at the initial moment, n is the sampling period of the CCD, f CCD is the sampling rate of the CCD, (x i2 , y i2 ) is the Centroid coordinates, ΔC is the discriminant quantity of the coordinate change rate of the beacon light capture and recognition by using the slow change characteristics of the centroid coordinates in the point noise distribution, it is a supplementary discriminant quantity, mainly determined by the comprehensive error of the system, K is the light spot in the CCD field of view number.

本实施方式中选用台湾敏通公司生产的MTV-1801的CCD相机,主要参数如下:像元数795(H)×596(V);光谱响应范围400nm~1100nm;分辨率600TVL;探测灵敏度0.021lx;信噪比大于46dB;工作温度为-10℃~50℃。并且采用基于1394协议的视频数据采集卡,将图像信息输入计算机。Select the CCD camera of MTV-1801 produced by Taiwan Mintong Company for use in this embodiment, the main parameters are as follows: number of pixels 795 (H) × 596 (V); spectral response range 400nm~1100nm; resolution 600TVL; detection sensitivity 0.021lx ; The signal-to-noise ratio is greater than 46dB; the working temperature is -10℃~50℃. And the video data acquisition card based on the 1394 protocol is used to input the image information into the computer.

Claims (1)

1.一种基于点噪声分布拓扑特性的信标光优化识别降噪方法,其特征是:它的方法是:1. A beacon light optimization identification noise reduction method based on point noise distribution topological characteristics, is characterized in that: its method is: 采用CCD相机从初始时刻开始连续采集多幅图像,CCD相机的采样周期为n,CCD相机的采样率为fCCDAdopt the CCD camera to start collecting multiple images continuously from the initial moment, the sampling period of the CCD camera is n, and the sampling rate of the CCD camera is fCCD ; 将初始时刻的下一时刻作为当前时刻,将该时刻所采集到的图像作为当前时刻的图像;Taking the moment next to the initial moment as the current moment, and the image collected at this moment as the image of the current moment; 步骤一、将当前时刻的图像进行阈值分割处理,获得光斑质心分布图像;Step 1. Perform threshold segmentation processing on the image at the current moment to obtain a spot centroid distribution image; 步骤二、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 2. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula: SS 33 ′′ SS 33 == 11 ++ ΔΔ SS 33 计算每个光斑的质心分布的特征值向量的半圆面积判别量ΔS3;式中:S′3和S3分别为当前时刻的前一时刻和后一时刻下的CCD相机所采集图像的点噪声分布的特征值向量的半圆面积参量;Calculate the semicircle area discriminant ΔS 3 of the eigenvalue vector of the centroid distribution of each spot; where: S′ 3 and S 3 are the point noise of the image collected by the CCD camera at the previous moment and the next moment of the current moment respectively the semicircle area parameter of the eigenvalue vector of the distribution; 步骤三、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 3. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula: LL 33 ′′ LL 33 == 11 ++ ΔΔ LL 33 计算每个光斑的质心分布的特征值向量的弧长判别量ΔL3;式中:L′3和L3分别为当前时刻的前一时刻和后一时刻下的CCD相机所采集图像中点噪声分布的特征值向量的弧长参量;Calculate the arc length discriminant ΔL 3 of the eigenvalue vector of the centroid distribution of each spot; where: L′ 3 and L 3 are the point noise in the image collected by the CCD camera at the previous moment and the next moment of the current moment respectively the arc length parameter of the eigenvalue vector of the distribution; 步骤四、根据步骤一获得的光斑质心分布图像,对于其中每一个光斑,均通过公式:Step 4. According to the spot centroid distribution image obtained in step 1, for each spot, use the formula: (( xx ii 11 -- xx ii 22 )) 22 ++ (( ythe y ii 11 -- ythe y ii 22 )) 22 nno ·&Center Dot; 11 ff CCDCCD == 11 ++ ΔCΔC 计算该光斑的质心坐标变化率判别量ΔC;式中:(xi1,yi1)为第i个光斑初始时刻的质心坐标,(xi2,yi2)为第n个采样周期中获得的光斑质心坐标,K为CCD相机视域内的光斑个数,i、n均为正整数;Calculate the discriminant ΔC of the centroid coordinate change rate of the spot; where (x i1 , y i1 ) is the centroid coordinate of the i-th spot at the initial moment, (x i2 , y i2 ) is the spot obtained in the n-th sampling period Centroid coordinates, K is the number of spots in the field of view of the CCD camera, i and n are both positive integers; 步骤五、遍历光斑质心分布图像中的每个光斑,进行信标光识别,对每个光斑的识别过程为:判断该光斑的质心分布的特征值向量的半圆面积判别量ΔS3、计算光斑质心分布的特征值向量的弧长判别量ΔL3是否均小于5个像素,如果判断结果为是,则执行步骤五一;如果判断结果为否,则执行步骤五二;Step 5. Traversing each spot in the spot centroid distribution image to identify the beacon light. The identification process for each spot is: judging the semicircle area discriminant ΔS 3 of the eigenvalue vector of the centroid distribution of the spot, and calculating the spot centroid Whether the arc length discrimination quantity ΔL 3 of the distributed eigenvalue vector is less than 5 pixels, if the judgment result is yes, then execute step 51; if the judgment result is no, then execute step 52; 步骤五一、判断该光斑的质心坐标变化率判别量ΔC是否小于五个像素/每秒钟,如果判断结果为是,则该光斑为恒星背景光斑,当遍历所有的光斑均为恒星背景光斑时,表示当前时刻的图像中没有信标光光斑,执行步骤六;如果判断结果为否,则执行步骤五二;Step 51. Determine whether the discriminant value ΔC of the centroid coordinate change rate of the spot is less than five pixels per second. If the judgment result is yes, the spot is a star background spot. When all the spots traversed are stellar background spots , indicating that there is no beacon light spot in the image at the current moment, go to step 6; if the judgment result is no, go to step 52; 步骤五二、将所有光斑的质心坐标变化率判别量ΔC进行比较,其中质心坐标变化率判别量ΔC最大者所对应的光斑为当前时刻的信标光光斑,实现信标光识别降噪,并执行步骤六;Step 52: Compare the discriminant amount ΔC of the centroid coordinate change rate of all light spots, and the spot corresponding to the largest discriminant amount ΔC of the centroid coordinate change rate is the beacon light spot at the current moment, so as to realize beacon light recognition and noise reduction, and Execute step six; 步骤六、将下一个时刻对应的图像作为当前时刻的图像,返回步骤一继续进行信标光识别。Step 6. Use the image corresponding to the next moment as the image at the current moment, and return to step 1 to continue beacon light recognition.
CN 201010611190 2010-12-29 2010-12-29 Beacon light optimizing and recognizing denoising method based on spot noise distribution topological characteristic Expired - Fee Related CN102063615B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010611190 CN102063615B (en) 2010-12-29 2010-12-29 Beacon light optimizing and recognizing denoising method based on spot noise distribution topological characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010611190 CN102063615B (en) 2010-12-29 2010-12-29 Beacon light optimizing and recognizing denoising method based on spot noise distribution topological characteristic

Publications (2)

Publication Number Publication Date
CN102063615A true CN102063615A (en) 2011-05-18
CN102063615B CN102063615B (en) 2013-03-06

Family

ID=43998884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010611190 Expired - Fee Related CN102063615B (en) 2010-12-29 2010-12-29 Beacon light optimizing and recognizing denoising method based on spot noise distribution topological characteristic

Country Status (1)

Country Link
CN (1) CN102063615B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472433A (en) * 2021-06-25 2021-10-01 山东航天电子技术研究所 Beacon optical center coordinate calculation error evaluation method suitable for laser communication
CN117437438A (en) * 2023-11-01 2024-01-23 哈尔滨工业大学 Remote beacon light spot tracking and identifying method, system, equipment and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056599A1 (en) * 2006-08-31 2008-03-06 Akihiro Machida Method and system for far field image absolute navigation sensing
CN101344968A (en) * 2008-09-02 2009-01-14 西北工业大学 Motion Compensation Method in Starry Sky Background Images
CN101645742A (en) * 2009-09-04 2010-02-10 中国科学院上海技术物理研究所 Tracking system of satellite-ground quantum communication link direction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056599A1 (en) * 2006-08-31 2008-03-06 Akihiro Machida Method and system for far field image absolute navigation sensing
CN101344968A (en) * 2008-09-02 2009-01-14 西北工业大学 Motion Compensation Method in Starry Sky Background Images
CN101645742A (en) * 2009-09-04 2010-02-10 中国科学院上海技术物理研究所 Tracking system of satellite-ground quantum communication link direction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472433A (en) * 2021-06-25 2021-10-01 山东航天电子技术研究所 Beacon optical center coordinate calculation error evaluation method suitable for laser communication
CN113472433B (en) * 2021-06-25 2024-05-31 山东航天电子技术研究所 A method for evaluating the calculation error of beacon light center coordinates for laser communication
CN117437438A (en) * 2023-11-01 2024-01-23 哈尔滨工业大学 Remote beacon light spot tracking and identifying method, system, equipment and medium
CN117437438B (en) * 2023-11-01 2024-07-23 哈尔滨工业大学 Remote beacon light spot tracking and identifying method, system, equipment and medium

Also Published As

Publication number Publication date
CN102063615B (en) 2013-03-06

Similar Documents

Publication Publication Date Title
CN107014294B (en) A method and system for detecting geometric parameters of catenary based on infrared images
CN102799856A (en) Human action recognition method based on two-channel infrared information fusion
CN108681992A (en) The image interpolation algorithm of laser facula is measured for detector array method
CN106128121B (en) Vehicle queue length fast algorithm of detecting based on Local Features Analysis
CN103679748B (en) A kind of infrared remote sensing image dim point-target extraction element and method
CN103295221B (en) The waterborne target method for testing motion of simulation compound eye visual mechanism and polarization imaging
CN108764234B (en) Liquid level meter reading identification method based on inspection robot
CN102831617A (en) Method and system for detecting and tracking moving object
CN107909018A (en) A kind of sane multi-modal Remote Sensing Images Matching Method and system
CN103247032A (en) Weak extended target positioning method based on attitude compensation
CN102063615A (en) Beacon light optimizing and recognizing denoising method based on spot noise distribution topological characteristic
CN116188943A (en) Solar radio spectrum burst information detection method and device
CN119672321A (en) Thermal target extraction method and extraction system based on infrared image recognition
CN102510437B (en) Method for detecting background of video image based on distribution of red, green and blue (RGB) components
CN114818914A (en) Multivariate time sequence classification method based on phase space and optical flow images
CN112232249B (en) Remote sensing image change detection method and device based on depth characteristics
CN114330502A (en) UWB and virtual-real scene similarity measurement fusion-based operation and maintenance personnel accurate positioning method
CN117113284B (en) Multi-sensor fusion data processing method and device and multi-sensor fusion method
CN118887105A (en) A multi-spectral fusion intelligent perception and safety warning system for underground rubber-wheeled vehicles
CN118781192A (en) Multi-mobile robot visual SLAM method based on deep learning
CN104063689A (en) Face image identification method based on binocular stereoscopic vision
CN103065310A (en) Hyperspectral image marginal information extraction method based on three-dimensional light spectrum angle statistic
CN117679130A (en) Puncture needle tip positioning method based on cumulative sparse optical flow
Liu et al. Tree species classification based on PointNet++ deep learning and true-colour point cloud
CN104050659A (en) Method for measuring workpiece linear edges

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130306