CN102063555B - 基于网格结构的有限元数值模型查错方法 - Google Patents

基于网格结构的有限元数值模型查错方法 Download PDF

Info

Publication number
CN102063555B
CN102063555B CN2011100271048A CN201110027104A CN102063555B CN 102063555 B CN102063555 B CN 102063555B CN 2011100271048 A CN2011100271048 A CN 2011100271048A CN 201110027104 A CN201110027104 A CN 201110027104A CN 102063555 B CN102063555 B CN 102063555B
Authority
CN
China
Prior art keywords
bin
node
coordinate
nodes
geologic model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011100271048A
Other languages
English (en)
Other versions
CN102063555A (zh
Inventor
石崇
徐卫亚
聂卫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN2011100271048A priority Critical patent/CN102063555B/zh
Publication of CN102063555A publication Critical patent/CN102063555A/zh
Application granted granted Critical
Publication of CN102063555B publication Critical patent/CN102063555B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Debugging And Monitoring (AREA)

Abstract

一种基于网格结构的有限元数值模型查错方法,将地质模型划分为多个4面体4节点、5面体6节点及6面体8节点网格对象,再将4面体4节点、5面体6节点网格对象转化为6面体8节点网格对象,以6面体8节点、由4面体4节点、5面体6节点网格对象转化为6面体8节点的网格对象作为单元,单元信息归类,得到节点和结构信息,节点编号根据节点位置,按先下后上、逆时针顺序编号;对所有六面体8节点单元中的面元进行编号,即各点按照右手规则指向单元内部,将面元内的节点编号进行组合,得到面元编码;在6*ne个面元中进行面积检索并剔除零面积面元,左、右、前、后、上及下边界,公用面元,剩余面元为可能的模型错误位置。

Description

基于网格结构的有限元数值模型查错方法
技术领域
本发明涉及土木工程等工科数值分析领域的前处理部分。
背景技术
数值模拟技术是土木工程力学分析的重要手段,地质建模是数值模拟技术前处理的主要组成部分。在复杂条件下如大坝坝肩、大型地下洞室、复杂构件的模型构建中,由于构筑物的复杂几何条件、结构面空间交切关系影响,稍有不慎即可能导致模型出现错误,使计算结果失真,甚至无法计算。为了搞清错误的来源,普通的方法是从点-线-面建模历程中进行检查,且要按照一定的顺序进行遍历,如沿着模型的坐标轴方向逐点、逐线、逐面检查;若模型存在多处错误需逐项排除,多次反复,对于简单的有限元模型相对容易,若有限元模型节点、单元数目上万甚至几十万、上百万,采用普通的模型查错方法就显得力不从心,不仅耗费大量的时间,多次的返工,造成研究工作者失去耐心。
发明内容
本发明针对土木工程领域的地质模型对象,提供了一种能够进行信息自动检索、快速查错的基于网格结构的有限元数值模型查错方法。
本发明采用如下技术方案:
一种基于网格结构的有限元数值模型查错方法, 
步骤1 对土木工程领域的地质模型进行数值分析,进行有限分割,将地质模型划分为多个4面体4节点网格对象、5面体6节点网格对象及6面体8节点网格对象,再将4面体4节点网格对象转化为6面体8节点网格对象,同时再将5面体6节点网格对象转化为6面体8节点网格对象,并以6面体8节点网格对象、由4面体4节点网格对象转化为6面体8节点的网格对象及由5面体6节点网格对象转化为6面体8节点的网格对象作为单元,各单元通过相连节点实现力学分析,对单元信息进行归类,得到节点信息和结构信息,节点信息包括节点数目np和节点坐标,结构信息包括单元数目ne、单元结构形状和构成单元的节点编号信息,所述节点编号采用以下方法获得:根据节点位置,按照先下面后上面、逆时针顺序,给节点编制编号,
所述的4面体4节点网格对象转化为6面体8节点网格对象的转化方法如下:4面体4节点表现为四面体,将任意三点作为底面,三点仍以逆时针顺序,另外一点作为顶面,原四节点4面体编号为a b c d,则转为8节点,并记为a b c c d d d d;
所述的5面体6节点网格对象转化为6面体8节点网格对象的转化方法如下:5面体6节点网格表现为三棱柱,分别以三棱柱两个三角形面作为底面、顶面,分别将底面、顶面三点扩展为2点重合的四点,则原三棱柱节点编号a b c d e f,转化为六面体a b c c d e f f,
步骤2 对所有六面体8节点单元中的面元进行编号,所述编号采用下列方法:各点按照右手规则指向单元内部,将面元内的节点编号进行组合,得到面元编码;
在6*ne个面元中进行面积检索,找到面积为零的面元,设面积为零的面元数量为n0个,并予以剔除,得到待检查的6*ne-n0个剩余面元; 
根据空间节点坐标矩阵,在6*ne-n0个剩余面元中寻找出左边界、右边界、前边界、后边界、上边界及下边界,寻找方法为:
分别搜索x方向坐标值、y方向坐标值及z方向坐标值,从中寻找出最小x坐标值xmin、最大x坐标值xmax,最小y坐标值ymin、最大y坐标值ymax,最小z坐标值zmin、最大z坐标值zmax,定义x=xmin为地质模型左边界面,x=xmax为地质模型右边界面,y=ymin为地质模型前边界面,y=ymax为地质模型后边界面,z=zmin为地质模型下边界面,z=zmax为地质模型上边界面,
设置一容差tol=0.01,如果面元上4个节点的x坐标值与xmin的距离小于容差,则该面元必为地质模型左边界面元之一;如果面元上4个节点的x坐标值与xmax的距离小于容差,则该面元必为地质模型右边界面元之一;如果面元上4个节点的y坐标值与ymin的距离小于容差,则该面元必为地质模型前边界面元之一;如果面元上4个节点的y坐标值与ymax的距离小于容差,则该面元必为地质模型后边界面元之一;如果面元上4个节点的z坐标值与zmin的距离小于容差,则该面元必为地质模型下边界面元之一;如果面元上4个节点的z坐标值与zmax的距离小于容差,则该面元必为地质模型上边界面元之一;
将地质模型的上、下、左、右、前及后边界面的总数目记为n1,并在待检查的6*ne-n0个剩余面元中予以剔除,得到待检查的6*ne-n0-n1个二次剩余面元,
步骤3 在6*ne-n0-n1个二次剩余面元中任选一个面元,若所选的面元被两个或以上单元公用,则所选的面元为单元间正常连接,不参与查错并从待检查的6*ne-n0-n1个二次剩余面元中予以剔除,遍历二次剩余面元中的每个面元,待检查的6*ne-n0-n1个二次剩余面元未被剔除的剩余面元为独享面元,独享面元所处位置即为可能的模型错误位置。
与现有技术相比,本发明具有如下优点:
(1)对地质模型进行有限分割,然后基于网格结构信息自动检索,克服了人工查错费时费力的困难;
(2)节约时间,模型越复杂,节约时间越多;
本发明针对土木工程领域的地质模型,首先进行有限分割,得到其节点及单元信息,再利用网格结构,通过单元的节点坐标、网格结构关系进行自检索,使可能出现错误的位置列出,从而可在模型中进行一次性修改,达到省时省力的目的。本发明通过以下步骤实现:
(1)对土木工程领域的地质模型进行数值分析,进行有限分割,将地质模型对象转为为6面体8节点单元进行分析。
(2)将每个6面体8节点单元拆分为6个空间面元,分析每个面元的属性,并剔除具有明显特征的面元(零面积及边界面元)。
(3)在剩余面元中进行网格自检索。通过各单元体的面元对应关系,分析各单元体是否满足数值计算的规则,判断各面元是否为两个或多个单元体公用,若某面元仅被一个单元体使用则为一潜在错误面元,称为独享面元。
(4)得到可能出现错误的独享面元;
错误的单元信息一般由于单元之间不正常连接引起,因此出现错误的面元特征是独一无二的。模型错误即包含在这些独享面元中,将所有独享的面元输出并显示,便于对出现错误的位置进行定位。
附图说明:
图1为六面体网格结构图。
图2为三棱柱网格结构图。
图3为四面体网格结构图。
图4为两个及以上单元公用同一面元的面元素组合关系图。
图5为属性相同的四边形面元与三角形面元的面元素组合关系图。
图6 复杂结构三维有限元模型示意图,1—断层,2—洞室,3—地表。
图7 模型出现的错误独享面元信息显示。
图8无错误信息的检查结果。
图9网格检查程序。
具体实施方式
下面参照附图,对本发明的具体实施方案做一详细描述:
为实现本发明,所述的基于网络结构的有限元模型查错新方法,在步骤1中,将地质模型划分为多个4面体4节点网格对象(图3)、5面体6节点网格对象(图2)及6面体8节点网格对象(图1),再将4面体4节点网格对象、5面体6节点网格对象转化为6面体8节点网格对象,每一个6面体8节点网格对象称为一个单元,对单元信息进行归类,得到节点信息和结构信息,节点信息包括节点数目np和节点坐标,结构信息包括单元数目ne单元结构形状和构成单元的节点编号信息,所述节点编号根据节点位置,按照先下面后上面、逆时针顺序,给节点编制编号。
所述的4面体4节点网格对象转化为6面体8节点网格对象的转化方法如下:4面体4节点表现为四面体,将任意三点作为底面,三点仍以逆时针顺序,另外一点作为顶面,原四节点4面体编号为a b c d ,则转为8节点可写为a b c c d d d d;
所述的5面体6节点网格对象转化为6面体8节点网格对象的转化方法如下:5面体6节点网格表现为三棱柱,分别以三棱柱两个三角形面作为底面、顶面,底面三点扩展为2点重合的四点,则原三棱柱节点编号a b c d e f,转化为六面体a b c c d e f f。
为实现本发明,所述的基于网络结构的有限元模型查错新方法,在步骤2中,每个体单元可视作由6个面元构成,图1所述的单元可拆分为空间面元为:a b c d,b f g c,c g h d,d h e a,a e f b,e h f g,各点顺序按照右手规则指向单元内部。
在6*ne个面元中进行面积检索,找到面积为零的面元,设面积为零的面元数量为n0个,并予以剔除,得到待检查的6*ne-n0个剩余面元;
再通过边界搜索确定出模型的左右前后上下边界值xmin,xmax,ymin,ymax,zmin,zmax,设置一容差tol=0.01,如果面元上4个节点的x坐标值与xmin的距离小于容差,则该面元必为地质模型左边界面元之一;如果面元上4个节点的x坐标值与xmax的距离小于容差,则该面元必为地质模型右边界面元之一;如果面元上4个节点的y坐标值与ymin的距离小于容差,则该面元必为地质模型前边界面元之一;如果面元上4个节点的y坐标值与ymax的距离小于容差,则该面元必为地质模型后边界面元之一;如果面元上4个节点的z坐标值与zmin的距离小于容差,则该面元必为地质模型下边界面元之一;如果面元上4个节点的z坐标值与zmax的距离小于容差,则该面元必为地质模型上边界面元之一;将地质模型的上、下、左、右、前及后边界面的总数目记为n1,并予以剔除,得到待检查的6*ne-n0-n1个二次剩余面元,
为实现本发明,所述的基于网络结构的有限元模型查错新方法,在步骤2剩余的6*ne-n0-n1个面元中,若某一面元被两个及以上单元公用,即:如果在剩余的6*ne-n0-n1个面元中存在有节点相同的两个或两个以上的面元,则认为这些面元是被两个及以上单元公用,应当予以剔除,如图4所示,2 3 7 6面元为两单元公用,则该面元为单元间正常连接,不需参与下一步查错。若某一四边形面元与两三角形面元属性相同,如图5所示,则也可视为正常连接(这在数值模拟中是允许的)。分析每个面元的属性,若该属性为两个及以上单元共有,则该面元的属性无错误,不需参与查错;
为实现本发明,所述的基于网络结构的有限元模型查错新方法,在步骤3中,遍历所有面元,由于面元逐次排除,则计算速度越来越快。遍历完成后所有公用面元与独享面元即被区分开。若独享面元数目非零,根据独享面元的空间坐标进行定位,该位置即为可能出现模型错误的位置。
由于采用了以上技术方案,复杂模型检查的时间可由几天缩短到几十分钟。采用本发明,可明显降低模型检查的时间、并可一次性检查出多类错误,保证了数值计算模型的有效性,防止因模型错误导致计算返工。
实施例1:
步骤1 某简单模型为一长方体,如图4所示,点1坐标(0,0,0),点2坐标(10,0,0),点3坐标(10,10,0),点4坐标(0,10,0), 点5坐标(0,0,10),点6坐标(10,0,10),点7坐标(10,10,10),点8坐标(0,10,10), 点9坐标(20,0,0),点10坐标(20,10,0),点11坐标(10,10,10),点12坐标(20,0,10),进行有限分割划分为两个6面体8节点单元(图4),则根据前述节点编号规则,单元1编号可写为:1 2 3 4 5 6 7 8,单元2编号可写为2 9 10 3 6 12 11 7。单元数目为2个,节点数目为12个。
步骤2 对2个六面体8节点单元中的面元进行编号,1号单元的6个面元为1 2 3 4;2 6 7 3;3 7 8 4;4 8 5 1;1 5 6 2; 5 8 7 6;2号单元的6个面元为2 9 10 3;9 12 11 10;10 11 7 3;3 7 6 2;2 6 12 9; 6 7 11 12。面元按照顺序编号1-12.
在12个面元中,没有面积为零的面元,n0=0。
模型左边界xmin=0;模型右边界xmax=20;模型前边界ymin=0;模型后边界ymax=10;模型上边界ymax=10;模型下边界ymin=0。
在12个空间面元中1与7号为下边界面元,6与12号面元为上边界面元,4号面元为左边界面元,8号面元为右边界面元,5与11号为前边界面元,3与9号为后边界面元。总边界面元数目n1=10,剩余面元2个.
步骤3 在2个剩余面元中2号面元与10号面元恰好为相同4节点组成,为重合面元,连接无问题。
步骤4 判断该模型无独享面元,模型无错误。
实施例2:某水电站调压井工程区复杂结构三维有限元模型查错分析,模型包括微新岩体、弱风化下层岩体、弱风化上层岩体、强风化岩体、断层F20、F21、F22等岩层,地下构建筑物包括3个调压井、3条尾水隧道、9条尾水隧洞、连通上室等,示意图如图6所示。在初次建模完成后采用数值软件试算无法通过,系统提示局部变形过大。应用本发明查错步骤如下:
(1)将有限元网格信息归类为节点信息和单元结构信息,包括节点和单元数目,节点坐标,单元结构形状,由节点编号构筑单元结构的信息;总节点数目为38954,总单元数目为184336。
(2)将四面体单元、三棱柱单元均转化为6面体8节点单元形式。将每个6面体8节点单元拆分为6个空间面元,分析每个面元的属性,并剔除具有明显特征的面元(零面积及边界面元)。
(3)进行网格自检索。通过各单元体的面元对应关系,分析各单元体是否满足数值计算的规则,通过判断各面元是否为两个或多个单元体公用,若某面元仅被一个单元体使用则为一潜在错误面元,称为独享面元。
(4)将所有独享的面元输出,对出现错误的位置进行定位,如图7所示模型出现的错误独享面元信息;
根据这些独享面元属性,提示单元错误原因,并可进行归类,可以查出以下六类错误:① 建模时体和体之间不共面;② 某一体未划分网格;③ 模型单元手动编号时,单元节点编号不合有限元规则;④ 边界条件不平齐一致;⑤ 体元重叠;⑥非节理位置出现类似节理面分布的面元。模型经修改后重新用本发明进行查错,得到无错误信息的检查结果如图8所示。查错共耗时35分钟。

Claims (1)

1.一种基于网格结构的有限元数值模型查错方法,其特征在于,
步骤1 对土木工程领域的地质模型进行数值分析,进行有限分割,将地质模型划分为多个4面体4节点网格对象、5面体6节点网格对象及6面体8节点网格对象,再将4面体4节点网格对象转化为6面体8节点网格对象,同时再将5面体6节点网格对象转化为6面体8节点网格对象,并以6面体8节点网格对象、由4面体4节点网格对象转化为6面体8节点的网格对象及由5面体6节点网格对象转化为6面体8节点的网格对象作为单元,各单元通过相连节点实现力学分析,对单元信息进行归类,得到节点信息和结构信息,节点信息包括节点数目np和节点坐标,结构信息包括单元数目ne、单元结构形状和构成单元的节点编号信息,所述节点编号采用以下方法获得:根据节点位置,按照先下面后上面、逆时针顺序,给节点编制编号,
所述的4面体4节点网格对象转化为6面体8节点网格对象的转化方法如下:4面体4节点表现为四面体,将任意三点作为底面,三点仍以逆时针顺序,另外一点作为顶面,原4节点4面体四个结点的编号为a b c d,则转为8节点,并记为a b c c d d d d;
所述的5面体6节点网格对象转化为6面体8节点网格对象的转化方法如下:5面体6节点网格表现为三棱柱,分别以三棱柱两个三角形面作为底面、顶面,分别将底面、顶面三点扩展为2点重合的四点,则原三棱柱节点编号a b c d e f,转化为六面体a b c c d e f f,
步骤2 对所有六面体8节点单元中的面元进行编号,所述编号采用下列方法:各点按照右手规则指向单元内部,将面元内的节点编号进行组合,得到面元编码;
在6*ne个面元中进行面积检索,找到面积为零的面元,设面积为零的面元数量为n0个,并予以剔除,得到待检查的6*ne-n0个剩余面元; 
根据空间节点坐标矩阵,在6*ne-n0个剩余面元中寻找出左边界、右边界、前边界、后边界、上边界及下边界,寻找方法为:
分别搜索x方向坐标值、y方向坐标值及z方向坐标值,从中寻找出最小x坐标值xmin、最大x坐标值xmax,最小y坐标值ymin、最大y坐标值ymax,最小z坐标值zmin、最大z坐标值zmax,定义x=xmin为地质模型左边界,x=xmax为地质模型右边界,y=ymin为地质模型前边界,y=ymax为地质模型后边界,z=zmin为地质模型下边界,z=zmax为地质模型上边界,
设置一容差tol=0.01,如果面元上4个节点的x坐标值与xmin的距离小于容差,则该面元必为地质模型左边界之一;如果面元上4个节点的x坐标值与xmax的距离小于容差,则该面元必为地质模型右边界之一;如果面元上4个节点的y坐标值与ymin的距离小于容差,则该面元必为地质模型前边界之一;如果面元上4个节点的y坐标值与ymax的距离小于容差,则该面元必为地质模型后边界之一;如果面元上4个节点的z坐标值与zmin的距离小于容差,则该面元必为地质模型下边界之一;如果面元上4个节点的z坐标值与zmax的距离小于容差,则该面元必为地质模型上边界之一;
将地质模型的上、下、左、右、前及后边界的总数目记为n1,并在待检查的6*ne-n0个剩余面元中予以剔除,得到待检查的6*ne-n0-n1个二次剩余面元,
步骤3 在6*ne-n0-n1个二次剩余面元中任选一个面元,若所选的面元被两个或以上单元公用,则所选的面元为单元间正常连接,不参与查错并从待检查的6*ne-n0-n1个二次剩余面元中予以剔除,遍历二次剩余面元中的每个面元,待检查的6*ne-n0-n1个二次剩余面元未被剔除的剩余面元为独享面元,独享面元所处位置即为可能的模型错误位置。
CN2011100271048A 2011-01-26 2011-01-26 基于网格结构的有限元数值模型查错方法 Expired - Fee Related CN102063555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100271048A CN102063555B (zh) 2011-01-26 2011-01-26 基于网格结构的有限元数值模型查错方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100271048A CN102063555B (zh) 2011-01-26 2011-01-26 基于网格结构的有限元数值模型查错方法

Publications (2)

Publication Number Publication Date
CN102063555A CN102063555A (zh) 2011-05-18
CN102063555B true CN102063555B (zh) 2012-08-15

Family

ID=43998829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100271048A Expired - Fee Related CN102063555B (zh) 2011-01-26 2011-01-26 基于网格结构的有限元数值模型查错方法

Country Status (1)

Country Link
CN (1) CN102063555B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103593490A (zh) * 2012-08-17 2014-02-19 大连船舶重工集团有限公司 船舶和海洋工程结构有限元模型检查方法
CN103236087B (zh) * 2013-04-25 2015-09-16 河海大学 一种三棱柱地质模型的构建方法
CN103400231B (zh) * 2013-08-12 2015-07-01 中国矿业大学 一种设备健康管理系统及其数据库建模方法
CN103729506B (zh) * 2013-12-20 2017-02-15 大连理工大学 一种复杂模型完全六面体建模及几何体重塑加密方法
CN104535040B (zh) * 2014-12-19 2017-07-18 中国航空动力机械研究所 用于叶片的有限元单元划分方法和叶片的检测方法
CN104598682B (zh) * 2015-01-15 2017-09-19 河海大学 一种等效结点荷载的通用精确积分计算方法
CN105975667B (zh) * 2016-04-29 2020-03-13 大连楼兰科技股份有限公司 有限元网格模型更新的快速查找方法及装置
CN107451362A (zh) * 2017-08-01 2017-12-08 中国航空工业集团公司西安飞机设计研究所 一种机翼盒段有限元建模方法
CN112329124B (zh) * 2019-07-31 2024-05-07 比亚迪股份有限公司 Cae模型查错方法、装置、计算机设备和存储介质
CN111414654B (zh) * 2020-03-16 2024-02-23 南京交通职业技术学院 一种分格连续数值模型检索方法
CN114036773B (zh) * 2021-11-25 2023-06-30 河海大学 一种块体离散元数值模型外轮廓几何快速检索方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421004A (zh) * 1999-10-14 2003-05-28 目标储油层公司 利用符号语言翻译器产生软件代码的方法和系统
CN101419723A (zh) * 2008-10-29 2009-04-29 哈尔滨理工大学 一种获得铸造实体的离散sgn数据文件的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800708B2 (ja) * 1995-01-31 1998-09-21 日本電気株式会社 Fem解析モデルのメッシュ修正方法
JP2010176573A (ja) * 2009-01-30 2010-08-12 Nippon Yunishisu Kk 金型設計装置およびその方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421004A (zh) * 1999-10-14 2003-05-28 目标储油层公司 利用符号语言翻译器产生软件代码的方法和系统
CN101419723A (zh) * 2008-10-29 2009-04-29 哈尔滨理工大学 一种获得铸造实体的离散sgn数据文件的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JP特开2010-176573A 2010.08.12
JP特开平8-212240A 1996.08.20
李圣文等.用flip变换法恢复四面体网格中的约束边.《微计算机应用》.2004,第25卷(第2期),第173-176页. *
苏幸等.基于不规则四面体的三维离散数据地质建模算法.《物探与化探》.2008,第32卷(第2期),第192-195页. *

Also Published As

Publication number Publication date
CN102063555A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
CN102063555B (zh) 基于网格结构的有限元数值模型查错方法
CN107944086B (zh) 一种基于钻孔数据的快速建模方法
CN102609982B (zh) 空间地质数据非结构化模式的拓扑发现方法
US10174593B2 (en) System and method for coarsening in reservoir simulation system
CN106991244B (zh) 一种基于图论的裂隙网络连通性及渗流计算的方法
CN103413297A (zh) 基于一体化三维gis模型的切割方法
CN103514631A (zh) 基于钻孔数据的海量三维地质模型网格式并行构建方法
CN109102564B (zh) 一种复杂地质体数值模型的耦合建模方法
CN102495427A (zh) 一种基于隐式模型表达的界面感知射线追踪方法
CN103969682A (zh) 一种钻测井资料深度匹配方法及系统
CN105243237A (zh) 一种装配工艺结构树及其构建方法
CN110334365A (zh) 一种非均质压裂后储层流动数值模拟方法及系统
CN109101671B (zh) 一种变密度与变构型三维点阵结构建模方法
CN110765665B (zh) 一种地学动态建模方法及系统
CN105447907A (zh) 一种基于立体重构的工程制图作业智能批改方法及系统
CN105184854A (zh) 针对地下空间扫描点云成果数据的快速建模方法
Yuyang et al. Finite Element Simulation of Oil and Gas Reservoir In Situ Stress Based on a 3D Corner‐point Grid Model
CN106844963A (zh) 模拟开挖至运行全过程的拱坝三维网格模型自动剖分方法
Pan et al. Research on stability analysis of large karst cave structure based on multi-source point clouds modeling
Jobbik et al. APPROACHING BUILDING CONNECTIONS BASED ON NET VAULTS'GEOMETRIC ANALYSIS. THE VAULTS OF THE CHURCH ON THE HILL OF SIGHIŞOARA AND THE CHURCH OF BĂGACIU.
CN103400413B (zh) 组独有边界单元面的无厚度3节点衬砌单元智能构建方法
Jun-Qi et al. Study on a computing technique suitable for true 3D modeling of complex geologic bodies
Zhang et al. An automatic unified modeling method of geological object and engineering object based on tri-prism (TP)
CN115512066B (zh) 多级工程地质一体化三维地质建模方法
CN111259536B (zh) 不规则结构和内嵌结构实体的单元划分方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120815

Termination date: 20150126

EXPY Termination of patent right or utility model