CN102057236B - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
CN102057236B
CN102057236B CN2009801212194A CN200980121219A CN102057236B CN 102057236 B CN102057236 B CN 102057236B CN 2009801212194 A CN2009801212194 A CN 2009801212194A CN 200980121219 A CN200980121219 A CN 200980121219A CN 102057236 B CN102057236 B CN 102057236B
Authority
CN
China
Prior art keywords
heating
cold
heat transfer
producing medium
transfer component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801212194A
Other languages
English (en)
Other versions
CN102057236A (zh
Inventor
李相宪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN102057236A publication Critical patent/CN102057236A/zh
Application granted granted Critical
Publication of CN102057236B publication Critical patent/CN102057236B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/56Cooling being a secondary aspect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Resistance Heating (AREA)

Abstract

本发明公开了一种空调系统。在本发明中,在制热模式下,在室外热交换器中蒸发的制冷剂在由包含碳纳米管加热元件的加热器加热的状态下被吸入压缩机。由此,本发明能够更稳定及有效地实现加热。

Description

空调系统
技术领域
本发明涉及空调系统,尤其涉及包括用于加热制冷剂的加热器的空调系统。
背景技术
通常,普通的空调系统包括压缩机、四通阀、室内热交换器和室外热交换器等,其构成一热交换循环,用以为房间制热或制冷。在制热模式下,室外热交换器被用作蒸发器,而室内热交换器被用作膨胀器。更详细而言,与室外空气热交换之后的制冷剂在室外热交换器中被蒸发的同时,在压缩机中被压缩为高温和高压,并在与室内空气进行热交换的同时在室内热交换器中被冷凝,从而为房间制热。
在制热模式下,空调系统可包括用于加热在室外热交换器中蒸发的制冷剂的加热器。当室外温度非常低时,制冷剂在室外热交换器中的蒸发进行得并不顺畅。在此情况下,加热器将制冷剂加热并将其传送至压缩机。更详细而言,在室内热交换器中冷凝的制冷剂在室外热交换器中被蒸发且被加热器加热并被吸入压缩机。
然而,在根据现有技术的空调系统中,当在室内热交换器中冷凝的制冷剂被加热器加热时,也就是说当制冷剂的蒸发并不在室外热交换器中进行时,制冷剂会集聚在室外热交换器中。因此,造成了热交换循环中的制冷剂不足的问题。
发明内容
技术问题
本发明的目的是提供一种能提高热效率的空调系统。
技术方案
根据本发明一示范性实施例,提供了一种空调系统,其包括:压缩机,用于压缩制冷剂;室内热交换器,用于在加热操作中使从压缩机中排出的制冷剂冷凝;室外热交换器,用于使在室内热交换器中冷凝的制冷剂蒸发;热交换器,用于在室外热交换器中进行蒸发以使吸入压缩机内的制冷剂与高温的工作液进行热交换;以及加热器,其包括加热室、传热部件、两个电极、多个碳纳米管加热元件以及绝缘构件,所述加热室形成有一通道,被传送至热交换器的工作液在该通道中流动,所述传热部件的一个表面与在通道中流动的工作液接触,所述两个电极设置在传热部件的另一表面上,所述碳纳米管加热元件彼此隔开地设置在传热部件的另一表面上并且连接于电极的两个端部,所述碳纳米管加热元件与传热部件的接触面积为传热部件与工作液的接触面积的50%或更多,所述绝缘构件使电极与碳纳米管加热元件绝缘。
根据本发明一示范性实施例,提供了一种空调系统,其包括:压缩机,用于压缩制冷剂;室内热交换器,用于在加热操作中使从压缩机中排出的制冷剂冷凝;室外热交换器,用于使在室内热交换器中冷凝的制冷剂蒸发;以及加热器,其包括加热室、传热部件、两个电极、多个碳纳米管加热元件以及绝缘构件,所述加热室形成有一通道,制冷剂在该通道中流动,所述传热部件的一个表面与在通道中流动的制冷剂接触,所述两个电极设置在传热部件的另一表面上,所述多个碳纳米管加热元件彼此隔开地设置在传热部件的另一表面上并且分别连接于电极的两个端部,所述碳纳米管加热元件与传热部件的接触面积为传热部件与工作液的接触面积的50%或更多,所述绝缘构件使电极与碳纳米管加热元件绝缘。
有益的技术效果
根据本发明,能够更为高效地实现有效加热。
附图说明
图1为示出根据本发明第一示范性实施例的空调系统的配置图;
图2为示意性地示出构成本发明第一示范性实施例的室外机的立体图;
图3为示出构成本发明第一示范性实施例的加热器的立体图;
图4为示出构成本发明第一示范性实施例的加热器的分解立体图;
图5为示出一种加热器的热效率的图表;
图6为示出根据本发明第二示范性实施例的空调系统的加热器的主要组件的纵向剖视图;
图7为示出根据本发明第三示范性实施例的空调系统的加热器的主要组件的纵向剖视图;以及
图8为示出根据本发明第四示范性实施例的空调系统的配置图。
具体实施方式
最佳方式
以下,将结合附图详细描述根据本发明第一示范性实施例的空调系统的组件。
图1为示出根据本发明第一示范性实施例的空调系统的配置图,图2为示意性示出构成本发明第一示范性实施例的室外机的立体图。
首先参照图1,空调系统通过使与室内空气和室外空气进行热交换循环的制冷剂发生热交换来为房间制冷或制热。该空调系统包括多个室内机100、室外机200和加热器300。
更详细而言,室内机100各自设有室内热交换器110,室内热交换器110在制热模式下被用作冷凝器,而在制冷模式下被用作蒸发器。换言之,在制热模式下,室内热交换器110接收在下文将描述的压缩机220中压缩的制冷剂并使该制冷剂冷凝。在制冷模式下,室内热交换器110接收在下文将描述的室外热交换器210中冷凝的制冷剂并使该制冷剂蒸发。
另外,室内机100各自设有线性膨胀阀(LEV)120。室内机100的线性膨胀阀120用于在制冷模式下使在室内热交换器110中蒸发的制冷剂膨胀。在制热模式下,室内机100的线性膨胀阀120开启以使制冷剂通过。
同时,室外机200设有室外热交换器210。室外热交换器210在制热模式下被用作蒸发器,而在制冷模式下被用作冷凝器。换言之,在制热模式下,室外热交换器210使在室内热交换器110中冷凝的制冷剂蒸发并将该制冷剂传送至压缩机220。在制冷模式下,室外热交换器210使制冷剂冷凝并将该制冷剂传送至室内热交换器110。
同时,室外机200设有压缩机220。压缩机220压缩制冷剂并将其排出至室内热交换器110或室外热交换器210。更详细而言,在制热模式下,压缩机220压缩制冷剂并将其排出至室内热交换器110,而在制冷模式下将其排出至室外热交换器210。
室外机200设有线性膨胀阀230。在制热模式下,室外机200的线性膨胀阀230使在室内热交换器110中冷凝的制冷剂膨胀并将该制冷剂传送至室外热交换器210。在制冷模式下,室外机200的线性膨胀阀230关闭,或者该线性膨胀阀230的开启被控制。
另外,室外机200设有并行管(parallel pipe)240和止回阀250。平行管240连接于制冷剂管,被传送至室外热交换器210的制冷剂在该并行管中并行流动。止回阀250安装在并行管240中。
室外机200设有四通阀260。四通阀260安装在制冷剂管中,在压缩机220中被压缩并从压缩机220排出的制冷剂在该制冷剂管中流动。在制热模式下,四通阀260将在压缩机220中被压缩的制冷剂排出至室内热交换器110,并切换到制热模式以将在室外热交换器210中蒸发的制冷剂吸入压缩机220。在制冷模式下,四通阀260将在压缩机220中被压缩的制冷剂排出至室外热交换器210,并切换到制冷模式以将在室外热交换器210中冷凝的制冷剂传送至室内热交换器110。
室外机200设有第一连接管271、第二连接管273和第三连接管275。第一连接管271将室外热交换器210与加热器300连接。在制热模式下,在室外热交换器210中蒸发并被传送至加热器300的制冷剂在第一连接管271中流动。第二连接管273将连接室内热交换器110和室外热交换器210的制冷剂管与加热器300连接,在制热模式下在室内热交换器110中冷凝并被传送至加热器300的制冷剂在第二连接管273中流动。此外,第三连接管275将压缩机220与加热器300连接。在制热模式下被加热器300加热并被吸入压缩机220的制冷剂在第三连接管275中流动。
另外,室外机200设有第一阀281和第二阀283。第一阀281安装在第一连接管271中。当在制热模式下使用加热器300加热制冷剂时、以及当在制热模式下不使用加热器300时,第一阀281关闭,或者在制冷模式下第一阀281开启。第二阀283安装在第二连接管273中。当在制热模式下使用加热器300加热制冷剂时、以及当在制热模式下不使用加热器300时第二阀283开启,或者在制冷模式下第二阀283关闭。
室外机200设有旁通管291和第三阀293。旁通管291将制冷剂管(在制热模式下从压缩机220排出并被传送至室内热交换器110的制冷剂在该制冷剂管中流动)与第一连接管271连接。在压缩机220中被压缩并排出至室外热交换器210的制冷剂在旁通管291中流动。第三阀293安装在旁通管291中。第三阀293仅当在室外热交换器210中集聚的制冷剂再流通到热交换循环中时开启。
在制热模式下,加热器300用来加热在室外热交换器210中蒸发的制冷剂。参照图2,加热器300可安装在构成室外机200外壳的箱体201内的一侧。
以下,将结合附图更详细地描述根据本发明第一示范性实施例的加热器的组件。
图3为示出构成本发明第一示范性实施例的加热器的立体图,图4为示出构成本发明第一示范性实施例的加热器的分解立体图。
参照图3和图4,加热器300包括加热室310、多个加热部件以及传热部件320。加热器300构成为一个单元,其中包括有加热室310、多个加热部件以及传热部件320。在加热室310中设置有制冷剂在其中流动的通道P。加热部件被加热,以便加热在通道P中流动的制冷剂,而传热部件320将热量从加热器传递到制冷剂。
在第一示范性实施例中,如图3所示,加热室310包括第一加热室310、第二加热室310′和第三加热室310″。第一加热室310通过第二连接管273接收制冷剂,并且第一加热室310和第二加热室310′通过第一连接导管(connection tube)Tc1彼此连接。另外,第二加热室310′和第三加热室310″通过第二连接导管Tc2彼此连接,并且第三加热室310″通过第三连接管275传送制冷剂。根据需要加热的制冷剂的量来控制加热室310、310′及310″的数量。
同时,参照图4,加热室310包括加热室本体311、加热室盖316和多个密封件319。在此情况下,加热室本体311和加热室盖316可以由耐热性合成树脂材料模制而成。另外,当加热室本体311和加热室盖316可由金属材料模制成时,应进一步设置用于隔绝在通道P中流动的制冷剂的隔热件。
加热室本体311大体上形成为一个表面敞开的多面体形状。在加热室本体311中具有用于形成通道P的预定空间。
另外,在加热室本体311中设有多个分隔肋(barrier rib)312。分隔肋312将加热室本体311的内部空间加以分隔,以大体上形成盘管形的通道P。更详细而言,分隔肋312在加热室本体311中在加热室本体311的内短边方向上形成为长形。在这种构造中,分隔肋312的一端连接于加热室本体311的长边方向上的一端,而分隔肋312的另一端与加热室本体311的长边方向上的另一端相隔开。
借助分隔肋312而形成为盘管形的通道P包括多个平直段P1和多个连接段P2。平直段P1在加热室本体311的短边方向上形成为长形,而连接段P2在加热室本体311的长边方向上将两个彼此相邻的平直段P1的端部彼此连接。
一些分隔肋312(在第一示范性实施例中为两个分隔肋312)形成为具有比其余的分隔肋312相对更宽的宽度。
为便于说明,将分隔肋312中具有相对更宽的宽度的分隔肋312称作固定肋(fixing rib)313。
加热室本体311设有两个连通孔(图未示),该连通孔与通道P的两端分别连通。连通孔连接至用于从外部供给制冷剂的输入管(drawing tube)Ti或者用于将加热后的制冷剂传送到外部的输出管(draw tube)To,或连接至第一连接导管Tc1和第二连接导管Tc2。
加热室本体311的边界面(edge surface)和固定肋313各自设有多个第一结合孔314和第二结合孔315。第一结合孔314用于固定加热室盖316,第二结合孔315用于固定传热部件320。
同时,加热室盖316形成为具有能够封闭加热室本体311的敞开表面的尺寸和形状。加热室盖316的一个表面的边缘在紧密地贴附在加热室本体311的边界面上的状态下通过结合孔(图未示)结合。为此目的,加热室盖316设有第一通孔317。第一通孔317是使得与第一结合孔314结合的结合部件所穿过的部分。
密封件319用于防止在通道P中流动的制冷剂发生泄漏。密封件319设置在加热室本体311与加热室盖316之间。更详细而言,设置在彼此紧密贴附的加热室本体311的边界面与加热室盖316的一个表面的边缘之间。
传热部件320设置在加热室310中,也就是设置在加热室本体311与加热室盖316之间。传热部件320用于将热量从加热部件传递到在通道P中流动的制冷剂。传热部件320构成了加热室本体311和通道P。由此,在通道P中流动的制冷剂接触传热部件320的一个表面。为此目的,传热部件320由具有预定的导热性的材料模制而成,并且传热部件320至少形成为其尺寸和形状能够封闭加热室本体311的内部空间。因此,在第一示范性实施例中,传热部件320形成为矩形金属板。另外,传热部件320设有多个第二通孔321。第二通孔321是为了固定传热部件320使得与第二结合孔315结合的结合部件(图未示)穿过的部分。
加热部件设置在传热部件320的另一表面上,该另一表面是传热部件320的与在通道P中流动的制冷剂接触的一个表面的相对侧。在第一示范性实施例中,加热部件包括两个电极331、多个碳纳米管加热元件333和绝缘构件335.
更详细而言,电极331彼此隔开地设置在传热部件320的上述另一表面上。在第一示范性实施例中,电极331在传热部件320的长边方向上形成为长形,并且在传热部件320的短边方向上彼此隔开。
碳纳米管加热元件(以下称为“CNT加热元件”)是指一种由碳纳米管构成的材料,该碳纳米管具有通过将由六个碳原子形成的六边形彼此连接而构成的管形形状。CNT加热元件333在传热部件320的短边方向上形成为长形以在传热部件320的长度方向上彼此隔开。在此情况下,CNT加热元件333完全地设置在传热部件320的与在通道P内流动的制冷剂接触的区域中,除了对应于固定肋313的区域之外。如上文所述,构造多个CNT加热元件的原因在于,即使某一个或多个CNT加热元件333断开连接,其余的CNT加热元件仍会正常工作。CNT加热元件333的两端分别连接于电极331。在此情况下,彼此相邻的CNT加热元件333之间的间距被设定为小于传热部件320的短边方向上的宽度。另外,多个CNT加热元件333与传热部件320的接触面积的总和被设定成至少为传热部件320与在通道P中流动的制冷剂的接触面积的50%或更多。这样是为了在CNT加热元件333不致短路的范围内最大程度地加热在通道P中流动的制冷剂。
绝缘构件335用于使电极331与CNT加热元件333绝缘。例如,绝缘构件335完全敷设或涂覆在传热部件320的设有电极331和CNT加热元件333的另一表面上。
另外,加热器300包括三个双金属片(bimetal)340以防止CNT加热元件333过热。当CNT加热元件333的温度达到或超过预定的安全温度时,双金属片340中断向CNT加热元件333的供电。在第一示范性实施例中,双金属片340固定于安装托架350上,而安装托架350与传热部件320一起固定于加热室本体311。为此目的,在该安装托架上形成有多个第三通孔351。穿过第三通孔351和第二通孔321的结合部件与第二结合孔315结合。在第一示范性实施例中,双金属片340实质上感测加热室310中的温度。然而,双金属片340也可以直接感测CNT加热元件333的温度。
同时,依据CNT加热元件333的输出,电极331可以连接至单相或三相输入电源。例如,当CNT加热元件333的输出为4KW或更少时,电极可连接至单相输入电源,而当输出为4KW或更多时,电极可连接至三相输入电源。
以下,将更详细地描述根据本发明第一示范性实施例的空调系统的效果。
参照图1,在使用加热器300的制热模式下,室外机200的线性膨胀阀230、第一阀和第三阀关闭,而第二阀开启。传热部件320用于加热流过加热器300的制冷剂。由此,在热交换循环内流动的制冷剂被加热器300加热并被吸入压缩机220。四通阀260切换到制热模式。
更详细而言,在压缩机220中被压缩的制冷剂经由四通阀260被排出到室内热交换器110。被传送到室内热交换器110的制冷剂经热交换而被冷凝。由此,房间被制热。
随后,在室内热交换器110中冷凝的制冷剂在其流经开启的室内机100的线性膨胀阀120的状态下在第二连接管273中流动并被传送到加热器300。在此情况下,借助第二阀283使在第二连接管273中流动并被传送到加热器300的制冷剂膨胀。
同时,被传送到加热器300的制冷剂在加热室310中,也就是通道P中流动。在通道P中流动的制冷剂经由第三连接管275被吸入压缩机220。当然,当配置多个加热室310时,制冷剂经由连接导管Tc1和Tc2在多个加热室310的通道P中流动。
当通电时,CNT加热元件333被加热。来自CNT加热元件333的热能经由传热部件320被传送至在通道P中流动的制冷剂。换言之,在通道P中流动的制冷剂被CNT加热元件333加热。
然而,在第一示范性实施例中,CNT加热元件333被配置成能够在它们之间不致发生短路的范围内最大程度地加热在通道P中流动的制冷剂。因此,通过使用CNT加热元件333,可以更为稳定有效地加热在通道P中流动的制冷剂。
另外,当CNT加热元件333过热时,对CNT加热元件333的供电被双金属片340切断。因此,能够避免由于CNT加热元件333的过热而导致的问题,例如在通道P中流动的制冷剂的过热或者传热部件320或加热室310损坏的问题。
被加热器300加热的制冷剂在第三连接管275中流动并被吸入压缩机220,从而制冷剂流通形成热交换循环。在此情况下,由于第三阀293关闭,避免了在压缩机220中被压缩的制冷剂流入旁通管291并被排出至室外热交换器210的现象。另外,通过止回阀250,避免了在压缩机220中被压缩的制冷剂经由平行管240被排出到室外热交换器210的现象。
图5为示出一种加热器的热效率的图表。
参照图5,可看到的是,CNT加热元件333的热效率与正温度系数(PTC)加热器和护套式加热器的热效率相比相对要高。换言之,当供给相同的电能时,CNT加热元件333的热效率约为95%,而PTC加热器的热效率约为55%,护套式加热器的热效率约为65%。
另外,与护套式加热器相比,CNT加热元件333可进行变化从而具有多种形状。与PTC加热器相比,CNT加热元件333能够容易地确保刚性。因此,与相关领域中普通的PTC加热器或护套式加热器相比,CNT加热元件333在热效率等方面可具有优良的表现。
尽管已结合目前认为切实可行的示范性实施例描述了本发明,但应理解的是本发明并不局限于上述实施例,相反,本发明旨在涵盖包括在随附的权利要求的精神和范围内的各种变型和等效配置。
在前述示范性实施例中配置有三个双金属片,但并非必须以此为限。也就是说,可根据加热室的尺寸而将双金属片设定为不同的数量。
另外,在前述示范性实施例中,加热室被配置成三个并在短边方向上彼此隔开,而加热室的数量和配置方向并不以此为限。
发明形式
以下,将结合附图更详细地描述根据本发明第二示范性实施例的空调系统的组件。
图6为示出根据本发明第二示范性实施例的空调系统的加热器的主要组件的纵向剖视图。在第二示范性实施例中,与第一示范性实施例相同的组件使用与图3、图4中相同的附图标记表示,并将省略对其详细的描述。
参照图6,在第二示范性实施例中,传热部件320上设有多个补强成形部323。补强成形部323是通过将传热部件320的一部分成型来形成,以防止传热部件320的热变形。在此情况下,补强成形部323是通过将传热部件320的一部分朝向通道P的相对侧(即朝向加热室盖316、而非加热室本体)成型来形成。由此,借助补强成形部可以最小化对在通道P中流动的制冷剂的干扰,并且可相对地增大与在通道P中流动的制冷剂的接触面积。
以下,将结合附图更详细地描述根据本发明第三示范性实施例的空调系统的组件。
图7为示出根据本发明的空调系统的加热器的主要组件的纵向剖视图。在第三示范性实施例中,与第一示范性实施例相同的组件使用与图3、图4中相同的附图标记表示,并将省略对其详细的描述。
参照图7,在第三示范性实施例中,加热室盖316的内侧设有多个补强成形部,即补强肋318。补强肋318用于防止传热部件320的热变形。为此目的,补强肋318从加热室盖316的内侧表面延伸,并且补强肋的前端紧密地贴附在传热部件320的另一表面上。更优选地,补强肋318形成在与任一分隔肋312对应的位置上。因此,传热部件320被彼此对应的分隔肋312和补强肋318压迫,从而能够更为有效地防止传热部件320的热变形。
以下,将结合附图更详细地描述根据本发明第四示范性实施例的空调系统的组件。
图8为示出根据本发明第四示范性实施例的空调系统的配置图。在第四示范性实施例中,与第一示范性实施例相同的组件使用与图1至图4中相同的附图标记表示,并将省略对其详细的描述
参照图8,第四示范性实施例包括副热交换器410、热交换器430、加热管440、储液罐450、流体管道460和泵470。副热交换器410被供以流通形成热交换循环的制冷剂。加热器300加热储存在储液罐450中的工作液。另外,热交换器430使被供给到副热交换器410的制冷剂与被加热器300加热的工作液进行热交换。加热管440和流体管道460分别构成使被传送到副热交换器410的制冷剂和被加热器300加热的工作液循环流通的部分。因此,流经加热管440的制冷剂和在流体管道460中流动的工作液在热交换器430中充分地进行热交换。泵470用于使流体在储液罐450与热交换器430之间循环或输送。
同时,构成本发明第四示范性实施例的加热器300可被配置成与构成本发明第一至第三示范性实施例的加热器具有相同的构造。然而,在第一至第三示范性实施例中,制冷剂是被加热器直接加热,而在第四示范性实施例中,则是工作液被加热器300加热。此外,当工作液是水时,被加热器300加热的工作液(即水)的一部分可用作热水。
工业实用性
如上文所述,根据本发明的空调系统可获得下列效果。
首先,在本发明中,在制热模式下,制冷剂在被制冷剂加热器加热的状态下吸入压缩机。因此,能够确保具有足够的热效率。
在本发明中,制冷剂被碳纳米管加热元件加热。因此,通过碳纳米管加热元件可以更有效地加热制冷剂。
在本发明中,形成供制冷剂在其中流动的通道的加热室和碳纳米管加热元件构成为一个单元。因此,以更加简化加热器的构造,从而简化加热器的安装。
另外,在本发明中,可根据所需的加热量,通过将加热室相互连接而使用多个加热室。因此,可容易地根据所需的加热量来改变加热器的设计。
在本发明中,多个CNT加热元件与同制冷剂或工作液接触的传热部件的接触面积的总和被设定为该传热部件接触制冷剂或工作液的接触面积的50%或更多。另外,碳纳米管加热元件之间的间距被设定为等于或小于碳纳米管加热元件的宽度。因此,碳纳米管加热元件可以在能够避免传热部件热变形的范围内最大程度地加热流体。
另外,在本发明中,制冷剂或工作液在其中流动的流道大体上被形成为盘管形,并且碳纳米管加热元件沿平行于制冷剂或工作液在该通道中流动的方向设置。因此,在该流道中流动的制冷剂或工作液被碳纳米管加热元件更高效地加热。
此外,在本发明中,依据碳纳米管加热元件的是否过热,通过双金属片为碳纳米管加热元件供电。由此,能够更安全地加热流体。

Claims (10)

1.一种空调系统,包括:
压缩机,用于压缩制冷剂;
室内热交换器,用于在制热操作中使从所述压缩机中排出的制冷剂冷凝;
室外热交换器,用于使在所述室内热交换器中冷凝的制冷剂蒸发;
加热器,包括:加热室,其形成有一通道,所述制冷剂在所述通道中流动;传热部件,其一个表面与在所述通道中流动的所述制冷剂接触;两个电极,设置在所述传热部件的另一表面上;多个碳纳米管加热元件,彼此隔开地分别设置在所述传热部件的所述另一表面上,并且连接于所述电极的两个端部,所述多个碳纳米管加热元件与所述传热部件的接触面积为所述传热部件与所述制冷剂的接触面积的50%或更多;以及绝缘构件,其使所述电极与所述碳纳米管加热元件绝缘。
2.如权利要求1所述的空调系统,其中所述通道整体地形成为盘管形。
3.如权利要求1所述的空调系统,其中所述通道包括多个彼此平行的平直段以及连接所述平直段的一端的连接段。
4.如权利要求1所述的空调系统,其中所述碳纳米管加热元件沿平行于所述平直段的方向形成为长形,并且在垂直于所述平直段的方向上彼此隔开一间距,该间距小于在与所述平直段平行的方向上所述碳纳米管加热元件的宽度。
5.如权利要求1所述的空调系统,其中所述加热室包括:
加热室本体,其一个表面为敞开,并且所述通道形成在所述加热室本体中;以及
加热室盖,用于封闭敞开的所述加热室本体的一个表面。
6.如权利要求1所述的空调系统,其中所述通道通过多个设置在所述加热室中的分隔肋而整体地形成为盘管形。
7.如权利要求1所述的空调系统,其中配置有多个所述加热室,多个所述加热室通过多个连接构件连接。
8.如权利要求1所述的空调系统,其中所述传热部件形成为矩形板状。
9.如权利要求8所述的空调系统,其中所述碳纳米管加热元件在所述传热部件的短边方向上形成为长形,并且在所述传热部件的长边方向上以预定间距彼此隔开。
10.如权利要求8所述的空调系统,其中彼此相邻的所述碳纳米管加热元件之间的间距小于所述碳纳米管加热元件在所述传热部件的短边方向上的宽度。
CN2009801212194A 2009-05-04 2009-05-04 空调系统 Expired - Fee Related CN102057236B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/KR2009/002356 WO2010128693A1 (ko) 2009-05-04 2009-05-04 공기조화시스템
KR10-2009-0038944 2009-05-04
KR1020090038944A KR101568421B1 (ko) 2009-05-04 2009-05-04 공기조화시스템

Publications (2)

Publication Number Publication Date
CN102057236A CN102057236A (zh) 2011-05-11
CN102057236B true CN102057236B (zh) 2013-04-24

Family

ID=43050187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801212194A Expired - Fee Related CN102057236B (zh) 2009-05-04 2009-05-04 空调系统

Country Status (5)

Country Link
US (1) US9080795B2 (zh)
EP (1) EP2357428B1 (zh)
KR (1) KR101568421B1 (zh)
CN (1) CN102057236B (zh)
WO (1) WO2010128693A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2488797A (en) 2011-03-08 2012-09-12 Greenfield Master Ipco Ltd Thermal Energy System and Method of Operation
JP5774210B2 (ja) * 2012-04-27 2015-09-09 三菱電機株式会社 空気調和装置
US9316421B2 (en) * 2012-08-02 2016-04-19 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity
US9803886B2 (en) * 2013-08-30 2017-10-31 Yun-Shan Chang Instantaneous water-heating dispensing device and heating module thereof
US10859325B2 (en) * 2016-06-27 2020-12-08 Neo Corporation Heat exchanger
CN116972554A (zh) * 2019-02-28 2023-10-31 施耐德电气It公司 用于冷却系统的接收器
KR20210088033A (ko) * 2020-01-03 2021-07-14 현대자동차주식회사 차량 공조장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1232155A (zh) * 1998-04-15 1999-10-20 东芝株式会社 空调机
CN2482652Y (zh) * 2001-05-23 2002-03-20 广东科龙电器股份有限公司 蓄热式热泵空调器
CN1523312A (zh) * 2003-01-13 2004-08-25 Lg电子株式会社 复式空调机及控制其运转的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731072A (en) * 1981-05-11 1988-03-15 Mcneilab, Inc. Apparatus for heating or cooling fluids
JP3233447B2 (ja) * 1992-06-02 2001-11-26 東芝キヤリア株式会社 空気調和機
US5984198A (en) * 1997-06-09 1999-11-16 Lennox Manufacturing Inc. Heat pump apparatus for heating liquid
NO306797B1 (no) * 1998-03-24 1999-12-20 Sakki Liv Multifunksjonelt luftkondisjoneringsanlegg, samt fremgangsmåte ved multifunksjonell kondisjonering av romluft
US6076366A (en) * 1998-04-03 2000-06-20 Denso Corporation Refrigerating cycle system with hot-gas bypass passage
KR100289751B1 (ko) 1998-04-15 2001-05-15 진금수 히트 펌프식 공기조화기
WO2000053246A1 (en) * 1999-03-09 2000-09-14 Augustine Medical, Inc. Iv fluid warming system with detection of presence and alignment of cassette
KR100343808B1 (ko) 1999-12-30 2002-07-20 진금수 히트 펌프식 공기조화기
US6490882B2 (en) * 2001-03-27 2002-12-10 Liebert Corporation Method and apparatus for maintaining compressor discharge vapor volume for starting with condensing unit ambient temperatures less than evaporator unit ambient temperatures
KR100402366B1 (ko) * 2001-08-31 2003-10-17 진금수 히트 펌프 시스템
US6782195B2 (en) * 2002-04-03 2004-08-24 Applied Integrated Systems, Inc. Heat exchanger for high purity fluid handling systems
KR100479801B1 (ko) 2002-08-14 2005-03-30 종합건축사사무소세림(주) 난방효율이 향상되는 히트펌프식 냉/난방장치 및 상기히트펌프식 냉/난방장치를 포함하는 공기조화기
WO2006023979A2 (en) * 2004-08-20 2006-03-02 Thermoceramix, Inc. Water heater and method of providing the same
NO323806B1 (no) * 2005-11-01 2007-07-09 Roger Gale Entrinns elektrostatisk stovutfeller
KR100749886B1 (ko) * 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
US8528628B2 (en) * 2007-02-08 2013-09-10 Olantra Fund X L.L.C. Carbon-based apparatus for cooling of electronic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1232155A (zh) * 1998-04-15 1999-10-20 东芝株式会社 空调机
CN2482652Y (zh) * 2001-05-23 2002-03-20 广东科龙电器股份有限公司 蓄热式热泵空调器
CN1523312A (zh) * 2003-01-13 2004-08-25 Lg电子株式会社 复式空调机及控制其运转的方法

Also Published As

Publication number Publication date
WO2010128693A1 (ko) 2010-11-11
CN102057236A (zh) 2011-05-11
KR101568421B1 (ko) 2015-11-20
EP2357428B1 (en) 2018-04-25
KR20100119988A (ko) 2010-11-12
EP2357428A1 (en) 2011-08-17
EP2357428A4 (en) 2014-10-22
US9080795B2 (en) 2015-07-14
US20110067436A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
CN102057236B (zh) 空调系统
CN102084715B (zh) 加热装置
CN108954562B (zh) 空调器室外机及具有其的空调器
CN106461289A (zh) 制冷装置
CN102673346A (zh) 加热装置
CN104654475A (zh) 散热器组件、空调器及空调系统
CN105546879A (zh) 一种平行流换热器及空调器
CN205373156U (zh) 一种平行流换热器及空调器
CN105517823A (zh) 车辆用空调装置及其结构单元
JP2016211841A (ja) 自動車の熱交換器システム
CN112127977A (zh) 智能废热管理系统及汽车
CN101788217A (zh) 空调器的室外热交换器的除霜结构
CN204963293U (zh) 冷媒循环系统及制冷设备
CN210000051U (zh) 一种车用新型冷热空调及其组件
CN104566876A (zh) 一种空调器辅助电加热装置及方法
CN210014485U (zh) 空调室外机和具有其的空调器
CN203501344U (zh) 空调系统
CN105042936A (zh) 冷媒循环系统及制冷设备
CN212252910U (zh) 一种空调器
CN112944741A (zh) 用于冷水机组的液滴蒸发装置及冷水机组
CN220652136U (zh) 热管理装置
CN104214921A (zh) 机柜空气调节装置及其机柜空气调节装置壳体
KR102125091B1 (ko) 공기 조화기
CN110207428B (zh) 换热器和热泵系统
CN213901491U (zh) 一种加热效果优良的空气能热水机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130424

Termination date: 20200504

CF01 Termination of patent right due to non-payment of annual fee