CN102057132A - 气体注入控制装置及其操作方法 - Google Patents

气体注入控制装置及其操作方法 Download PDF

Info

Publication number
CN102057132A
CN102057132A CN2009801209810A CN200980120981A CN102057132A CN 102057132 A CN102057132 A CN 102057132A CN 2009801209810 A CN2009801209810 A CN 2009801209810A CN 200980120981 A CN200980120981 A CN 200980120981A CN 102057132 A CN102057132 A CN 102057132A
Authority
CN
China
Prior art keywords
gas
pipe
valve
arrangement
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801209810A
Other languages
English (en)
Other versions
CN102057132B (zh
Inventor
W·威奇南斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silverwell Technology Ltd
Original Assignee
Camcon Oil Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Camcon Oil Ltd filed Critical Camcon Oil Ltd
Publication of CN102057132A publication Critical patent/CN102057132A/zh
Application granted granted Critical
Publication of CN102057132B publication Critical patent/CN102057132B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • E21B43/123Gas lift valves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Flow Control (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Pipeline Systems (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Nozzles (AREA)

Abstract

在此提供了特别是用于在井孔中控制将气体注入管或管道中以便将液体(例如像原油)沿该管向上提升的部署的气体注入控制装置。在此描述了一种气体控制装置(50,200),该装置包括一个壳体(49,206)、以及在该壳体内的至少两个控制阀安排。每个安排具有:用于接收来自一个加压供应的气体的一个入口(76)、用于供应加压的气体以便注入该管中的一个出口(80)、在该入口与出口之间的一个流体路径中的一个输入阀(62)、以及与该输入阀相关联的一个致动器(72)。每个致动器是独立可控制的以便将对应的输入阀在其开放与关闭构形之间进行切换。这允许将气体注入切换为开启和关闭、并且协助控制注入气体的流速。

Description

气体注入控制装置及其操作方法
发明领域
本发明涉及气体注入控制装置,特别用于在井孔中用来控制气体注入管或管道中以便将液体(例如像原油)沿该管向上提升的布署。
发明背景
在已知的油抽提技术中,在储油层本身的压力不足以将油沿着管向上提升、或者不足以将油的流速进一步增大的地方,将气体注入原油管中以便将油沿着管向上提升。这种技术通常被称为“气体提升”。将加压的气体供应到在外部的井孔壳体与内部的生产油管柱之间的环形体中并通过一个井下的气体提升阀将其注入管线中液柱的底部中。其作用是向原油鼓气,从而减小其密度并引起产生的气体/油混合物沿该管向上流动。
在图1中示意性地描绘一种已知形式的气体提升油井构形。被加压的气体通过一个压缩站2被供给一个注入气体岐管4。该岐管将气体供应源拆分成四个分离的进料源用于多个对应的井6。每个井包括一个外部的井孔壳体8,该壳体包围一个内部的生产油管柱或管道10。气体被送到该壳体与油管柱之间的环形体12之中。然后气体经由一个气体提升阀14而在靠近该油管柱的基底处被注入其中。
原油16沿着该油管柱向上被抽出并且当该混合物向上被提升时与注入的气体相混合。该混合物被送出井口16而到一个生产歧管18中,在这里它与其他井6的供应源进行组合。组合的混合物被送到气体/油分离器20中。这里,将注入的气体与油分离并且将其送到压缩站2中用于再压缩和再注入。在沿着管线24向前供应之前将抽提的油送到储罐22中。
有待注入一个具体井中用来使油生产最大化的气体的量是根据许多个因素而变化的,如井的条件和几何形状。液体生产速率也取决于所抽提的液体的粘度以及井本身的地理位置而变化。图2示出了一个曲线图,该曲线图展示了气体注入速率与液体生产速率之间的典型关系。这种形式的曲线通常被称为“气体提升性能曲线”并且它是在恒定的气体注入压力的基础上产生的。太多或太少的注入气体将造成自最有效的生产状态的偏离。优化的主要目的是为了确保将提升气体以一种速率应用到每个单独的井,这种速率实现了来自油田的最大生产同时将加压的气体的消耗最小化。在所示的实例中,在0.9MMscf/d(百万标准立方英尺每天)的气体注入速率下生产速率被最佳化并且气体注入阀的孔口大小将相应地进行选择。
在现有气体提升构形中,气体提升阀具有一个被选定为来将在供至井的气体压力的基础上的一个给定井的生产量最大化的孔口直径。然而,如果情况改变并且希望不同的气体流速来优化生产,则有必要在该孔口可以被所希望直径的一个孔口替换之前而暂停生产。然后必须执行一个“卸载”程序来重新开始生产。
将井孔卸载是一个费力的过程,如从以下参考图3A至图3C的讨论中将是清楚的。使用了几个气体注入阀来提供不同的压力受控阶段而因此在气体提升启动的过程中从环形体中去除静态的流体。除了气体提升阀14之外,所描绘的井孔具有卸载阀30、32。初始地,该注入压力降低了外部的井孔壳体8与内部的生产油管柱10之间的环形体中的液体水平,从而从环形体12中冲出直到阀门30被揭盖,如图3B所示。在这一点,气体经由阀门30被注入内部管10之中,从而减小了管的压力。当内部的管压力降低时,环形体12中的液体水平也降低。在阀门32如图3C中所示地被揭盖时,气体经由阀门32被注入内部管10之中并且阀门30被关闭。这继续进行到该卸载过程完成。
实际上,该卸载和气体提升阀通常是提供在侧面心轴中,如在图4中所示。每个心轴40通常是用油管柱形成的,该管线是使用“转向”工具来部署在井孔中来使该管道的侧壁物理地变形,这本身是一个耗时且困难的过程。每个阀门30、32和14被安装在一个对应的心轴40中。在环形体12的基底处提供一个封隔器42并且它在包围井孔的油生产岩石结构、壳体8与管10之间充当一个密封件,以防止气体进入该生产区。
为了改变气体提升阀14的孔口大小,有必要终止气体注入并且暂停油的生产。使用平直管线跳闸(Slick line trips)来改变该气体提升阀并用具有不同孔口直径的一个来将它替换。为了重新开始气体注入,将该卸载过程重复。
应当理解的是对现有构形的任何修改将需要能够在非常苛刻的约1km或更大的深度处的地下条件下生存长的时间(典型地5至10年)。该环境压力将是非常高的(200巴或更大)并且很可能要经历高温。
发明概述
本发明提供了用于部署在井孔中以便控制将气体注入含原油的管中从而将油沿管向上提升的一种气体注入控制装置,该气体注入控制装置包括一个壳体、以及在该壳体内的至少两个控制阀安排,每个安排具有:
用于从一个加压供应源接收气体的一个入口;
用于供应加压气体以便注入所述管中的一个出口;
处于该入口与出口之间的一个流体路径中的一个输入阀;以及
与该输入阀相关联的一个致动器,该致动器是独立可控的以便将对应的输入阀在其开放与关闭构形之间进行切换。
这样一种装置能够在给定深度处改变气体注入一个生产管线中的速率而不需要暂停油的生产。此外,气体注入可以按要求开启和关闭,而不会干扰包围该管线的环形体的压力环境。这提供了从已知的气体提升部署中不可获得的操作灵活性。
优选地,提供至少两个控制阀安排,将这两个控制阀安排配置为当其入口被连接到一个共同的气体供应压力源上时在其出口处以不同的对应的流速供应气体。更具体地,这些控制阀安排中的两个中的每个可以是一对中的一个,其中每对中的安排被配置为在其出口处以基本上相同的流速来供应气体。这种冗余的因素提供了假若这些安排中一个失效时的一种后备。
一个优选实施方案包括三对控制阀安排,其中第一、第二和第三对的每个安排被配置为对应地供应该装置的最大流速的约5%、15%和30%。这种组合允许以5%的增量来选择由该控制装置所传送的最大流速的百分比。
可替代地,可能优选的是提供六个控制阀安排,每个控制阀安排被配置为供应最大流速的约六分之一。在其他安排中,可以采用来自六个或另一数目的控制阀安排中的流速的其他组合,这取决于使用者的要求,并且本发明有助于这种灵活性。
该壳体可以被设计为插入外部井孔壳体与内部管线之间的环形体之中而不要求该管线变形来容纳它。优选地,该壳体被安排用于围绕该管线的外部的部署。例如,它可以具有基本环形的构形。
在其他实施方案中,该装置被安排为插入该管的多个部分之间的生产管线之中,其中该装置为油限定了当它从一个管部分向另一个管部分行进时向前流动穿过其中的一个通道。
每个控制阀安排可以在其出口与输入阀之间的流体路径中包括一个安全阀,其中该安全阀被安排为来禁止流体经由其出口流入该安排之中。
在优选实施方案中,该控制装置可以包括一个另外的卸载阀安排用于以实质上高于该控制阀安排的流速而选择性地将气体供应至该管线。因此卸载阀和气体提升阀被方便地提供在一个共同的装置中。该卸载阀可以间歇地使用以便以高速注入气体。可替代地,通过打开所有这些控制阀安排,卸载可能是可实现的。
本发明进一步提供用于控制将气体注入含原油的管中以便将油沿管向上提升的一种方法,该方法包括以下步骤:
提供至少两个控制阀安排,每个控制阀安排具有:用于从一个加压供应源接收气体的一个入口、用于供应加压气体以便注入管管中的一个出口、处于该入口与出口之间的一个流体路径中的一个输入阀、以及与该输入阀相关联的一个致动器,该致动器是独立可控制的以便将该对应的输入阀在其开放与关闭构形之间进行切换;
将每个安排的出口连接到该管的内部上;并且
选择性地操作对每个致动器以便将气体以所希望的组合速率注入该管中。
优选地,该方法包括另外多个步骤:监测该管的输出流速、并且响应监测到的输出流速来对气体注入该管中的速率进行调节。以此方式,可以将气体注入的速率调节为优化井靠井基础上的烃类提取的速率而不中断该生产过程。
此外,本发明提供了一种经由多个管对原油抽提进行控制的方法,该方法包括以下步骤:
与每个管相关联地提供至少两个控制阀安排,每个控制阀安排具有:用于从一个加压供应源接收气体的一个入口、用于供应加压气体以便注入对应管中的一个出口、处于该入口与出口之间的一个流体路径中的一个输入阀、以及与该输入阀相关联的一个致动器,每个致动器是独立可控制的以便将对应的输入阀在其开放与关闭构形之间进行切换;
将每个安排的出口连接到对应的管的内部上;
选择性地对每个致动器进行操作以便以所希望的速率将气体注入对应的管中;
监测每个管的输出流速;并且
响应于这些监测到的输出流速对气体注入至少一个管中的速率进行调节。因此,可以跨过多组井或甚至整个油田将气体提升操作进行优化。可以对同一油田内的多个井处的注入速率进行协调以便优化整个油田的生产速率。
附图简要说明
现在通过举例参考所附示意图对现有技术和本发明的多个实施方案进行描述,在附图中:
图1是一种典型的气体提升油抽提构形的示意图;
图2是一个曲线图,它示出了液体生产速率对气体注入的一个曲线图;
图3A至图3C是在一个卸载程序过程中顺序阶段的井孔的侧面截面图;
图4是一种已知的气体提升构形的透视截面图;
图5是一种实施本发明的气体注入控制装置的横向截面图;
图6是一种用于实施本发明的控制装置的控制阀安排的纵向截面图;
图7是图6的控制阀安排的透视图;
图8和9是表格,指出了对于两个可替代阀门控制装置构形的控制序列;
图10和11是一种实施本发明的气体注入控制装置的侧视图;
图12是另一种实施本发明的气体注入控制装置的透视图;
图13是图12的装置的透视横向截面图;并且
图14是图12的装置的透视纵向截面图。
附图详细说明
图5描绘了穿过一种实施本发明的气体注入控制装置50的一个横截面。显示了在井孔壳体8之中,其直径可以从位置到位置改变。在所展示的实例中,它具有的直径为178mm(这在该装置与壳体8之间提供了一个间隙以允许流体流过该装置的外部)并且包围了一个具有90mm直径的管线。虚线圈61指示了可用于包括该控制装置的工作空间的直径(这里是152mm),已经考虑到了井孔直径的变化和对齐。
控制装置50在壳体49内被分成了八个相等的区段51至58。区段51至56中的每一个包含一个如在以下进一步讨论的控制阀安排,其中每一个包括两个阀门60、62。
区段57包含一个卸载阀安排。通过举例,示出区段58具有穿过它的三个缆线59。这个另外的区段允许多个缆线、液压线、和/或其他连接器穿过该装置并且延伸至该井孔更下面的其他装置。
图6中示出了穿过一个用于包括在实施本发明的控制装置50中的一个控制阀安排64的纵向截面图,并且在图7中示出了同一个阀门安排的局部横向透视图。
控制信号通过一个缆线66被送到该阀门安排。该缆线被连接到一个连接器68上。控制信号是通过连接器68而从该缆线被送到电子控制电路70的。
控制电路70进而被电连接到一个双稳的致动器72上。该致动器是可操作的来使推杆74向下延伸以便打开入口单相阀62。这打开了一条从入口端口76至气体通道78的流体路径。
适用于本控制装置的实施方案中的一种形式的双稳致动器在例如英国联合王国专利号2342504和2380065、英国联合王国专利申请号0822760.5、以及美国专利号6598621(其内容通过引用结合在此)中进行了描述。
气体通道78限定了一个在输入阀62与安全单向阀60之间的流体路径。阀门60被提供在气体通道78与一个出口端口80之间。在该出口端口中提供一个流动限定器82,它限定了一个孔口,该孔口确定了气体能够穿过该出口端口的速率。该阀门安排的这些部件是提供在一个本体84之中,该本体是由一种金属例如像不锈钢形成的。
对于一种双稳致动器,不要求功率来将该阀门维持在一种选定的开放或关闭位置中并且仅需要一个短脉冲来将其切换至另一个位置。这意味着缆线66可以是相对轻质的,从而使它更容易处理并部署。这在它延伸超过一个实质性距离至海床时是特别显著的,例如,这可能是几千米。
在图6和图7所示的阀门安排的操作中,当要求进行气体注入时,一个适当的信号沿着缆线66经由控制电路70至致动器72而被送至该安排。该致动器运行来打开输入阀62,从而允许来自井孔环形体的加压气体进入到入口端口76之中。于是被加压的气体流经了输入阀62和气体通道78,而且在安全阀60上产生的压力致使该阀门打开从而导致气体经由出口端口80穿过该管线壁而注入。
图8的表格展示了可以如何提供六个阀门控制安排并且在实施本发明的气体注入控制装置中如何进行操作,其方式为协助以5%增量控制气体注入速率。这些阀门中的两个在打开时允许最大流速的5%,两个各允许15%并且剩下两个阀门各允许30%。通过如图8所示的不同组合选择性地打开这些阀门促成了有待注入的最大流速的所希望的百分比。图8中确认了第七个阀门,它代表一个倾卸或卸载阀用于允许如在此讨论的高流速注入。
图9的表格中示出了一种替代的构型。这里,这六个阀门控制安排在打开时各自允许最大流速的约六分之一。在这个实施方案中,不包括一个另外的倾卸阀门并且卸载是通过同时打开所有六个阀门而实现的。打开所有的控制阀与切换至一个单独的卸载阀相比可以协助更快的卸载。
图10和图11示出了安装在一个管线10周围的一个实施本发明的气体注入控制装置。
上部和下部的夹持套环90、92用来将该装置紧固在位。上部夹持套环94上的一个缆线夹具束缚着缆线66。该缆线延伸超过夹具94的部分未在这些图中示出。它穿入到缆线终止凹座96和接线通道98之中,从这里它进而与每个阀门安排相连接。实际上,该缆线终止凹座和接线通道将被一个片金属盖所覆盖并且填充有一种灌注混合物来进行密封并免于振动。
沿着该控制装置的长度限定了一个缆线旁路部分100以允许缆线和/或其他控制或供应线延伸越过该装置至该管线更下面的其他装置。在一些情况下,可以有更少的阀门控制安排以及更多的可用空间替代地用于一种装置中的旁路使用。
在每个出口端口80中提供了一个文氏管端口82形式的流动限定器。这可以被配置为一个可移开的插塞,该插塞通过该控制装置的外部圆周表面是可插入的。以此方式,该端口的大小可以根据涉及井孔的特定要求通过在每个安排中插入一个适当的插塞而容易地进行选择并且独立地被定义在该装置的每个阀门控制安排中。因此端口大小的选择可以在现场、在该装置部署之前不久进行,而不是在其组装过程中,因而可以考虑到关于涉及的具体井孔的特征的信息。
在一个卸载阀的情况下,该插塞可以只密封它在外部接收的孔口、并且不另外限制气体注入该管线中的路径。
图12至14涉及本发明的一个另外的实施方案。与上面所描述的被安排用于部署在油生产管周围的构形相比,这个另外的实施方案被配置来被插入到相邻的管部分之间的管线中。图12至14涉及的气体注入控制装置200包括在其壳体相对端的管状部分202和204,用于使用适当连接器(这些图中未示出)而连接至生产管的相邻部分上。这些管状部分202、204与壳体206一起沿着该装置的轴线限定了一个流体路径用于原油沿该生产管被抽取。
壳体206被形成为其中带有多个空腔的一个实心本体以保持与气体流动控制相关联的多个部件。这种实心构造保护了这些部件免于井孔环境中的实质性的环境压力。
壳体206的外表面限定了一个沿该壳体纵向延伸的旁路槽缝208。这为缆线和/或管提供了空间来越过该气体控制装置延伸到达在控制装置下面被部署得进一步深入井孔的其他设备。
如在上面所描述的第一实施方案的情况下,该装置的单个流动限制器210是可外部进入该装置中的以协助在该油田中的这些限制器中的一个或多个的安装和/或更换,恰在该控制装置的部署之前。这允许了使用者选择这些限制器来适应给定井的特定要求。
用于该气体控制装置的控制缆线经由一个密封的电缆入口212而进入壳体206之中。在一种优选的构形中,两个控制线是足够的。它们提供了一种双功能。这些线为壳体206内的一个存储电容器提供了低的DC电流涓流充电。它们还被用来将控制信号带到该装置并且将信息从该装置传输至该表面。
这些控制线可以在一个例如用钢形成的保护管内从该表面延伸至该装置。该管的内部可以对抗其环境进行密封并且被连接到包含多个控制电子器件的控制装置中的一个空腔上,其中该管的内部和空腔处于表面大气压下。这有助于对这些电子器件使用标准的部件,而不是要求能够在井孔中所经历的高压下运行的多个更昂贵的部件。
图13中示出了穿过壳体206的一个横向截面。在所描绘的实施方案中,在该实心壳体内提供了六个控制阀安排。在这些控制安排中阀门和致动器的构形类似于以上关于图5至7的实施方案所说明的。在图13的截面中,每个入口单向阀62是可见的、横靠这些流动限制器82,这些是与对应的气体注入出口端口80处于流体连通的。
图14示出了穿过图12和图13的气体控制装置的一个纵向截面图。穿过图13中所描绘的这些入口单向阀62和流动限制器82的这个横向截面的平面在图14中用线B-B标注。图14的截面平面穿过在图13上所标注的线A-A。
与每个输入阀62相关联的双稳致动器72在图14中是可见的。由邻近致动器72的与输入阀62相对的末端的壳体206限定了一个上部的加压空腔210。该入口单向阀62经由其入口端口76而暴露于环境流体静力学压力中。空腔210也被暴露于相同环境压力中以确保致动器72的任一侧上的压力是平衡的。这是为了避免环境压力通过克服由致动器72施加的力而迫使该输入阀门打开。

Claims (11)

1.一种用于布署在井孔中以便控制将气体注入含原油的管中从而使原油在管中向上提升的气体注入控制装置,该气体注入控制装置包括一个壳体、以及在该壳体内的至少两个控制阀安排,每个安排具有:
用于从一个加压供应源接收气体的一个入口;
用于供应加压气体以便注入所述管中的一个出口;
处于该入口与出口之间的一个流体路径中的一个输入阀;以及
与该输入阀相关联的一个致动器,该致动器是独立可控制的以便将对应的输入阀在其开放与关闭构形之间进行切换。
2.如权利要求1所述的装置,其中,提供了至少两个控制阀安排,这两个控制阀安排被配置为当它们的入口被连接至一个共同的气体供应源上时在它们的出口处以彼此不同的流速供应气体。
3.如权利要求2所述的装置,其中,这些控制阀门安排中的两个中的每一个是一对控制阀安排中的一个,其中每对中的这些安排被配置为当它们的入口被连接至一个共同的气体供应源上时在它们的出口处以基本相同的流速供应气体。
4.如权利要求3所述的装置,包括三对控制阀安排,其中该第一、第二和第三对中的每个安排被配置为对应地供应该装置的最大流速的约5%、15%、和30%。
5.如以上任何一项权利要求所述的装置,其中该壳体具有用于围绕一个管布署的一个基本上环形的构形。
6.如权利要求1至4中任一项所述的装置,其中,该装置被安排为在使用时有待连接在一个管的多个部分之间,并且为该原油限定了在管的这些部分之间的一个通道。
7.如以上任何一项权利要求所述的装置,其中,每个控制阀门安排包括在其出口与该输入阀之间的流体路径中的一个安全阀,其中该安全阀被安排为以便禁止流体经由其出口流入该安排之中。
8.如以上任何一项权利要求所述的装置,包括一个卸载阀安排,该卸载阀安排用于以一个实质上高于这些控制阀安排的流速选择性地将气体供应所述管。
9.一种用于控制气体注入含原油的管中以便将原油沿管向上提升的方法,该方法包括以下步骤:
提供至少两个控制阀安排,每个控制阀安排具有:用于从一个加压的供应源接收气体的一个入口、用于供应加压的气体以便注入该管中的一个出口、在该入口与出口之间的一个流体路径中的一个输入阀、以及与该输入阀相关联的一个致动器,该致动器是独立可控制的以便将该对应的输入阀在其开放与关闭的构形之间进行切换;
将每个安排的出口连接到该管的内部;并且
选择性地操作每个致动器以便将气体以一个希望的组合速率注入该管之中。
10.如权利要求9所述的方法,包括以下另外的步骤:
监测该管的输出流速;并且
响应于所监测的输出流速对气体注入该管中的速率进行调节。
11.一种用于控制经由多个管抽提原油的方法,该方法包括以下步骤:
提供与每个管相关联的至少两个控制阀安排,每个控制阀安排具有用于接收来自一个加压的供应源的气体的一个入口、用于供应加压的气体以便注入对应的管中的一个出口、在该入口与出口之间的一个流体路径中的一个输入阀、以及与该输入阀相关联的一个致动器,每个致动器是独立可控制的以便将该对应的输入阀在其开放与关闭构形之间进行切换;
将每个安排的出口连接到相应管的内部;
选择性地对每个致动器进行操作以便将气体以一个希望的速率注入该对应的管中;
监测每个管的输出流速;并且
响应于这些监测到的输出流速对进入至少一个管中的气体注入速率进行调节。
CN200980120981.0A 2008-06-07 2009-06-05 气体注入控制装置及其操作方法 Expired - Fee Related CN102057132B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0810473.9 2008-06-07
GB0810473.9A GB2462480B (en) 2008-06-07 2008-06-07 Gas injection control devices and methods of operation thereof
PCT/GB2009/050629 WO2009147446A2 (en) 2008-06-07 2009-06-05 Gas injection control devices and methods of operation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410591516.8A Division CN104500005A (zh) 2008-06-07 2009-06-05 气体注入控制装置及其操作方法

Publications (2)

Publication Number Publication Date
CN102057132A true CN102057132A (zh) 2011-05-11
CN102057132B CN102057132B (zh) 2014-11-05

Family

ID=39638373

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980120981.0A Expired - Fee Related CN102057132B (zh) 2008-06-07 2009-06-05 气体注入控制装置及其操作方法
CN201410591516.8A Pending CN104500005A (zh) 2008-06-07 2009-06-05 气体注入控制装置及其操作方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410591516.8A Pending CN104500005A (zh) 2008-06-07 2009-06-05 气体注入控制装置及其操作方法

Country Status (10)

Country Link
US (1) US8925638B2 (zh)
EP (2) EP2288787B1 (zh)
CN (2) CN102057132B (zh)
DK (2) DK2634364T3 (zh)
EA (2) EA020780B1 (zh)
ES (2) ES2528007T3 (zh)
GB (1) GB2462480B (zh)
MX (1) MX2010013117A (zh)
PL (2) PL2634364T3 (zh)
WO (1) WO2009147446A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011280087A1 (en) * 2010-06-30 2013-01-10 Chevron U.S.A. Inc. System and method for producing hydrocarbons from a well
GB2484692B (en) * 2010-10-20 2016-03-23 Camcon Oil Ltd Fluid injection device
GB2484693A (en) * 2010-10-20 2012-04-25 Camcon Oil Ltd Fluid injection control device
CA2826376C (en) * 2011-02-11 2021-03-30 Statoil Petroleum As Improved electro-magnetic antenna for wireless communication and inter-well electro-magnetic characterization in hydrocarbon production wells
CA2984173C (en) 2015-05-08 2023-10-03 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Single-well gas-assisted gravity draining process for oil recovery
GB2541504B (en) * 2016-06-17 2017-09-20 Starstream Ltd Flow control system and method
RU2685364C1 (ru) * 2018-04-26 2019-04-17 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Регулируемый дроссель
US11035201B2 (en) 2018-08-21 2021-06-15 Exxonmobil Upstream Research Company Hydrocarbon wells including electrically actuated gas lift valve assemblies and methods of providing gas lift in a hydrocarbon well
US11401788B2 (en) 2020-01-31 2022-08-02 Silverwell Technology Ltd. System and method of well operations using a virtual plunger
US11441401B2 (en) 2020-02-10 2022-09-13 Silverwell Technology Ltd. Hybrid gas lift system
EP4314482A1 (en) * 2021-03-29 2024-02-07 Sam and Gail LLC Gas lift system and method
US11702913B2 (en) * 2021-04-16 2023-07-18 Silverwell Technology Ltd. Wellbore system having an annulus safety valve
WO2024013225A1 (en) * 2022-07-15 2024-01-18 Shell Internationale Research Maatschappij B.V. Unloading valve and a gas lift system and a method of installing such a gas lift system
WO2024033661A1 (en) 2022-08-12 2024-02-15 Silverwell Technology Limited Wireless gas lift

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135576A (en) * 1978-01-03 1979-01-23 Camco, Incorporated Multiple pocket mandrel with fluid bypass
US5937945A (en) * 1995-02-09 1999-08-17 Baker Hughes Incorporated Computer controlled gas lift system
GB2342504A (en) * 1998-10-08 2000-04-12 Wladyslaw Wygnanski A bistable and monostable electromagnetic drive arrangement
WO2000075484A1 (en) * 1999-06-03 2000-12-14 Schlumberger Technology Corporation Apparatus and method for controlling fluid flow in a wellbore
US6598621B1 (en) * 1998-04-01 2003-07-29 Camcon Ltd. Magnetic drives
CN1639442A (zh) * 2001-10-01 2005-07-13 国际壳牌研究有限公司 通过井生产油气混合物的方法和系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB822760A (en) 1957-01-30 1959-10-28 Betsy Hellinghuizer Process of preparing a nitro furan compound
US3362347A (en) * 1966-01-05 1968-01-09 Otis Eng Co Gas lift systems and valves
US4635855A (en) 1985-04-26 1987-01-13 At&T Technologies, Inc. Method and apparatus for rapidly controlling the flow of gas
US5172717A (en) * 1989-12-27 1992-12-22 Otis Engineering Corporation Well control system
US6148843A (en) * 1996-08-15 2000-11-21 Camco International Inc. Variable orifice gas lift valve for high flow rates with detachable power source and method of using
GB2380064B (en) * 1998-10-08 2003-05-14 Camcon Ltd Magnetic drives
US6286596B1 (en) * 1999-06-18 2001-09-11 Halliburton Energy Services, Inc. Self-regulating lift fluid injection tool and method for use of same
US6679332B2 (en) * 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
RU2273727C2 (ru) 2000-01-24 2006-04-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Нефтяная скважина и способ работы ствола нефтяной скважины
OA12225A (en) * 2000-03-02 2006-05-10 Shell Int Research Controlled downhole chemical injection.
GB2408526B (en) * 2003-11-26 2007-10-17 Schlumberger Holdings Steerable drilling system
FR2875638B1 (fr) 2004-09-22 2014-01-03 Cartier Technologies G Actionneur bistable
US7360602B2 (en) 2006-02-03 2008-04-22 Baker Hughes Incorporated Barrier orifice valve for gas lift
GB2450681A (en) * 2007-06-26 2009-01-07 Schlumberger Holdings Multi-position electromagnetic actuator with spring return

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135576A (en) * 1978-01-03 1979-01-23 Camco, Incorporated Multiple pocket mandrel with fluid bypass
US5937945A (en) * 1995-02-09 1999-08-17 Baker Hughes Incorporated Computer controlled gas lift system
US6598621B1 (en) * 1998-04-01 2003-07-29 Camcon Ltd. Magnetic drives
GB2342504A (en) * 1998-10-08 2000-04-12 Wladyslaw Wygnanski A bistable and monostable electromagnetic drive arrangement
WO2000075484A1 (en) * 1999-06-03 2000-12-14 Schlumberger Technology Corporation Apparatus and method for controlling fluid flow in a wellbore
CN1639442A (zh) * 2001-10-01 2005-07-13 国际壳牌研究有限公司 通过井生产油气混合物的方法和系统

Also Published As

Publication number Publication date
EA020780B1 (ru) 2015-01-30
DK2288787T3 (da) 2013-10-28
MX2010013117A (es) 2011-03-29
US20110083855A1 (en) 2011-04-14
EP2634364B1 (en) 2014-10-15
EP2634364A1 (en) 2013-09-04
DK2634364T3 (en) 2015-01-19
PL2288787T3 (pl) 2014-01-31
WO2009147446A2 (en) 2009-12-10
CN102057132B (zh) 2014-11-05
WO2009147446A3 (en) 2010-03-25
EA201400760A1 (ru) 2015-02-27
US8925638B2 (en) 2015-01-06
ES2432192T3 (es) 2013-12-02
PL2634364T3 (pl) 2015-03-31
CN104500005A (zh) 2015-04-08
ES2528007T3 (es) 2015-02-03
EP2288787B1 (en) 2013-08-28
GB0810473D0 (en) 2008-07-09
GB2462480A (en) 2010-02-17
GB2462480B (en) 2012-10-17
EP2288787A2 (en) 2011-03-02
EA201071394A1 (ru) 2011-06-30

Similar Documents

Publication Publication Date Title
CN102057132B (zh) 气体注入控制装置及其操作方法
CN108643869B (zh) 一种海底浅层天然气水合物固态流化绿色开采装置及方法
US7487838B2 (en) Inverted electrical submersible pump completion to maintain fluid segregation and ensure motor cooling in dual-stream well
EP2630326B1 (en) Fluid injection device
CA2908994C (en) Telemetry operated tools for cementing a liner string
US8640769B2 (en) Multiple control line assembly for downhole equipment
US20090211755A1 (en) System and method for injection into a well zone
BR102014028665A2 (pt) ferramenta de ajuste, conjunto de instalação, sistema e método para suspender uma coluna de tubos
WO2000045031A1 (en) Controlling production
CN103429843B (zh) 具有反向流动控制能力的控流筛管组件
EA008718B1 (ru) Контролируемый с поверхности клапан потока и фильтр
CN111771039A (zh) 带有排气系统的电动沉没泵
CA2582212C (en) Integrated sand control completion system and method
CN109804134A (zh) 自上而下的挤压系统和方法
CN107269245B (zh) 一种用于分层注水/采油的防砂段小层再封隔的方法
CN103370492A (zh) 流体喷射装置
CN111827947A (zh) 一种裸眼井鱼骨刺增产及筛管完井一体化管柱
CN101514621A (zh) 多区域中的无钻机的防砂
CN109844258A (zh) 自上而下的挤压系统和方法
CN101365863B (zh) 井筒中的压力抑制方法
CN117868769A (zh) 一种压裂与生产一体化的管柱装置及作业方法
EP1666697B1 (en) Fluid operated pump for use in a wellbore

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141105

Termination date: 20160605