CN102053739B - Touch screen input finger stall - Google Patents

Touch screen input finger stall Download PDF

Info

Publication number
CN102053739B
CN102053739B CN 201010607457 CN201010607457A CN102053739B CN 102053739 B CN102053739 B CN 102053739B CN 201010607457 CN201010607457 CN 201010607457 CN 201010607457 A CN201010607457 A CN 201010607457A CN 102053739 B CN102053739 B CN 102053739B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
finger
carbon nanotube
input
sleeve
structure
Prior art date
Application number
CN 201010607457
Other languages
Chinese (zh)
Other versions
CN102053739A (en )
Inventor
姜开利
范守善
Original Assignee
清华大学
鸿富锦精密工业(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

一种触摸屏输入指套,其包括:一手指套筒;一输入端,所述输入端设置于该手指套筒;其中,所述输入端包括一支撑体及设置在该支撑体表面的导电层,所述导电层为一碳纳米管复合材料层,该碳纳米管复合材料层包括多个碳纳米管以及包覆在每根碳纳米管的表面的导电材料层,在使用时,所述导电层与手指电连接。 A touch screen input finger, comprising: a finger sleeve; an input, the input is provided to the finger sleeve; wherein said input comprises a supporting body and a conductive layer disposed on the surface of the support the conductive layer is a layer of a carbon nanotube composite, the composite material layer comprises a plurality of carbon nanotubes, and the carbon nanotube layer of conductive material coated on the surface of each of the carbon nanotubes, in use, the conductive layer and electrically connected to the finger.

Description

触摸屏输入指套技术领域[0001 ] 本发明涉及一种触摸屏输入指套。 Finger touch screen input Field [0001] The present invention relates to a touch screen input finger. 背景技术[0002] 近年来,伴随着移动电话与触摸导航系统等各种电子设备的高性能化和多样化的发展,在液晶等显示设备的前面安装透光性的触摸屏的电子设备逐步增加。 [0002] In recent years, along with development of high performance and diversification of electronic devices of various mobile phones, car navigation systems, and gradually increase the installation of the light-transmitting liquid crystal touch panel in front of the display device such as an electronic device. 这样的电子设备的使用者通过触摸屏,一边对位于触摸屏背面的显示设备的显示内容进行视觉确认,一边按压触摸屏来进行操作。 Such an electronic device the user through the touch screen, while the display content for the display device of the touch screen visually observing the back side, while pressing the touch screen to operate. 由此,可以操作电子设备的各种功能。 Thereby, it is possible to operate various functions of the electronic devices. [0003] 对于电容式触摸屏,需要通过触摸笔或者手指触摸屏幕进行操作。 [0003] For the capacitive touch screen, you need to operate a touch pen or a finger by touching the screen. 当用手指操作时,手指上的油质很容易在触摸屏上留下印记,弄脏触摸屏。 When operating with a finger, oil from your fingers can easily leave a mark on the touch screen, touch screen dirty. 发明内容[0004] 有鉴于此,确有必要提供一种触摸屏输入指套,该触摸屏输入指套在使用时不会破坏触摸屏。 [0004] needed, therefore, necessary to provide a finger touch screen input, the touch screen input using the finger is not damaged when the touch screen. [0005] 一种触摸屏输入指套,其包括:一手指套筒;一输入端,所述输入端设置于该手指套筒;其中,所述输入端包括一支撑体及设置在该支撑体表面的导电层,所述导电层为一碳纳米管复合材料层,该碳纳米管复合材料层包括多个碳纳米管以及包覆在每根碳纳米管的表面的导电材料层,在使用时,所述导电层与手指电连接。 [0005] A finger touch screen input, comprising: a finger sleeve; an input, the input is provided to the finger sleeve; wherein said input comprises a support and provided on the surface of the support conductive layer, the conductive layer is a carbon nanotube composite material layer, the carbon nanotube composite material comprising a plurality of carbon nanotubes and a layer of conductive material layer coated on the surface of each of the carbon nanotubes, when in use, the conductive layer is electrically connected to the finger. [0006] 与现有技术相比较,本发明提供的触摸屏具有以下优点:首先,指套在使用时,利用输入端向触摸屏输入信息,不会对触摸屏造成破坏;其次,由于输入端与触摸屏的接触面积较小,可以灵敏的操作较小的按键;再次,由于该触摸屏指套在使用时可以套在一个手指上操作,无需两只手同时操作触摸屏,可以实现一只手操作触摸屏。 [0006] Compared with the prior art, the present invention provides a touch panel has the following advantages: First, a finger, in use, with an input to an input to the touch screen information, without causing damage to the touch screen; Second, since the input terminal with the touch screen contact area is small, it can be less sensitive to the operation key; again, since the finger touch screen can be set when in use on a finger operation, without operating the touch screen at the same time both hands, one hand operation can realize a touch screen. 附图说明[0007]图1为本发明第一实施例提供的触摸屏输入指套的剖面示意图。 BRIEF DESCRIPTION [0007] FIG. 1 is a schematic cross-sectional view of the touchscreen input provided in a first embodiment of the present invention cuff. [0008] 图2为本发明第一实施例中触摸屏输入指套的导电层所采用的石墨烯的结构示意图。 [0008] FIG. 2 is a schematic structure of the graphene touchscreen input finger conductive layer employed in the first embodiment of the present invention. [0009]图3是本发明第一实施例中触摸屏输入指套采用碳纳米管阵列设置于支撑体表面作为导电层的结构示意图。 [0009] FIG. 3 is a first embodiment of the present invention in a schematic view of a touchscreen input finger structure carbon nanotube array disposed on the surface of the support using the conductive layer. [0010] 图4是本发明第一实施例中触摸屏输入指套采用碳纳米管层设置于支撑体表面作为导电层的结构示意图。 [0010] FIG. 4 is a first embodiment of the present invention in a schematic view of a touchscreen input finger carbon nanotube structure layer is disposed on the surface of the support using the conductive layer. [0011] 图5是本发明第一实施例中触摸屏输入指套的导电层所采用的碳纳米管拉膜的扫描电镜照片。 [0011] FIG. 5 is a scanning electron micrograph of a carbon nanotube film finger touch screen input conductive layer employed in the first embodiment embodiment of the present invention. [0012] 图6是本发明第一实施例中触摸屏输入指套的导电层所采用的碳纳米管絮化膜的扫描电镜照片。 [0012] FIG. 6 is a scanning electron microscope image of a flocculated carbon nanotube film finger touch screen input conductive layer employed in the first embodiment embodiment of the present invention. [0013] 图7是本发明第一实施例中触摸屏输入指套的导电层所采用的碳纳米管碾压膜的扫描电镜照片。 [0013] FIG. 7 is a diagram of the finger touch screen input nanotube conductive layer used in the film rolling SEM image of a first embodiment of the present invention. [0014] 图8是本发明第一实施例中触摸屏输入指套采用一根碳纳米管线状结构设置于支撑体表面作为导电层的结构示意图。 [0014] FIG. 8 is a first embodiment of the present invention in a schematic view of a touchscreen input finger structure carbon nanotube wire structure disposed on a surface of the support using the conductive layer. [0015] 图9是本发明第一实施例中触摸屏输入指套采用多根碳纳米管线状结构设置于支撑体表面作为导电层的结构示意图。 [0015] FIG. 9 is a first embodiment of the present invention in a schematic view of a touchscreen input finger structure is provided a plurality of linear carbon nanotube structure on the surface of the support using the conductive layer. [0016] 图10是本发明第一实施例中触摸屏输入指套的导电层所采用的包括多根相互平行的碳纳米管线的碳纳米管线状结构的结构示意图。 [0016] FIG. 10 is a schematic view comprising a plurality of carbon nanotube wires parallel linear structure of carbon nanotubes embodiment touchscreen input finger conductive layer employed in the first embodiment of the present invention. [0017] 图11是本发明第一实施例中触摸屏输入指套的导电层所采用的包括多根相互缠绕的碳纳米管线的碳纳米管线状结构的结构示意图。 [0017] FIG. 11 is a schematic structural diagram of a carbon nanotube wire includes a plurality of linear structures of entangled carbon nanotubes in Example finger touch screen input conductive layer employed in the first embodiment of the present invention. [0018] 图12是本发明第一实施例中触摸屏输入指套的导电层所采用的非扭转的碳纳米管线的扫描电镜照片。 [0018] FIG. 12 is a scanning electron micrograph embodiment touchscreen input finger conductive layer used in the non-twisted carbon nanotube wire of the first embodiment of the present invention. [0019] 图13是本发明第一实施例中触摸屏输入指套的导电层所采用的扭转的碳纳米管线的扫描电镜照片。 [0019] FIG. 13 is a scanning electron micrograph of the twisted carbon nanotube wire touchscreen input finger conductive layer employed in the first embodiment embodiment of the present invention. [0020] 图14是本发明第一实施例中触摸屏输入指套的导电层所采用的碳纳米管高分子复合材料的结构示意图。 [0020] FIG. 14 is a schematic view of a carbon nanotube polymer composite finger touch screen input conductive layer employed in the first embodiment embodiment of the present invention. [0021] 图15是本发明第一实施例中触摸屏输入指套的导电层所采用的高分子材料包覆碳纳米管阵列形成的高分子复合材料的结构示意图。 [0021] FIG. 15 is a schematic view of the polymeric composite polymer material embodiment of the touch screen input finger conductive layer coated carbon nanotube array is formed using a first embodiment of the present invention. [0022] 图16是本发明第一实施例中触摸屏输入指套的导电层所采用的高分子材料填充于碳纳米管阵列的缝隙中形成的高分子复合材料的结构示意图。 [0022] FIG. 16 is a schematic view of the polymeric composite polymer material in Example finger touch screen input conductive layer used to fill the gap in the carbon nanotube array formed of a first embodiment of the present invention. [0023] 图17是本发明第一实施例中触摸屏输入指套的导电层所采用的碳纳米管层与高分子材料形成的高分子复合材料的结构示意图。 [0023] FIG. 17 is a schematic view of the carbon nanotube layer polymer composite material with the polymer material forming the finger touch screen input conductive layer employed in the first embodiment embodiment of the present invention. [0024] 图18是本发明第一实施例中触摸屏输入指套的导电层所采用的碳纳米管线状结构与高分子材料形成的高分子复合材料的结构示意图。 [0024] FIG. 18 is a schematic view of the embodiment of a polymer composite material and a polymer material linear carbon nanotube structure finger touch screen input conductive layer used for forming a first embodiment of the present invention. [0025] 图19是本发明第一实施例中触摸屏输入指套的导电层所采用的石墨烯高分子复合材料的结构示意图。 [0025] FIG. 19 is a schematic view of a graphene polymer composite finger touch screen input conductive layer employed in the first embodiment embodiment of the present invention. [0026][0027][0028][0029][0030][0031][0032][0033]示意图。 [0026] [0027] [0028] [0029] [0030] [0031] [0032] [0033] FIG. [0034]示意图。 [0034] FIG. [0035][0036][0037]图20为本发明第二实施例提供的触摸屏输入指套的结构示意图。 [0035] [0036] [0037] FIG. 20 is a schematic structural view of a touch screen input finger to provide a second embodiment of the present invention. 图21为本发明第三实施例第一种情况提供的触摸屏输入指套的结构示意图。 FIG 21 a schematic view of the structure of the input finger touch panel according to the first case to the third embodiment of the present invention is provided. 图22为本发明第三实施例第二种情况提供的触摸屏输入指套的结构示意图。 Schematic structural diagram of a third embodiment of the second case provides touchscreen input finger 22 of the present invention FIG. 图23为本发明第三实施例第三种情况提供的触摸屏输入指套的结构示意图。 Figure 23 provides a schematic structural diagram of a third case of finger touch screen input third embodiment of the present invention. 图24为本发明第三实施例第四种情况提供的触摸屏输入指套的结构示意图。 Figure 24 provides a schematic structural diagram of a fourth case of finger touch screen input of a third embodiment of the present invention. 图25为本发明第四实施例提供的触摸屏输入指套的结构示意图。 Figure 25 provides a schematic structural diagram of a touch screen input to a fourth embodiment of the present invention cuff. 图26为本发明第五实施例提供的触摸屏输入指套的结构示意图。 FIG 26 a schematic view of the structure of the input finger touch panel according to a fifth embodiment of the present invention provides. 图27为本发明第五实施例提供的由一根碳纳米管线状结构构成的输入端的结构图28为本发明第五实施例提供的由多根碳纳米管线状结构构成的输入端的结构图29为本发明第六实施例提供的触摸屏输入指套的结构示意图。 FIG structure 29 by a plurality of input linear carbon nanotube structure constituting a fifth embodiment provides a configuration diagram of a configuration of an input terminal of the linear carbon nanotube structural diagram of a fifth embodiment of the present invention. FIG. 27 of the present invention 28 cuff structural diagram of a touch screen input according to a sixth embodiment of the present invention is provided. 主要元件符号说明触摸屏输入指套 10,20,30,40,50,60[0038] 手指套筒 12,22,32,42,52,62[0039] 输入端 14,54,64[0040] 第一部分 142,542[0041] 第二部分 144,544[0042] 缝隙 16,56[0043] 支撑体 146[0044] 导电层 148,248,348[0045] 碳纳米管线状结构 150[0046] 碳纳米管线 152[0047] 碳纳米管 122[0048] 高分子基体 124[0049] 碳纳米管阵列 154[0050] 高分子基体 156[0051] 碳纳米管层 158[0052] 碳纳米管复合线状结构 160 [0053] 石墨烯 128[0054] 石墨烯高分子复合材料层 130[0055] 通孔 220[0056] 导电连接部 240[0057] 网格 322[0058] 经线 324,424[0059] 纬线 326,426[0060] 结点 3240,4240具体实施方式 [0061] 下面将结合附图及具体实施例对本发明触摸屏输入指套作进一步的详细说明。 10,20,30,40,50,60 [0038] 12,22,32,42,52,62 [0039] The main input element finger sleeve Symbol Description touchscreen input finger 14,54,64 [0040] of 146 [0044] a portion of the conductive layer 142,542 [0041] The second portion 144, 544 [0042] The slits 16, 56 [0043] support 148,248,348 [0045] The carbon nanotube wire structure 150 [0046] The carbon nanotube wire 152 [0047 ] CNTs 122 [0048] 124 polymer matrix [0049] The carbon nanotube array 154 [0050] 156 [0051] 158 the carbon nanotube layer a polymer matrix [0052] The carbon nanotube composite wire structure 160 [0053] graphite alkenyl 128 [0054] graphene polymer composite material layer 130 [0055] 220 through-holes [0056] 240 conductive connecting portion [0057] 322 mesh [0058] The warp 324,424 [0059] wefts 326, 426 [0060] nodes 3240,4240 dETAILED DESCRIPTION [0061] the accompanying drawings and the following Examples of specific embodiments of the present invention, a touch screen input finger will be further described in detail. [0062] 请参见图1,本发明第一实施例提供一种触摸屏输入指套10,其包括一手指套筒 12及一输入端14,所述输入端14与手指套筒12可拆卸的相互连接在一起,整体上呈一端封闭另一端敞开形态,所述输入端14位于该封闭端处,使用时使人的手指能够与该输入端14电连接。 [0062] Referring to FIG. 1, a first embodiment of the present invention provides a touch screen input finger 10, a finger sleeve 12 which includes an input terminal 14 and an input terminal 14 and the finger sleeve 12 detachably to each other are connected together, as a whole open form closed at one end, the input end 14 located at the closed end, an electrical connector 14 makes use of the terminal and the finger can be input. [0063] 所述手指套筒12的材料为柔性材料,可以为柔性导电材料,也可以为柔性绝缘材料。 [0063] The material of the finger sleeve 12 is a flexible material, it may be a flexible conductive material, an insulating material may be flexible. 所述柔性绝缘材料包括树脂、橡胶、塑料和柔性纤维。 Said flexible insulating material comprises a resin, rubber, plastic and flexible fibers. 所述柔性导电材料可以为导电高分子材料,也可以为在柔性绝缘材料中加入金属颗粒形成的导电材料。 The flexible conductive material may be a conductive polymer material, a conductive material may be added to the metal particles is formed in the flexible insulating material. 所述手指套筒12为一筒状结构,可以是两端都敞开的,也可以是一端封闭另一端敞开的。 The finger sleeve 12 is a cylindrical structure, it can be open at both ends, or may be closed at one end open. 如果手指套筒12的材料为绝缘材料,那么需要将输入端14以与手指能够接触的方式安装在手指套筒12上。 If the material of the sleeve finger 12 is an insulating material, it is necessary to input 14 so as to be in contact with the finger on the finger sleeve 12 is mounted. 当手指套筒12的两端敞开状态下,将输入端14直接固定在手指套筒12的一端即可,此时手指可以直接与输入端14接触;当手指套筒12的一端封闭状态下,需要在封闭端处开设至少一通孔,将输入端14设置在该封闭端内壁面或者外壁面上,此时手指可以直接接触于输入端14或者通过该孔接触于输入端14。 When the sleeve 12 is open at both ends of the finger state, the input terminal 14 is directly fixed to the one end of the sleeve 12 of the finger, the finger can directly contact the case 14 and the input terminal; closed state when an end of the finger sleeve 12, requires defines at least one through hole at the closed end, the input terminal 14 is provided at the closed end of the inner wall surface or outer wall surface, then the fingers can contact directly or through the input 14 to input 14 via contact. 本实施例中,所述手指套筒12为两端敞开的,所述手指套筒12是用于将输入端14固定在操作触摸屏的手指上并使手指与输入端14电连接, 其内径的大小由手指的粗细决定,一般略小于手指的直径,手指套筒12本身具有一定的弹性,可以固定在手指上。 An inner diameter in the present embodiment, the finger sleeve 12 is open at both ends, the finger sleeve 12 is used to input terminal 14 is fixed to the operating finger and the finger on the touch screen and the input terminal 14 is electrically connected to the determined by the thickness of the finger size, typically slightly smaller than the diameter of a finger, the finger sleeve 12 itself has a certain elasticity, may be fixed on the finger. 手指套筒12的壁厚可以选择为O.1毫米至2毫米。 The wall thickness of the finger sleeve 12 may be selected to O.1 to 2 mm. [0064] 所述输入端14用于传导触摸屏屏幕与手指之间的电流,从而使触摸屏输入指套10向触摸屏输入信号。 [0064] The input terminal 14 for conducting current between the finger and the touch panel screen so that the touch panel 10 to input cuff touchscreen input signal. 所述输入端14的形状不限,可以为球形、锥形、椭球形或其它不规则形状。 The input terminal 14 is not limited to the shape, it can be spherical, conical, ellipsoid, or other irregular shapes. 所述输入端14可以通过卡扣、过盈配合等机械方式或者热压、粘结剂等物理化学方式固定于所述手指套筒12的一端。 The input 14 by a snap, interference fit, etc. or mechanically pressing, a binder, and other physical and chemical means fixed to one end of the sleeve 12 of the finger. 本实施例中,所述输入端14通过粘结剂与手指套筒12固定。 In this embodiment, the input terminal 14 is fixed to the finger sleeve 12 by an adhesive. 所述输入端14按照与手指套筒12的位置关系可以分为第一部分142及第二部分144。 The input 14 according to the positional relationship between the finger and the sleeve 12 may be divided into a first portion 142 and second portion 144. 所述第一部分位于手指套筒12的内部,用于与手指相互接触。 The first portion is located inside of the finger sleeve 12 for finger contact with each other. 所述第二部分144位于手指套筒12的外部,用于向触摸屏输入信号。 Said second external sleeve portion 12 of the finger 144 for an input signal to the touch screen. 所述第一部分142与手指接触的表面可以具有一定的曲面,使使用者的手指的指腹与该曲面接触时具有更好的触感。 The first portion 142 in contact with the surface of the finger may have a curved surface, so that the user's finger pad having a better feel upon contact with the surface. 所述第二部分144可具有一尖端或凸起结构,便于操作较小的按键。 The second portion 144 may have a tip or a convex structure, easy to operate small buttons. 可选择地,在输入端14与手指套筒12相接触的侧面还可以包括一缝隙16,该缝隙16用于容纳手指甲,使人在使用该触摸屏输入指套时更加舒适。 Alternatively, the side surface 12 in contact with the input end of the finger sleeve 14 may further include a slit 16, the slit 16 for receiving nails, make more comfortable the use of the finger touch screen input. [0065] 本实施例中,所述输入端14包括一支撑体146及设置于支撑体146表面的导电层148。 [0065] In this embodiment, the input 14 comprises a supporting body 146 and the conductive layer 148 disposed on the surface 146 of the support member. 支撑体146可以为空心结构,也可以为实心结构。 A support member 146 may be a hollow structure, it may be a solid structure. 所述支撑体146的材料不限,可以由硬性材料或柔性材料制成。 Any material of the support member 146 may be made of a rigid material or a flexible material. 当该支撑体146的材料选择硬性材料时,其可以为陶瓷、玻璃、树脂、石英、塑料等中的一种或几种。 When the material of the support member 146 of rigid material choice, which can be ceramic, glass, resin, quartz, plastic or the like of one or several. 当支撑体146选择柔性材料时,其可以为树脂、橡胶、塑料或柔性纤维等中的一种或几种。 When the support 146 selects flexible material, which may be one or more of a resin, rubber, flexible plastic or the like fibers. 所述支撑体146还可以为导电高分子材料,导电高分子材料具有较高的介电常数,用作支撑体146时,可以使输入端14本身具有较大的电容。 The support member 146 may also be a conductive polymer material, a conductive polymer material having a high dielectric constant, as a support member 146, the input terminal 14 itself can have a large capacitance. 所述导电高分子材料可以为聚苯胺、聚吡咯或聚噻吩。 The conductive polymer material may be a polyaniline, polypyrrole or polythiophene. 所述支撑体146还可以为具有较高介电常数的液体,如水、离子溶液。 The support member 146 may also be a liquid having a higher dielectric constant, such as water, ionic solution. 当支撑体146采用液体时,可以使输入端14具有一定的柔性,该触摸屏输入指套10与触摸屏接触时,不会对屏幕造成划伤。 When the support member 146 using a liquid, the input terminal 14 may have a certain flexibility, when the touch-screen input cuff 10 in contact with the touch screen, does not cause scratches on the screen. 当支撑体146为空心结构时,可以使该输入端14的质量较轻,且可以节省材料。 When the support member 146 is a hollow structure, the quality of the input light 14, and the material can be saved. 当支撑体146的材料为柔性材料时,输入端14可以具有一定的柔性,对触摸屏具有一定的保护作用,且输入端14具有一定的耐弯折性能,可以提高输入端14的寿命。 When the material of the support member 146 is a flexible material, the input end 14 may have a certain flexibility, it has a protective effect on the touchscreen, and the input terminal 14 has a certain resistance to bending performance, can improve the input end 14 life. 同时,由于输入端14具有一定的柔性,可以通过触摸压力来控制输入端14与触摸屏之间的接触面积的大小,从而控制输入信号。 Meanwhile, since the input terminal 14 has a certain flexibility, you can control the size of the contact area between the input terminal of the touch screen 14 by touch pressure, to control the input signal. [0066] 所述导电层148为由导电材料构成,其作为用于传导触摸屏屏幕与手指之间的电流,从而使触摸屏输入指套10向触摸屏输入信号。 [0066] The conductive layer 148 made of a conductive material, as for conducting current between the screen and the finger touch screen, a touch screen input so that the input signal cuff 10 to the touch screen. 即,使用时,触摸屏输入指套10的导电层148与使用者手指电连接。 That is, in use, a touch screen input cuff 10 is conductive layer 148 is electrically connected to the user's fingers. [0067] 所述导电层148可以为一石墨烯层。 [0067] The conductive layer 148 may be a layer of graphene. 请参见图2,石墨烯是由多个六元环型的碳原子构成的片层状结构。 Referring to FIG 2, a graphene sheet structure composed of a plurality of laminated type six-membered ring of carbon atoms. 石墨烯覆盖在支撑体146的表面构成石墨烯层,该石墨烯层中的石墨烯通过范德华力相互连接。 Graphene covering the support surface 146 constituting the graphene layer, the graphene in the graphene layer connected to each other by van der Waals forces. 该石墨烯层中的石墨烯的排列方式可以为相互交叠设置、并列设置或者相互重合设置。 The arrangement of graphene graphene layer may be disposed to overlap each other, arranged in parallel or coincide with each other is provided. 石墨烯具有良好的导电性能,其在室温下传递电子的速度非常快。 Graphene has good electrical conductivity, which electron transfer is very fast at room temperature. 所述石墨稀的厚度小于等于100纳米,本实施例中,石墨稀的厚度为O. 5纳米至100纳米。 The graphene thickness of less than or equal to 100 nanometers, in the present embodiment, the thickness of the graphene O. 5 nm to 100 nm. 所述石墨烯层的厚度为单层石墨烯的厚度至I毫米。 The thickness of the graphene layer has a thickness of graphene to I mm. 本实施例中,采用化学分散法制备石墨烯材料。 In this embodiment, the graphene materials were prepared by chemical dispersants. 化学分散法是将氧化石墨与水按照Img : ImL的比例混合,用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在100°C回流24h,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯粉末。 Chemical dispersion method is a method according to Img graphite oxide and water: mixture ratio ImL, an ultrasonic oscillation to the clear solution without particulate matter, adding an appropriate amount of hydrazine at 100 ° C under reflux for 24h, black granular precipitate was produced, filtered and dried to obtain graphene powder. 制得石墨烯之后,将支撑体146放入石墨烯粉末中,由于石墨烯为纳米材料,本身具有一定的粘附力,可以粘附在支撑体146的表面,形成导电层148。 After the graphene prepared, the support member 146 into the graphene powder, since graphene nano material itself has a certain adhesion can be adhered to the surface of the support 146, the conductive layer 148 is formed. 可以理解,石墨烯也可以通过粘结剂固定于支撑体146的表面。 It will be appreciated, the graphene may be fixed to the surface by an adhesive member 146 is supported. 石墨烯是纳米材料,具有较高的比表面积,作为导电层148使用时,导电层148与触摸屏直接接触,由于石墨烯的比表面积较大,可以与触摸屏之间产生较大的电容,因此,可以使该触摸屏输入指套10具有较高的灵敏度。 Graphene is a nano material having a high specific surface area, the conductive layer 148 is used as the conductive layer 148 in direct contact with the touch screen, since a larger surface area than the graphene, a large capacitance can be generated between the touch screen and, therefore, the touch panel input can cuff 10 with high sensitivity. 且,石墨烯较光滑,具有较小的摩擦系数,在使用时不会对触摸屏的屏幕造成伤害。 And, graphene smooth, having a low coefficient of friction, does not cause damage to the screen when the touch screen is used. [0068] 所述导电层148还可以为一碳纳米管结构,该碳纳米管结构包括多个均匀分布的碳纳米管。 [0068] The conductive layer 148 may also be a carbon nanotube structure, the carbon nanotube structure comprises a plurality of carbon nanotubes uniformly distributed. 该碳纳米管可以为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管中的一种或几种。 The carbon nanotubes may be single-walled, double-walled, one or more multi-walled carbon nanotubes. 该碳纳米管结构可以为一由碳纳米管构成的纯碳纳米管结构。 The carbon nanotube structure may be a pure carbon nanotube structure composed of carbon nanotubes. 所述碳纳米管结构中的碳纳米管之间可以通过范德华力紧密结合。 It can be combined by van der Waals attractive force between the carbon nanotubes in the carbon nanotube structure. 该碳纳米管结构中的碳纳米管为无序或有序排列。 The carbon nanotubes in the carbon nanotube structure is disordered or ordered. 这里的无序排列指碳纳米管的排列方向无规律,这里的有序排列指至少多数碳纳米管的排列方向具有一定规律。 Herein refers to a disordered arrangement irregular arrangement direction of the carbon nanotubes, ordered arrangement refers to an arrangement where the direction of at least a majority of the carbon nanotubes are random. 具体地,当碳纳米管结构包括无序排列的碳纳米管时,碳纳米管可以相互缠绕或者各向同性排列;当碳纳米管结构包括有序排列的碳纳米管时,碳纳米管沿一个方向或者多个方向择优取向排列。 In particular, when the carbon nanotube structure comprises a disordered array of carbon nanotubes, the carbon nanotubes can be entangled with each other or isotropically arranged; nanotube when the carbon nanotube structure comprises a time ordered carbon nanotubes in a direction or arranged in a plurality of directions preferred orientation. 碳纳米管结构中的碳纳米管之间存在间隙,因此, 碳纳米管结构包括多个微孔。 There is a gap between the carbon nanotubes in the carbon nanotube structure, and therefore, the carbon nanotube structure comprises a plurality of pores. 所述微孔的孔径小于等于10微米。 Pore ​​size of the micropores is less than or equal to 10 micrometers. 所述碳纳米管结构的厚度为100纳米〜I毫米。 The thickness of the carbon nanotube structure is 100 nm ~I mm. 由于碳纳米管结构中每个碳纳米管具有较大的比表面积,碳纳米管结构具有较大的比表面积,在其与触摸屏接触时,可以产生较大的接触电容,可以使该触摸屏输入指套10具有较高的灵敏度。 Since the carbon nanotube structure of each carbon nanotube has a large specific surface area, the carbon nanotube structure having a large specific surface area, it contacts with the touch screen, can produce a large contact capacitance, may cause the touch panel input means sleeve 10 has a higher sensitivity. 且,碳纳米管比较光滑,具有较小的摩擦系数,在使用时不会对触摸屏的屏幕造成伤害。 Moreover, carbon nanotubes relatively smooth, has a low coefficient of friction, will not cause damage to the touch screen of the screen when in use. [0069] 请参见图3,所述碳纳米管结构可以为一碳纳米管阵列,该碳纳米管阵列设置于支撑体146的表面。 [0069] Referring to FIG. 3, the carbon nanotube structure may be an array of carbon nanotubes, the carbon nanotube array disposed on the surface of the support member 146. 该碳纳米管阵列中的碳纳米管的根部固定于支撑体146的表面,碳纳米管的端部朝向远离支撑体146的表面的方向延伸。 The roots of the carbon nanotubes in the carbon nanotube array fixed to the surface of the support member 146, an end portion toward the surface of the carbon nanotube 146 extending away from the support. 所述碳纳纳米管阵列中的碳纳米管与支撑体146的表面角度不限,优选地,碳纳米管沿支撑体146表面的法线方向延伸。 The angle of the surface 146 of the carbon nanotube array Na Nami tube and the support is not limited, preferably, the carbon nanotube extends along the normal direction of the support surface 146. 所述碳纳米管阵列中的碳纳米管根部之间的距离大于等于O小于等于I微米。 The distance between the root of said carbon nanotube in the carbon nanotube array is less than or equal to I O microns. 所述碳纳米管阵列中的碳纳米管端部之间的距离大于等于O小于等于I微米。 The distance between the ends of the carbon nanotubes in the carbon nanotube array is less than or equal to I O microns. 所述碳纳米管阵列中相邻的碳纳米管之间存在间隙。 There is a gap between the carbon nanotubes in the carbon nanotube array adjacent. [0070] 请参见图4,所述碳纳米管结构可以为一碳纳米管层,该碳纳米管层包括包括至少一层碳纳米管膜,该碳纳米管膜包覆在支撑体146的表面。 [0070] Referring to FIG. 4, the carbon nanotube structure layer may be a carbon nanotube, the carbon nanotube comprises at least one layer comprises a carbon nanotube film, the carbon nanotube film 146 coated on the surface of the support . 当碳纳米管结构包括多层碳纳米管膜时,该多层碳纳米管膜可层叠设置或者并列设置。 When the carbon nanotube structure comprising a multilayer carbon nanotube film, the multilayer carbon nanotube film can be stacked or juxtaposed. 请参见图5,所述碳纳米管膜可以为一碳纳米管拉膜。 Referring to FIG. 5, the carbon nanotube film is drawn film may be a carbon nanotube. 该碳纳米管拉膜为从碳纳米管阵列中直接拉取获得的一种碳纳米管膜。 The drawn carbon nanotube film is pulled one carbon nanotube film obtained directly from the carbon nanotube array. 每一碳纳米管膜是由若干碳纳米管组成的自支撑结构。 Each carbon nanotube film is a self-supporting structure by a plurality of carbon nanotubes. 所述若干碳纳米管为基本沿同一方向择优取向排列。 The plurality of carbon nanotubes substantially arranged in a preferred orientation in the same direction. 所述择优取向是指在碳纳米管膜中大多数碳纳米管的整体延伸方向基本朝同一方向。 The overall preferred orientation means the extending direction of the carbon nanotubes in the carbon nanotube film most substantially the same direction. 而且,所述大多数碳纳米管的整体延伸方向基本平行于碳纳米管膜的表面。 Further, most of the overall direction of the carbon nanotube extending substantially parallel to the surface of the carbon nanotube film. 进一步地,所述碳纳米管膜中多数碳纳米管是通过范德华力首尾相连。 Further, the carbon nanotube film includes a plurality of carbon nanotubes are connected end to end by van der Waals forces. 具体地,所述碳纳米管膜中基本朝同一方向延伸的大多数碳纳米管中每一碳纳米管与在延伸方向上相邻的碳纳米管通过范德华力首尾相连。 In particular, the carbon nanotubes each adjacent in the extending direction of the carbon nanotubes in the carbon nanotube film most substantially along the same direction are connected end to end by van der Waals forces. 当然,所述碳纳米管膜中存在少数随机排列的碳纳米管,这些碳纳米管不会对碳纳米管膜中大多数碳纳米管的整体取向排列构成明显影响。 Of course, the carbon nanotubes a few nanotubes are randomly arranged in the film, the carbon nanotubes are arranged in the orientation of the carbon nanotube is not a film of carbon nanotubes constituting the most significant effect. 所述自支撑为碳纳米管膜不需要大面积的载体支撑,而只要相对两边提供支撑力即能整体上悬空而保持自身膜状状态,即将该碳纳米管膜置于(或固定于)间隔一固定距离设置的两个支撑体上时,位于两个支撑体之间的碳纳米管膜能够悬空保持自身膜状状态。 The self-supporting carrier supporting nanotube film does not require a large area, as long as opposing sides of the supporting force that is able to provide a whole film-shaped and maintaining its floating state, i.e. the carbon nanotube film is placed (or fixed) intervals two supports a fixed distance set when the body is located between the two carbon nanotube film can be suspended by the support film-like state. 所述自支撑主要通过碳纳米管膜中存在连续的通过范德华力首尾相连延伸排列的碳纳米管而实现。 The self-supporting carbon nanotube film is achieved there is a continuous end to end by van der Waals forces aligned carbon nanotubes extending through the main. 所述碳纳米管拉膜的厚度为O. 5纳米〜100微米,宽度与拉取该碳纳米管拉膜的碳纳米管阵列的尺寸有关,长度不限。 The drawn carbon nanotube film having a thickness of ~ 100 nanometers O. 5 microns, a width of about the size of the carbon nanotube array pulling the drawn carbon nanotube film, the length is not limited. 该碳纳米管拉膜的制备方法请参见范守善等人于2007年2月9日申请的,于2010年5月26日公告的第CN101239712B号中国专利“碳纳米管膜结构及其制备方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司。 Preparation method of the carbon nanotube, see Shoushan Fan et al., 2007 filed February 9, on May 26, 2010 Announcement No. CN101239712B Chinese patent "carbon nanotube film structure and a preparation method" applicant: Tsinghua University, Hong Fujin precision industry (Shenzhen) Co., Ltd. 为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。 To save space, only the reference thereto, all technical disclosure of the above application should be considered as part of the application technique of the invention disclosed. [0071] 当所述碳纳米管结构采用碳纳米管拉膜时,其可以包括层叠设置的多层碳纳米管拉膜,且相邻两层碳纳米管拉膜中的碳纳米管之间沿各层中碳纳米管的轴向形成的交叉角度不限,碳纳米管拉膜之间或一个碳纳米管拉膜之中的相邻的碳纳米管之间具有间隙,从而在碳纳米管结构中形成多个微孔,使碳纳米管结构具有更大的比表面积,所述微孔的孔径约小于10微米。 [0071] When the drawn carbon nanotube film using the carbon nanotube structure, which may include a multilayer carbon nanotube film stacked, and along adjacent drawn carbon nanotube film between two layers of carbon nanotubes the layers in the crossing angle is not limited to carbon nanotubes formed axially between the drawn carbon nanotube film or a drawn carbon nanotube having a gap between the adjacent carbon nanotubes in the film, so that the carbon nanotube structure forming a plurality of micropores, the carbon nanotube structure has a larger specific surface area, pore size of the micropores is less than about 10 microns. [0072] 请参见图6,所述碳纳米管膜还可以为一碳纳米管絮化膜。 [0072] Referring to FIG. 6, the carbon nanotube film may also be a flocculated carbon nanotube film. 所述碳纳米管絮化膜为通过一絮化方法形成的碳纳米管膜。 The carbon nanotube film by a film forming method flocculated flocculated carbon nanotube. 该碳纳米管絮化膜包括相互缠绕且均匀分布的碳纳米管。 The flocculated carbon nanotube film entangled with each other and comprising a uniform distribution of the carbon nanotubes. 所述碳纳米管之间通过范德华力相互吸引、缠绕,形成网络状结构。 Between the carbon nanotubes van der Waals attractive force therebetween, thereby forming an entangled structure. 所述碳纳米管絮化膜各向同性。 The flocculated carbon nanotube film can be isotropic. 所述碳纳米管絮化膜的长度和宽度不限。 The length and width of the flocculated carbon nanotube film is not limited. 由于在碳纳米管絮化膜中,碳纳米管相互缠绕,因此该碳纳米管絮化膜具有很好的柔韧性,且为一自支撑结构,可以弯曲折叠成任意形状而不破裂。 Since the flocculated carbon nanotube film, the carbon nanotubes entangled with each other, so that the flocculated carbon nanotube film having good flexibility, and is a self-supporting structure may be bent into desired shapes without cracking. 所述碳纳米管絮化膜的面积及厚度均不限,厚度为I微米〜I毫米。 The thickness of the flocculated carbon nanotube film, and are not limited to, a thickness of I mm ~I microns. 所述碳纳米管絮化膜及其制备方法请参见范守善等人于2007年4月13日申请的,于2008 年10月15日公开的第CN101284662A号中国公开专利申请“碳纳米管薄膜的制备方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司。 The flocculated carbon nanotube film and preparation method see Shoushan Fan et al, filed April 13, 2007, and on 15 October 2008, Publication No. CN101284662A disclosed in Chinese Patent Application prepared "carbon nanotube film methods ", applicant: Tsinghua University, Hong Fujin precision industry (Shenzhen) Co., Ltd. 为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。 To save space, only the reference thereto, all technical disclosure of the above application should be considered as part of the application technique of the invention disclosed. [0073] 请参见图7,所述碳纳米管膜还可以为通过碾压一碳纳米管阵列形成的碳纳米管碾压膜。 [0073] Referring to FIG. 7, the carbon nanotube film of carbon nanotubes may also be formed by rolling a carbon nanotube array nanotube film. 该碳纳米管碾压膜包括均匀分布的碳纳米管,碳纳米管沿同一方向或不同方向择优取向排列。 The carbon nanotube film comprises carbon nanotubes uniformly distributed along a same direction or different directions preferentially oriented carbon nanotubes are arranged. 碳纳米管也可以是各向同性的。 Carbon nanotubes can be isotropic. 所述碳纳米管碾压膜中的碳纳米管相互部分交叠,并通过范德华力相互吸引,紧密结合。 The pressed carbon nanotube film, the carbon nanotube mutually overlapping portion, and attracted to each other by van der Waals forces, closely. 所述碳纳米管碾压膜中的碳纳米管与形成碳纳米管阵列的生长基底的表面形成一夹角β,其中,β大于等于O度且小于等于1 5度(0^ β ^ 15° )。 The pressed carbon nanotube in the carbon nanotube film forming surface of the growth substrate of the carbon nanotube array form an angle β, where, β is equal to O is greater than or equal to 1 and less than 5 degrees (0 ^ β ^ 15 ° ). 依据碾压的方式不同,该碳纳米管碾压膜中的碳纳米管具有不同的排列形式。 Laminated according to different ways, the pressed carbon nanotube in the carbon nanotube film having a different arrangement form. 当沿同一方向碾压时,碳纳米管沿一固定方向择优取向排列。 When rolling in the same direction, the carbon nanotubes arranged in a preferred orientation along a fixed direction. 可以理解,当沿不同方向碾压时,碳纳米管可沿多个方向择优取向排列。 It will be appreciated, when rolling in different directions, the carbon nanotubes may be preferentially oriented along a plurality of directions. 该碳纳米管碾压膜厚度不限,优选为为I 微米〜I毫米。 The carbon nanotube film thickness is not limited, it is preferably I micron ~I mm. 该碳纳米管碾压膜的面积不限,由碾压出膜的碳纳米管阵列的大小决定。 The area of ​​the pressed carbon nanotube film is not limited to, rolling out the film from the carbon nanotube array size is determined. 当碳纳米管阵列的尺寸较大时,可以碾压制得较大面积的碳纳米管碾压膜。 When the carbon nanotube array of larger size, the carbon nanotubes can be prepared by rolling a large area of ​​the rolling membrane. 所述碳纳米管碾压膜及其制备方法请参见范守善等人于2007年6月I日申请的,于2008年12月3日公开的第CN101314464A号中国公开专利申请“碳纳米管薄膜的制备方法”,申请人:清华大学, 鸿富锦精密工业(深圳)有限公司。 The carbon nanotube film and preparation method see Shoushan Fan et al., In June 2007, I filed, in the preparation of 3 December 2008 open No. CN101314464A China Open Patent Application "carbon nanotube film methods ", applicant: Tsinghua University, Hong Fujin precision industry (Shenzhen) Co., Ltd. 为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。 To save space, only the reference thereto, all technical disclosure of the above application should be considered as part of the application technique of the invention disclosed. [0074] 所述碳纳米管结构还可以包括至少一碳纳米管线状结构,该至少一碳纳米管线状结构设置于支撑体146的表面。 [0074] The carbon nanotube structure may further comprise at least one carbon nanotube wire structure, the at least one carbon nanotube wire structure 146 is provided on the surface of a support. 所述碳纳米管线状结构在支撑体146表面的设置方式不限。 The carbon nanotube wire structure 146 is not limited to the arrangement surface of the support member. 请参见图8,当碳纳米管结构为一根碳纳米管线状结构150时,该碳纳米管线状结构150螺旋缠绕于支撑体146的表面。 Referring to FIG 8, when the carbon nanotube structure is a carbon nanotube wire structure 150, the carbon nanotube wire structure 150 146 helically wound on the surface of a support. 请参见图9,当碳纳米管结构包括多根碳纳米管线状结构150时,该多根碳纳米管线状结构150可以相互交叉或编织形成一网状结构,该网状结构包覆在支撑体146的表面。 Referring to FIG 9, when the carbon nanotube structure comprises a plurality of linear carbon nanotube structure 150, the plurality of linear carbon nanotube structure 150 may cross or braided to form a mesh structure with each other, the mesh structure coated on a support surface 146. 所述碳纳米管线状结构150包括至少一根碳纳米管线,该碳纳米管线包括多个均匀分布的碳纳米管。 The carbon nanotube wire structure 150 comprising at least one carbon nanotube wire, the carbon nanotube wire includes a plurality of carbon nanotubes uniformly distributed. 所述碳纳米管线可以为由碳纳米管组成的纯结构。 The carbon nanotube wire can be substantially aligned thereof. 该碳纳米管线中相邻碳纳米管间存在间隙,故该碳纳米管线具有大量孔隙,孔隙的尺寸约小于10微米。 A gap between adjacent carbon nanotube of the carbon nanotube wire, so that the carbon nanotube wire having a large number of pores, the pore size of less than about 10 microns. 请参见图10,当碳纳米管线状结构150包括多根碳纳米管线152时,该多根碳纳米管线152可以相互平行设置。 Referring to FIG. 10, when the carbon nanotube wire structure 150 comprising a plurality of carbon nanotube wires 152, the plurality of carbon nanotube wires 152 may be parallel to each other. 请参见图11,当碳纳米管线状结构150包括多根碳纳米管线152时,该多根碳纳米管线152可以相互螺旋缠绕。 Referring to FIG. 11, when the carbon nanotube wire structure 150 comprising a plurality of carbon nanotube wires 152, the plurality of carbon nanotube wires 152 may each helically wound. 碳纳米管线状结构150中的碳纳米管线152可以通过粘结剂相互固定。 Carbon nanotube carbon nanotube wire lines 150 152 may be fixed to each other by an adhesive. [0075] 所述碳纳米管线152可以为非扭转的碳纳米管线或扭转的碳纳米管线。 [0075] The carbon nanotube wire 152 may be non-twisted carbon nanotube wire or a twisted carbon nanotube wire. 该非扭转的碳纳米管线152为将碳纳米管拉膜通过有机溶剂处理得到。 The non-twisted carbon nanotube wire 152 to be drawn carbon nanotube film with an organic solvent treatment. 请参阅图12,该非扭转的碳纳米管线152包括多个沿碳纳米管线长度方向排列并首尾相连的碳纳米管。 Please refer to FIG. 12, the non-twisted carbon nanotube wire 152 comprises a plurality of lines along a longitudinal direction of the carbon nanotubes and the carbon nanotubes are arranged end to end. 优选地,该非扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段之间通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。 Preferably, the non-twisted carbon nanotube wire includes a plurality of carbon nanotube segments connected end to end by van der Waals forces between the carbon nanotube segments, each segment comprising a plurality of carbon nanotubes parallel to each other, and combined by van der Waals forces the carbon nanotubes. 该碳纳米管片段具有任意的长度、厚度、均匀性及形状。 The carbon nanotube segments can vary in width, thickness, uniformity and shape. 该非扭转的碳纳米管线长度不限,直径为O. 5 纳米〜100微米。 The non-twisted carbon nanotube wire, having a diameter of ~ 100 microns O. 5 nanometers. [0076] 所述扭转的碳纳米管线152为采用一机械力将所述碳纳米管拉膜两端沿相反方向扭转获得。 [0076] 152 of the twisted carbon nanotube wire using a mechanical force to the drawn carbon nanotube film in opposite directions at both ends by twisting. 请参阅图13,该扭转的碳纳米管线152包括多个绕碳纳米管线轴向螺旋排列的碳纳米管。 Referring to FIG 13, the twisted carbon nanotube wire includes a plurality of carbon nanotubes 152 helically oriented around an axial line. 优选地,该扭转的碳纳米管线152包括多个碳纳米管片段,该多个碳纳米管片段之间通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。 Preferably, the twisted carbon nanotube wire includes a plurality of carbon nanotube segments 152 connected end to end by van der Waals forces between the carbon nanotube segments, each segment comprising a plurality of carbon nanotubes parallel to each other, and combined by van der Waals forces the carbon nanotubes. 该碳纳米管片段具有任意的长度、厚度、均匀性及形状。 The carbon nanotube segments can vary in width, thickness, uniformity and shape. 该扭转的碳纳米管线152长度不限,直径为O. 5纳米〜100微米。 The twisted carbon nanotube wire 152 A diameter of ~ 100 microns O. 5 nanometers. 所述碳纳米管线及其制备方法请参见范守善等人于2002年9月16日申请的,于2008年8月20日公告的第CN100411979C号中国公告专利“一种碳纳米管绳及其制造方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司,以及于2007年6月20日公开的第CN1982209A号中国公开专利申请“碳纳米管丝及其制作方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司。 The carbon nanotube wire and preparation method see Shoushan Fan et al., 2002, filed September 16, 2008 August 20 announcement Announcement No. CN100411979C Chinese patent "A carbon nanotube rope and its manufacturing method "applicant: Tsinghua University, Hong Fujin precision industry (Shenzhen) Co., Ltd., and No. CN1982209A China published patent application on June 20, 2007 public" carbon nanotube wire and its production methods, "the applicant: Tsinghua University, Hong Fujin precision industry (Shenzhen) Co., Ltd. 为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。 To save space, only the reference thereto, all technical disclosure of the above application should be considered as part of the application technique of the invention disclosed. [0077] 所述导电层148还可以为一碳纳米管复合材料层,该碳纳米管复合材料层为上述碳纳米管结构与导电材料所形成的复合材料。 The [0077] conductive layer 148 may also be a carbon nanotube composite layer, the composite layer is a carbon nanotube composite material of the carbon nanotube structure and the conductive material is formed. 所述碳纳米管复合材料层中的碳纳米管结构保持其结构不变。 The carbon nanotube carbon nanotube structure layer composite structure remains unchanged. 该碳纳米管结构中的每一根碳纳米管表面均包覆一导电材料层。 The surface of each of the carbon nanotubes in the carbon nanotube structure are coated with a layer of conductive material. 碳纳米管复合材料层中的包覆有导电材料层的碳纳米管之间存在间隙,因此,碳纳米管复合材料层包括多个微孔。 Coated carbon nanotube composite layer there is a gap between the carbon nanotubes with a conductive material layer, therefore, a plurality of carbon nanotube composite material comprising a microporous layer. 所述微孔的孔径小于等于5微米。 The pore diameter of micropores is 5 microns or less. 所述导电材料层的作用为使碳纳米管结构具有较好的导电性能。 The conductive material layer acts as the carbon nanotube structure has good electrical conductivity. 所述导电材料层的材料为金属或合金,所述金属可以为铜、银或金。 The material of the conductive material layer is a metal or an alloy, the metal may be copper, silver or gold. 该导电层的厚度为I〜20纳米。 The thickness of the conductive layer I~20 nanometers. 本实施例中,该导电层的材料为银,厚度约为5纳米。 In this embodiment, the material of the conductive layer of silver, a thickness of about 5 nm. [0078] 由于碳纳米管与大多数金属之间的润湿性不好,可选择地,在碳纳米管和导电材料层之间可进一步包括一润湿层。 [0078] Because of poor wettability between the carbon nanotubes with most metals, alternatively, between the carbon nanotubes and the conductive material layer may further comprise a wetting layer. 所述润湿层的作用为使导电层与碳纳米管更好的结合。 Action of the wetting layer is a conductive layer better binding with the carbon nanotubes. 该润湿层的材料可以为镍、钯或钛等与碳纳米管润湿性好的金属或它们的合金,该润湿层的厚度为I〜10纳米。 The material of the wetting layer may be nickel, palladium or titanium metal having good wettability with the carbon nanotubes, or an alloy thereof, the thickness of the wetting layer is I~10 nanometers. [0079] 可选择地,为使润湿层和导电层更好的结合,在润湿层和导电材料层之间可进一步包括一过渡层。 [0079] Alternatively, for the conductive layer and the wetting layer a better bond between the wetting layer and the conductive material layer may further comprise a transition. 该过渡层的材料可以为与润湿层材料及导电层材料均能较好结合的材料,该过渡层的厚度为I〜10纳米。 The buffer layer material may be the material of the wetting layer and the conductive layer material can preferably bonded material, the thickness of the transition layer is I~10 nanometers. [0080] 所述碳纳米管复合材料层中,碳纳米管结构与导电材料复合之后,碳纳米管复合材料层具有更好的导电性能,用作输入端14的导电层148,在与触摸屏接触时传输电荷的速度较快,因此,可以提高触摸屏输入指套10的反应速度。 [0080] After the carbon nanotube composite material layer, the carbon nanotube structure and the conductive composite material, a carbon nanotube composite material layer having a better conductivity, the conductive layer 148 serves as an input end 14, in contact with the touchscreen when the charge transport is faster, and therefore, the reaction rate can be improved cuff 10 of the touch-screen input. 由于碳纳米管复合材料层中包括多个微孔,使碳纳米管复合材料层具有较大的比表面积,在与触摸屏接触时可以产生较大的接触电容,因此可以提高触摸屏的灵敏度。 Since the carbon nanotube composite layer comprises a plurality of micropores, a carbon nanotube composite material layer having a large specific surface area, can produce large capacitance contact in contact with the touch screen, it is possible to increase the sensitivity of the touch screen. [0081] 请参见图14,所述导电层148还可以为一碳纳米管高分子复合材料层构成,该碳纳米管高分子复合材料层由高分子基体124以及分散于该高分子基体124内的多个碳纳米管122组成。 [0081] Referring to FIG. 14, the conductive layer 148 may also be a carbon nanotube polymer composite material layer, the carbon nanotube polymer composite material layer 124 and a polymer matrix of the polymer dispersed in the matrix 124 122 composed of a plurality of carbon nanotubes. 该多个碳纳米管122均匀分散于高分子基体124内,并且相互连接形成导电网络。 The plurality of carbon nanotubes 122 are uniformly dispersed in the polymer matrix 124, and interconnected to form a conductive network. 由于碳纳米管122具有非常大的比表面积,以及较高的导电性,采用碳纳米管122与高分子基体124构成的高分子复合材料构成的导电层148具有更大的比表面积。 Carbon nanotubes 122 having a very large specific surface area, and high electrical conductivity, specific surface area with larger conductive polymer composite layer 122 and carbon nanotubes 124 formed of polymer matrix 148 having a configuration. 该导电层148在使用时,由于导电层148具有较大的比表面积,就可以存储更多的从使用者的手部传导来的静电荷,从而提高了导电层148与触摸屏之间的接触电容。 The conductive layer 148 is in use, the conductive layer 148 having a large specific surface area, it can store more conductive portions from the user's hand to an electrostatic charge, thereby increasing the capacitance between the conductive layer in contact with the touch screen 148 . 在使用时,该掺杂有碳纳米管122的高分子复合材料构成的导电层148与触摸屏构成的单位面积上的电容较大,从而更加灵敏。 In use, the doped polymer composite material of carbon nanotubes 122 of large capacitance per unit area of ​​the conductive layer 148 composed of a touch screen, and thus more sensitive. 另外,由于碳纳米管122是中空结构,其具有非常小的质量,其特殊的化学键结构使得碳纳米管122又具有非常高的强度以及模量。 Further, since the carbon nanotube is a hollow structure 122, which has a very small mass, so that its special chemical bond structure of carbon nanotubes 122 also has a very high strength and modulus. 除此之外,碳纳米管122还具有非常好的柔韧性,施加外力后可以很好的恢复形状。 In addition, the carbon nanotubes 122 also has a very good flexibility, shape recovery can be well after external force is applied. 因此,采用碳纳米管122与高分子基体124 形成的高分子复合材料构成的导电层148,更具有较轻的质量,以及较高的耐刮擦度,从而具有较长的使用寿命。 Accordingly, the conductive layer 148122 polymeric materials with the polymer matrix 124 is formed using carbon nanotubes, but with lesser quality, and a high degree of scratch resistance, so that a longer service life. 采用分散的碳纳米管122设置于高分子基体124中构成的高分子复合材料构成的导电层148,还有部分碳纳米管122从笔头的外表面露头,从而更好的与触摸屏接触。 Using the carbon nanotubes 122 dispersed polymer layer disposed on a conductive composite material consisting of 148, part of the carbon nanotube from the outer surface of the tip 122 of the outcrop polymer matrix 124, so that a better contact with the touch screen. [0082] 该高分子基体124的材料可以包括热塑性聚合物或热固性聚合物的一种或多种。 [0082] The polymer matrix material 124 may include one or more thermoplastic polymers or thermoset polymers. 优选地,所述高分子基体124为柔性材料构成,所述柔性的高分子基体124的材料为硅橡胶、聚氨脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯及聚丙烯腈等中的一种或几种的组合。 Preferably, the polymer matrix 124 constituting the flexible material, the flexible material of the polymer matrix 124 is a silicone rubber, polyurethane, polyethyl acrylate, polybutyl acrylate, polystyrene, polybutadiene a combination of one or more of polyacrylonitrile and the like. 本实施例中,所述柔性高分子基体124为一硅橡胶。 In this embodiment, the flexible polymer matrix 124 is a silicone rubber. [0083] 所述碳纳米管高分子材料层中的碳纳米管可以以一碳纳米管结构的形式存在。 [0083] The carbon nanotube layer of polymeric material in the form of carbon nanotubes can be a carbon nanotube structure. 所述碳纳米管结构的结构与上述的碳纳米管结构的结构相同。 The same structure as the above-described carbon nanotube structure of the carbon nanotube structure. 依据碳纳米管结构与基体材料的复合方式的不同,该碳纳米管高分子复合结构的具体结构包括以下三种情形:[0084] 第一种情形,所述碳纳米管结构为一碳纳米管阵列,该碳纳米管阵列包括多个并列设置的碳纳米管,高分子基体材料填充于碳纳米管阵列中的相邻的碳纳米管之间的缝隙中。 Depending on the embodiment of the carbon nanotube structure of the composite base material, the specific configuration of the carbon nanotube polymer composite structure comprises the following three scenarios: [0084] the first case, the carbon nanotube structure is a carbon nanotube array, the carbon nanotube array comprising a plurality of juxtaposed nanotubes, polymer matrix material is filled in the gap between adjacent carbon nanotube array of carbon nanotubes. 请参见图15,高分子基体124可以将整个碳纳米管阵列154包覆,高分子基体124的表面到碳纳米管阵列154的表面小于等于10微米,此时碳纳米管高分子复合材料层的表面仍具有导电性。 Referring to FIG. 15, the polymer matrix 124 may cover the entire array of carbon nanotubes 154, the surface of the polymer matrix 124 to the surface of the carbon nanotube array 154 is 10 microns or less, when the carbon nanotube polymer composite material layer having a conductive surface is still. 请参见图16,所述碳纳米管阵列154中的碳纳米管122可以从高分子基体124中露头,碳纳米管122露出高分子基体124的长度小于等于10微米。 Referring to FIG. 16, the carbon nanotube in the carbon nanotube array 154 may be 122 outcrop 124 from the polymer matrix, the carbon nanotubes 122 are exposed length of the polymer matrix 124 is less than or equal to 10 micrometers. [0085] 第二种情形,请参阅图17,所述碳纳米管高分子复合材料包括一碳纳米管层158 以及一高分子基体124渗透于该碳纳米管层158中。 [0085] The second case, see Figure 17, the carbon nanotube polymer composite material comprises a carbon nanotube layer 158, and a permeable polymer matrix 124 to the carbon nanotube layer 158. 该碳纳米管层158中具有大量的孔隙, 该高分子基体124渗透于该碳纳米管层158的孔隙中。 The carbon nanotube layer 158 having a large number of pores, the polymer matrix 124 to penetrate the pores of the carbon nanotube layer 158. 碳纳米管层158可以全部被包覆在高分子基体124中,此时,高分子基体124的表面到碳纳米管层158的表面的距离小于等于10微米,此时碳纳米管高分子复合材料层的表面仍具有导电性。 All of the carbon nanotube layer 158 may be coated in a polymer matrix 124. In this case, the surface of the polymer matrix from the surface 124 of the carbon nanotube layer 158 is 10 microns or less, when the carbon nanotube polymer composites the surface layer is still electrically conductive. 碳纳米管层158中的部分碳纳米管也可以从高分子材料中暴露出来。 Part of the carbon nanotube in the carbon nanotube layer 158 may be exposed from the polymer material. 当该碳纳米管层158包括多个碳纳米管膜时, 该多个碳纳米管膜可以层叠设置。 When the carbon nanotube layer 158 comprises a plurality of carbon nanotube film, the carbon nanotube film may be stacked. [0086] 第三种情形,请参见图18,当该碳纳米管结构包括单个碳纳米管线状结构时,高分子基体124可以渗透于该碳纳米管线状结构中的碳纳米管线152之间,形成碳纳米管复合线状结构160。 [0086] The third case, see Figure 18, when the carbon nanotube structure comprises a single linear carbon nanotube structure, the polymer matrix 124 may penetrate between the carbon nanotubes in the carbon nanotube wire line 152 structure, forming a carbon nanotube composite wire structure 160. 该碳纳米管复合线状结构160中,高分子基体124也可以将整个碳纳米管线状结构包覆,高分子基体124的表面到碳纳米管线状结构的表面的厚度小于等于10微米, 此时碳纳米管高分子复合材料层的表面仍具有导电性。 The carbon nanotube composite wire structure 160, the polymer matrix 124 may be linear carbon nanotube structure covering the entire surface of the polymer matrix 124 to a thickness of the surface of the linear structure of carbon nanotubes is 10 microns or less, at this time carbon nanotube polymer composite material having electrically conductive layers remain. 该碳纳米管复合线状结构160折叠或盘绕后设置于支撑体146的表面形成导电层148。 The carbon nanotube composite wire structure 160 is folded or coiled member 146 is provided on the surface of the support conductive layer 148 is formed. 当碳纳米管结构包括多个碳纳米管复合线状结构160时,该多个碳纳米管复合线状结构160可以平行紧密设置、交叉设置或编织后形成于支撑体146的表面。 When the carbon nanotube structure comprises a plurality of carbon nanotube composite wire structure 160, the plurality of carbon nanotube composite wire structure 160 may be disposed in close parallel, crossing or woven disposed on the rear surface of the body 146 is formed a support. [0087] 请参见图19,所述导电层148还可以为一石墨烯高分子复合材料层130。 [0087] Referring to FIG. 19, the conductive layer 148 may also be a polymer composite material graphene layer 130. 该石墨烯高分子复合材料层130通过由石墨烯128分散于柔性高分子基体124材料中形成的石墨烯高分子复合材料构成。 130 graphene polymer composite material formed by dispersing the graphene 128 to the flexible polymer matrix material 124 in the graphene polymer composite material layer. 所述石墨烯在所述柔性高分子基体中的体积百分比为10%〜60%。 The graphene in the flexible polymer matrix volume percentage of 10% ~ 60%. 所述石墨稀128的厚度为O. 5纳米至100纳米。 The thickness of the graphene 128 is O. 5 nm to 100 nm. 石墨稀128具有良好的导电性能,其在室温下传递电子的速度非常快。 Graphene 128 has good electrical conductivity, which electron transfer is very fast at room temperature. 石墨烯128还具有较大的比表面积。 Graphene 128 further has a large specific surface area. 因此,采用石墨烯128 与柔性高分子基体124构成的石墨烯高分子复合材料层130也具有很大的比表面积和导电性,因此采用上述石墨烯高分子复合材料层130构成的导电层148也与触摸屏构成的单位面积上的电容较大,并具有较好的导电性,该导电层148具有更高的灵敏度。 Therefore, graphene and graphene 128 polymer composite material layer 124 composed of flexible polymer matrix 130 also has a great surface area and conductivity, so the use of the conductive layer 130 constituting the polymer composite material graphene layer 148 is also capacitance per unit area of ​​a touch screen is large, and has good conductivity, the conductive layer 148 has a higher sensitivity. [0088] 请参考图20至图23,本发明第二实施例提供一种触摸屏输入指套,其包括一手指套筒22及输入端24。 [0088] Please refer to FIGS. 20 to 23, a second embodiment of the present invention provides a touch screen input finger comprising a finger sleeve 22 and the input 24. 所述手指套筒22和输入端24由绝缘材料一体成形,进而呈一端封闭另一端敞开的筒状结构,所述封闭端作为输入端24。 The finger sleeve 22 and the input terminal 24 is integrally formed of an insulating material, and thus form closed at one open end of the cylindrical structure, the closed end 24 as an input. 同时,所述手指套筒22和输入端24 的表面上设有一导电层248,所述导电层248将手指套筒22的内表面至少一部分和输入端24的外表面导电性连接。 Meanwhile, with the 248, the portion of the conductive layer 248 and an input terminal of at least the inner surface of a finger sleeve 22 connected to the conductive layer of the conductive outer surface 24 of the upper surface of the finger sleeve 22 and the input terminal 24. 所述导电层248与手指套筒22的设置关系可以包括以下几种情况:其一,如图20所示的手指套筒22,所述导电层248的设置方式可以是覆盖手指套筒22 的整个内表面和外表面,并在手指套筒22敞开的一端使内表面的导电层248和外表面的导电层248电连接;其二,如图21所示的手指套筒22,所述导电层248覆盖整个外表面和部分内表面,并在手指套筒22敞开的一端使内表面的导电层248和外表面的导电层248电连接。 The conductive layer 248 and the finger sleeve 22 may include a set relationship between the following cases: First, the finger sleeve 22 as shown in FIG. 20, the arrangement of the conductive layer 248 may cover the finger sleeve 22 entire inner and outer surfaces, and that the finger sleeve 22 is open at one end of the conductive layer 248 and the inner surface of the outer surface of the conductive layer 248 is connected; Second, the finger sleeve 21 as shown in FIG. 22, the conductive layer 248 covers the entire outer surface and an inner surface portion, and one end of the sleeve finger 22 open the conductive layer 248 and the inner surface of the outer surface of the conductive layer 248 is connected. 其三,如图22所示,所述手指套筒22包括至少一个通孔220,导电层248设置于手指套筒22的外表面,并覆盖手指套筒22的端部和该至少一个通孔220,使用者的手指放入手指套筒22后,通过该多个通孔220可以实现与导电层248的电连接;其四,如图23所示,所述导电层248分别位于手指套筒2222的封闭端的内表面和外表面,所述手指套筒22包括至少一个通孔,一导电连接部240设置于该至少一个通孔中,使位于内表面的导电层248和位于外表面的导电层248电连接。 Third, shown in Figure 22, the sleeve 22 includes at least one finger hole 220, through conductive layer 248 disposed on the outer surface of the finger sleeve 22 and covers at least one end portion and the through hole 22 of the finger sleeve 220, the user's finger into the finger sleeve 22 through which a plurality of through-holes may be electrically connected to the conductive layer to achieve 248 220; Fourth, shown in Figure 23, the conductive layer 248 are located in the finger sleeve the inner surface of the closed end 2222 and an outer surface, the through hole 22 includes at least one finger of the sleeve, a conductive connecting portion 240 is provided at the at least one through-hole, the conductive layer 248 and the inner surface of the outer surface of the conductive layer 248 is electrically connected. [0089] 当然,所述导电层248与所述手指套筒22的设置关系不限于上述几种方式,只需满足使用者手指放入手指套筒22后,可以与输入端24的导电层248电连接即可。 [0089] Of course, the conductive layer 248 and the finger sleeve 22 is provided is not limited to the above-described relationship in several ways, just to meet the user's finger into the finger sleeve 22, the conductive layer 248 may be 24 and the input terminal electrical connection. [0090] 所述手指套筒22和输入端24的材料与第一实施例所提供的手指套筒12的材料相同。 [0090] The finger sleeve 22 and the same material, the fingers 24 of the input end of the sleeve material of the first embodiment 12 is provided. [0091] 所述导电层248的材料与第一实施例提供的导电层148的材料相同。 [0091] The same material of the conductive material layer 148 conductive layer 248 of the first embodiment is provided. 导电层248 可以通过粘结剂、机械卡扣、热熔、螺合等方式设置于手指套筒22的表面。 Conductive layer 248 may be disposed on the surface of the finger sleeve 22 by an adhesive, mechanical snap, heat staking, screwing or the like. [0092] 请参见图24,本发明第三实施例提供一触摸屏输入指套30,该触摸屏输入指套30 包括一手指套筒32及一输入端34。 [0092] Referring to FIG. 24, a third embodiment of the present invention provides a touch screen input finger 30, the finger touch input screen 30 includes a sleeve 32 and a finger 34 input terminal. 本实施例与第二实施例的主要区别在于,所述手指套筒32和输入端34全部由导电材料构成,所述导电材料为一自支撑结构,其自身可保持一指套形状,从而形成所述触摸屏输入指套30。 The main difference between this embodiment and the second embodiment of the present embodiment is characterized in that the finger sleeve 32 and the input terminal 34 all made of conductive material, the conductive material is a self-supporting structure, which itself can be held a finger shape, thereby forming the finger 30 touch screen input. 该触摸屏输入指套30用于套设手指的部位为手指套筒32,触摸屏输入指套30的端部用于接触触摸屏,为输入端34。 The input finger touch screen 30 disposed to cover the fingers of a finger portion of the sleeve 32, the end portion 30 of the touch-screen input finger for contacting the touch screen, the input terminal 34. [0093] 所述触摸屏输入指套30的材料可以为第一实施例中所述的石墨烯复合材料层、 上述碳纳米管层或上述碳纳米管高分子复合材料层。 [0093] The touch screen input cuff material 30 may be a layer of graphene composite material described in the first embodiment, the carbon nanotube layer or the carbon nanotube polymer composite material layer. [0094] 碳纳米管高分子复合材料层可以包括一高分子基体及一碳纳米管层。 [0094] The carbon nanotube polymer composite material layer may comprise a polymer matrix and a carbon nanotube layer. 所述碳纳米管层可以由至少一层碳纳米管拉膜组成。 The carbon nanotube drawn film layer may consist of at least one carbon nanotube. 当碳纳米管层包括一层碳纳米管拉膜时,该碳纳米管拉膜在垂直于碳纳米管延伸的方向可以发生形变后,再复原,此过程不会破坏碳纳米管拉膜的结构。 When the carbon nanotube layer comprises a layer of carbon nanotube when the carbon nanotube in the vertical direction of the carbon nanotubes to be deformed to extend, and then restored, this process does not destroy the structure of the carbon nanotube film . 当碳纳米管层包括至少两层相互垂直的碳纳米管拉膜时,碳纳米管层在各个方向可以发生形变,再复原,此过程不会破坏碳纳米管拉膜的结构。 When the carbon nanotube layer comprises at least two mutually perpendicular drawn carbon nanotube film, the carbon nanotube layer be deformed in all directions, and then restored, this process does not destroy the structure of the carbon nanotube film.由于碳纳米管拉膜的上述性质,当高分子基体采用弹性材料时,所述触摸屏输入指套30可以具有较大的弹性, 在应用时更加方便,对使用者手指的粗细没有要求,且更容易固定于使用者的手指上。 [0095] 请参见图25,本发明第四实施例提供一种触摸屏输入指套40,该触摸屏输入指套40由一手指套筒42构成,该手指套筒42由多个经线424和多个纬线426编织形成。所述经线424为导电丝,多个经线424的一端相互连接于一结点4240,多个经线424从该结点4240延伸出。所述结点4240组成一尖端,作为触摸屏输入指套40的输入端44。所述纬线426为闭合线,用于将该多个经线424固定。所述经线424和纬线426的直径小于I毫米, 优选地,所述经线424和纬线426的直径大于等于10微米小于等于I毫米。相邻的两个纬线426之间的距离小于等于I毫米。所述经线424为导电材料,为碳纳米管线状结构或者碳纳米管复合线状结构。所述纬线426的材料可以为导电材料或绝缘材料。所述导电材料可以为金属。所述绝缘材料可以为塑料、尼龙、橡胶、树脂或纤维。优选地,所述纬线426的材料为柔性材料,以使触摸屏输入指套40具有一定的柔韧性。 [0096] 请参见图26,本发明第五实施例提供一种触摸屏输入指套50,其包括一手指套筒52及一输入端54。本实施例与第一实施例的主要区别在于,输入端54全部由导电材料构成。 [0097] 所述输入端54可以由第一实施例中所述的碳纳米管层、碳纳米管线状结构、碳纳米管高分子复合材料层或一石墨烯高分子复合材料层构成。所述碳纳米管结构、碳纳米管高分子复合材料层或石墨烯高分子复合材料层可以通过各种变形,如卷曲、团聚、盘绕等方式构成输入端54所具有的形状。 [0098] 当输入端54包括碳纳米管层时,该碳纳米管层可以团聚形成输入端54。所述输入端54可以时空心结构,也可以为实心结构。此时,输入端54由多个相互缠绕的碳纳米管组成。由于碳纳米管层包括多个碳纳米管膜,碳纳米管膜表面具有一定的粘性,所以当碳纳米管层团聚形成输入端54之后,可以保持输入端54的形状。当碳纳米管层包括碳纳米管拉膜或碳纳米管碾压膜时,碳纳米管之间首尾相连,从而使输入端54具有较好的导电性。 [0099] 请参见图27,当输入端54包括一根碳纳米管线状结构150时,该碳纳米管线状结构150可以盘绕形成输入端54,为使碳纳米管线状结构150保持该输入端54的形状,可以在碳纳米管线状结构150盘绕后形成的缝隙处涂覆粘结剂,该粘结剂可以是导电粘结剂,也可以是非导电的粘结剂,优选地,该粘结剂为导电粘结剂,本实施例中选用导电银胶。请参见图28,当输入端54包括多根碳纳米管线状结构150时,每根碳纳米管线状结构150可环绕一周形成一圆环,相邻的两个圆环紧密结合,且每根碳纳米管线状结构150组成的圆环的半径依次逐渐减小,从而组成一具有圆锥形状的输入端54。相邻的碳纳米管线状结构组成的圆环之间通过粘结剂固定。 [0100] 当输入端54包括碳纳米管层或碳纳米管线状结构时,为使该碳纳米管层或该碳纳米管线状结构保持该输入端54的形状,该碳纳米管层或该碳纳米管线状结构可以通过在一预定温度下进行热处理的步骤在真空环境下或保护气体存在的条件下进行热处理使其固定形状。使碳纳米管层或碳纳米管线状结构保持住该输入端54的固定形状所需要的预定温度可为600〜2000摄氏度,优选的,该预定温度为1600〜1700摄氏度。由于碳纳米管层或碳纳米管线状结构中的碳纳米管通过范德华力相互结合,该热处理过程,对所述由于范德华力作用而相互连接在一起的碳纳米管可起到一焊接效果,并使其保持住预定形状。所述热处理过程可采用通以加热电流或高温加热两种方式进行:[0101] (I)对于通以加热电流方式,可直接向该固定形状的碳纳米管层或碳纳米管线状结构通入一加热电流,并维持一段时间。该加热电流的大小可依碳纳米管层的厚度和面积而定或者根据碳纳米管线状结构的直径和长度而定,其应保证使碳纳米管层或碳纳米管线状结构的温度达到所述预定温度。在通以加热电流进行热处理的过程中,若热处理维持的时间过长,则会导致碳纳米管层或碳纳米管线状结构自身缺陷的增大以及碳的流失,故该维持的时间以不超过4小时为佳。 [0102] (2)对于高温加热方式,可将固定形状的碳纳米管层或碳纳米管线状结构置入具有一预定温度之高温环境,如石墨炉中,并维持一段时间,所述维持时间依温度的高低而定。例如在约2000摄氏度的预定温度下进行热处理,维持约O. 5〜I小时即可。 [0103] 通过上述处理方式,碳纳米管层或碳纳米管线状结构可以保持一固定形状而不变形,因此,输入端54可以由纯的碳纳米管结构构成。 [0104] 当输入端54包括一碳纳米管复合材料层时,该碳纳米管复合材料层包括一碳纳米管层时,该碳纳米管层的设置方式与输入端54由碳纳米管层构成时的设置方式一致;当碳纳米管复合材料层包括一根或多根碳纳米管碳纳米管线状结构时,该碳纳米管线状结构的设置方式与输入端54由碳纳米管线状结构构成时的设置方式一致。 [0105] 请参见图29,本发明第六实施例提供一种触摸屏输入指套60,该触摸屏输入指套60包括一手指套筒62及一输入端64。 [0106] 所述手指套筒62为一指环,其具有一环形结构,该手指套筒62用于套设在手指上。所述指环的形状不限,只需满足触摸屏输入指套60通过该指环可以固定于使用者的手指上即可。所述指环可以为一圆环结构或者一C型结构。所述指环的材料为导电材料,可以为金属、合金或导电聚合物。 [0107] 所述输入端64固定于手指套筒62上,由于手指套筒62为一环状结构,输入端64 固定于该环状结构圆周上的一突出结构。所述输入端64与手指套筒62电连接,可以通过焊接、机械连接方式或者导电胶固定于手指套筒62上。所述输入端64的结构与第一实施例提供的输入端14的结构相同,或者与第五实施例提供的输入端54的结构相同。 [0108] 本发明提供的触摸屏输入指套具有以下优点:其一,所述触摸屏输入指套在使用时,可通过输入端的导电层与手指电连接,利用输入端向触摸屏可输入信息,因此不会弄脏触摸屏;其二,本发明的导电层,即与触摸屏接触部分的材料(如碳纳米管、石墨烯或其复合材料)硬度和摩擦系数均较小,不易对触摸屏造成破坏;其三,由于输入端与触摸屏的接触面积可以很好的控制,可以灵敏的操作较小的按键;其四,由于该触摸屏指套在使用时可以套在一个手指上操作,相对于输入笔操作,无需两只手同时操作触摸屏,可以实现一只手操作触摸屏。 [0109] 另外,本领域技术人员还可以在本发明精神内做其他变化,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围内。

Claims (21)

  1. 1. ー种触摸屏输入指套,其包括: 一手指套筒; ー输入端,所述输入端设置于该手指套筒;其特征在于,所述输入端包括ー支撑体及设置在该支撑体表面的导电层,所述导电层为ー碳纳米管复合材料层,该碳纳米管复合材料层包括多个碳纳米管以及包覆在每根碳纳米管的表面的导电材料,所述导电材料为金属或合金,在使用时,所述导电层与手指电连接。 1. ー species finger touch screen input, comprising: a finger sleeve; ー input, the input is provided to the finger sleeve; characterized in that said input end of the support member comprising a support and provided ーthe surface of the conductive layer, the conductive layer is ー carbon nanotube composite material layer, the carbon nanotube composite material layer comprising a plurality of carbon nanotubes and a conductive material coated on the surface of each carbon nanotube, the conductive material a metal or an alloy, in use, the conductive layer is electrically connected to the finger.
  2. 2.如权利要求I所述的触摸屏输入指套,其特征在于,所述碳纳米管复合材料中的碳纳米管构成形成一碳纳米管结构,该碳纳米管结构包括至少ー碳纳米管膜、至少ー碳纳米管线状结构或碳纳米管膜与碳纳米管线状结构的复合结构。 The touch screen input finger I according to claim, wherein said carbon nanotube composite material forming a carbon nanotube structure constituting a carbon nanotube, the carbon nanotube structure comprises at least a carbon nanotube film ー, at least ー carbon nanotube wire structure or a composite structure of the carbon nanotube film and the carbon nanotube wire structure.
  3. 3.如权利要求2所述的触摸屏输入指套,其特征在干,所述碳纳米管复合材料包括多个微孔,所述微孔的孔径小于等于5微米。 Said touch screen input cuff as claimed in claim 2, characterized in that the dry, the carbon nanotube composite material comprising a plurality of micropores, said micropores is 5 microns or less aperture.
  4. 4.如权利要求2所述的触摸屏输入指套,其特征在于,所述碳纳米管结构中的碳纳米管通过范德华カ首尾相连。 The touch screen according to input cuff as claimed in claim 2, wherein the carbon nanotube structure in the nanotube end to end by van der Waals ka.
  5. 5.如权利要求2所述的触摸屏输入指套,其特征在干,所述碳纳米管结构包括ー碳纳米管线状结构,该碳纳米管线状结构螺旋缠绕于支撑体的表面。 The touch screen according to claim 2 input finger, characterized in that the dry, the carbon nanotube structure comprises ー linear carbon nanotube structure, the carbon nanotube wire structure spirally wound on the surface of the support.
  6. 6.如权利要求2所述的触摸屏输入指套,其特征在干,所述碳纳米管结构包括多根碳纳米管线状结构,该多根碳纳米管线状结构相互交叉形成ー网状结构,该网状结构设置于支撑体的表面。 The touch screen according to input cuff as claimed in claim 2, characterized in that the dry, the carbon nanotube structure comprises a plurality of linear carbon nanotube structure, the plurality of linear carbon nanotube structure cross each other form a network structure ー, the mesh structure is provided on the surface of the support.
  7. 7.如权利要求I所述的触摸屏输入指套,其特征在于,所述碳纳米管复合材料层中的碳纳米管沿支撑体表面的法线方向延伸。 The touch panel input I finger claim, wherein the carbon nanotubes in the direction normal to the surface of the carbon nanotube composite support layer extends.
  8. 8.如权利要求I所述的触摸屏输入指套,其特征在于,所述手指套筒的材料为柔性导电材料,所述柔性导电材料包括所述柔性材料和分布在所述柔性材料中的金属颗粒。 8. The touch screen input finger I according to claim, wherein said material is a flexible finger sleeve of conductive material, said flexible conductive material comprises a flexible material and the flexible material distributed in the metal particles.
  9. 9.如权利要求I所述的触摸屏输入指套,其特征在于,所述手指套筒为两端开ロ的筒状结构,所述输入端固定于所述手指套筒的一端,所述输入端包括一第一部分和一第二部分,所述第一部分位于手指套筒内部,所述第二部分位于手指套筒的外部。 9. The finger touch panel input I according to claim, wherein said sleeve is open at both ends finger ro cylindrical structure, said input terminal of said finger fixed to one end of the sleeve, the input end comprises a first portion and a second portion, the first portion of the outer sleeve is located inside of the finger, the second portion of the finger sleeve.
  10. 10.如权利要求9所述的触摸屏输入指套,其特征在于,所述第一部分与手指接触的表面具有一曲面,所述第二部分包括ー凸起结构。 10. The touch panel as claimed in claim 9, wherein the input finger, wherein the first portion of the surface in contact with the finger having a curved surface, the second portion comprises ー raised structures.
  11. 11.如权利要求9所述的触摸屏输入指套,其特征在于,所述输入端与手指套筒相互接触的侧面包括ー缝隙。 11. The finger touch screen input according to claim 9, wherein the input end face of the sleeve are in contact with the finger slot comprising ー.
  12. 12.如权利要求I所述的触摸屏输入指套,其特征在于,所述支撑体为一空心结构。 12. I claim finger touch screen input, wherein the body is a hollow structure of the support.
  13. 13.如权利要求I所述的触摸屏输入指套,其特征在干,所述手指套筒为一端开ロ,一端封闭的结构,所述封闭端设置至少一通孔,所述输入端设置于该封闭端内壁面或者外壁面上。 I as claimed in claim 13. The finger touch screen input, characterized in that the dry, the open end of the sleeve finger ro, one end closed structure, said closed end provided with at least a through hole disposed at the input end of the the closed end of the inner wall surface or outer wall surface.
  14. 14. ー种触摸屏输入指套,其特征在于,包括: 一手指套筒,该手指套筒为一端封闭另一端敞开的筒状结构,其包括一内表面及一外表面; ー导电层,所述导电层设置于手指套筒的表面上,所述导电层将手指套筒的内表面至少一部分和手指套外表面导电性连接,所述导电层位于手指套筒封闭端的部分为输入端,所述导电层为ー碳纳米管复合材料层,该碳纳米管复合材料层包括多个碳纳米管以及包覆在每根碳纳米管的表面的导电材料层,所述导电材料层的材料为金属或合金。 14. ー species finger touch screen input, wherein, comprising: a sleeve finger, the finger sleeve is closed at one open end of a tubular structure including an inner surface and an outer surface; ー conductive layer, the said conductive layer is disposed on the surface of the finger sleeve, the conductive layer and at least a portion of the outer jacket surface of the conductive finger is connected to the inner surface of the finger sleeve, the conductive layer in the closed end of the sleeve portion of the finger as an input, theー said conductive layer is a carbon nanotube composite material layer, the carbon nanotube composite material layer comprising a plurality of carbon nanotubes and a conductive material layer coated on the surface of each of the carbon nanotubes, the material of the conductive material layer is a metal or alloy.
  15. 15.如权利要求14所述的触摸屏输入指套,其特征在于,所述导电层覆盖手指套筒的整个内表面和外表面,所述导电层在手指套筒敞开的一端电连接。 15. The finger touch screen input according to claim 14, wherein the conductive layer covers the entire inner surface of the finger and an outer surface of the sleeve, the conductive layer is electrically connected to one end of the fingers of the sleeve is open.
  16. 16.如权利要求14所述的触摸屏输入指套,其特征在于,所述导电层覆盖手指套筒的整个外表面和部分内表面,所述导电层在手指套筒敞开的一端电连接。 16. The input finger touch panel according to claim 14, wherein the conductive layer covers the entire outer surface of the finger surface portion and the inner sleeve, the conductive layer is electrically connected to one end of the fingers of the sleeve is open.
  17. 17.如权利要求14所述的触摸屏输入指套,其特征在于,所述手指套筒包括至少ー个通孔,所述导电层覆盖手指套筒的外表面和该多个通孔。 17. The input finger touch panel according to claim 14, wherein the finger sleeve comprises at least ー vias, the conductive layer covers the outer surface of the sleeve and the plurality of fingers through holes.
  18. 18.如权利要求14所述的触摸屏输入指套,其特征在于,所述手指套筒包括至少ー个通孔,所述导电层覆盖手指套筒的内表面和外表面,所述至少一个通孔内设置有ー导电连接部,该导电连接部使位于内表面的导电层和位于外表面的导电层电连接。 18. The finger touch screen input according to claim 14, wherein the finger sleeve comprises at least ー vias, the conductive layer covers the inner surface of the sleeve and the outer surface of the finger, at least one throughー hole with a conductive connecting portion is provided, the conductive connection portion conductive layer located on the inner surface and the outer surface of the electrically conductive layer is connected.
  19. 19. ー种触摸屏输入指套,其包括: 一手指套筒; ー输入端,所述输入端固定于该手指套筒;其特征在于,所述输入端由碳纳米管复合材料构成,该碳纳米管复合材料包括多个碳纳米管以及包覆在每根碳纳米管的表面的导电材料层,所述导电材料层的材料为金属或合金。 19. ー species finger touch screen input, comprising: a finger sleeve; ー input terminal, said input terminal is fixed to the finger sleeve; wherein said input end is a carbon nanotube composite material, the carbon nanotubes and carbon nanotube composite material comprising a plurality of layers of conductive material coated on the surface of each of the carbon nanotubes, the material of the conductive material is a metal or alloy layer.
  20. 20.如权利要求19所述的触摸屏输入指套,其特征在于,所述手指套筒为一指环,其具有ー环形结构,所述输入端为固定于该环形结构圆周上的一突出结构。 20. The input finger touch panel according to claim 19, wherein said sleeve is a finger ring having an annular ー structure, the input structure is fixed to a projection on the circumference of the annular structure.
  21. 21.如权利要求19所述的触摸屏输入指套,其特征在于,所述手指套筒为一筒状结构,所述输入端固定于所述手指套筒的一端,所述输入端包括一第一部分和一第二部分,所述第一部分位于手指套筒内部,所述第二部分位于手指套筒的外部。 21. The input finger touch panel according to claim 19, wherein said finger is a cylindrical sleeve-like structure, the input terminal fixed to one end of the finger sleeve, said first input terminal comprises a and a portion of the second portion, the first portion is located inside of the finger sleeve, said second external sleeve portion of the finger.
CN 201010607457 2010-12-27 2010-12-27 Touch screen input finger stall CN102053739B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010607457 CN102053739B (en) 2010-12-27 2010-12-27 Touch screen input finger stall

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
CN 201010607457 CN102053739B (en) 2010-12-27 2010-12-27 Touch screen input finger stall
JP2011115707A JP5485940B2 (en) 2010-12-27 2011-05-24 Input finger sack for touch panel
US13326677 US9575598B2 (en) 2010-12-27 2011-12-15 Inputting fingertip sleeve
US13332489 US9535542B2 (en) 2010-12-27 2011-12-21 Inputting fingertip sleeve
US13335063 US9529478B2 (en) 2010-12-27 2011-12-22 Inputting fingertip sleeve
US13334973 US9552108B2 (en) 2010-12-27 2011-12-22 Inputting fingertip sleeve
US13335071 US9557858B2 (en) 2010-12-27 2011-12-22 Inputting fingertip sleeve
US13335012 US9471184B2 (en) 2010-12-27 2011-12-22 Inputting fingertip sleeve
US13334984 US9552109B2 (en) 2010-12-27 2011-12-22 Inputting fingertip sleeve
US13335895 US9552110B2 (en) 2010-12-27 2011-12-22 Inputting fingertip sleeve
US13334958 US9552107B2 (en) 2010-12-27 2011-12-22 Inputting fingertip sleeve
US13861543 US9575601B2 (en) 2010-12-27 2013-04-12 Inputting fingertip sleeve
JP2013238720A JP5680733B2 (en) 2010-12-27 2013-11-19 Input finger sack for touch panel

Publications (2)

Publication Number Publication Date
CN102053739A true CN102053739A (en) 2011-05-11
CN102053739B true CN102053739B (en) 2013-03-20

Family

ID=43958131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010607457 CN102053739B (en) 2010-12-27 2010-12-27 Touch screen input finger stall

Country Status (2)

Country Link
JP (2) JP5485940B2 (en)
CN (1) CN102053739B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142624A1 (en) * 2013-03-15 2014-09-18 株式会社ライフリング Seal for operating touch panel
WO2014142625A1 (en) * 2013-03-15 2014-09-18 株式会社ライフリング Seal for operating touch panel
JP5866736B2 (en) * 2013-03-29 2016-02-17 株式会社ライフリング Touch panel operation tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582302A (en) 2008-05-14 2009-11-18 清华大学;鸿富锦精密工业(深圳)有限公司 Carbon nano tube/conductive polymer composite material
CN201348771Y (en) 2009-01-06 2009-11-18 苏州瀚瑞微电子有限公司 Fingertip stylus
CN201477554U (en) 2009-05-31 2010-05-19 马睿泽 Input device for small touch-screen equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163303A (en) * 1990-10-25 1992-06-08 Nec Corp Antistatic fingerstall
JP4142776B2 (en) * 1998-10-15 2008-09-03 パイロットプレシジョン株式会社 Input pen
JP2002073266A (en) * 2000-08-30 2002-03-12 Satoshi Yamashita Fake tip for nail type stylus
JP3134926U (en) * 2007-06-15 2007-08-30 留美 鈴木 Finger holder for the hand-held game machine
JP2010261108A (en) * 2007-08-31 2010-11-18 Hokkaido Univ Synthetic fiber, synthetic fiber yarn or fiber structure having carbon nano tubes adhered thereto and method for producing these
US9003567B2 (en) * 2007-12-09 2015-04-14 180S, Inc. Hand covering with tactility features
JP2009163484A (en) * 2008-01-06 2009-07-23 Tokyo Institute Of Technology Rolling type input device and finger movement detection program
CN101625617B (en) * 2008-07-09 2012-03-14 清华大学 Touch screen and display device
CN101676832B (en) * 2008-09-19 2012-03-28 清华大学 Desktop computer
US20100090966A1 (en) * 2008-10-14 2010-04-15 Immersion Corporation Capacitive Sensor Gloves
US8178201B2 (en) * 2009-03-31 2012-05-15 Korea Institute Of Science And Technology Electroconductive particle comprising graphene-coated polymer particle, anisotropic conductive film comprising same and method of making thereof
JP2010244772A (en) * 2009-04-03 2010-10-28 Sony Corp Capacitance type touch member and method for producing the same, and capacitance type touch detection device
KR100984666B1 (en) * 2010-02-04 2010-10-01 (주)삼원에스티 Touch pen for touch sceen panel
JP3164392U (en) * 2010-09-14 2010-11-25 ヨークス株式会社 gloves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582302A (en) 2008-05-14 2009-11-18 清华大学;鸿富锦精密工业(深圳)有限公司 Carbon nano tube/conductive polymer composite material
CN201348771Y (en) 2009-01-06 2009-11-18 苏州瀚瑞微电子有限公司 Fingertip stylus
CN201477554U (en) 2009-05-31 2010-05-19 马睿泽 Input device for small touch-screen equipment

Also Published As

Publication number Publication date Type
JP5485940B2 (en) 2014-05-07 grant
JP2012138061A (en) 2012-07-19 application
CN102053739A (en) 2011-05-11 application
JP5680733B2 (en) 2015-03-04 grant
JP2014032705A (en) 2014-02-20 application

Similar Documents

Publication Publication Date Title
Park et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins
Wang et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring
Lim et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures
US20090153511A1 (en) Touch panel and display device using the same
Castano et al. Smart fabric sensors and e-textile technologies: a review
Koga et al. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics
US20090101488A1 (en) Touch panel
JP6014906B2 (en) Strain sensor
Yao et al. Nanomaterial‐enabled stretchable conductors: strategies, materials and devices
JP2006519712A (en) Molded article having a protruding conductive layer
US20090153504A1 (en) Touch panel, method for making the same, and display device adopting the same
US20110032196A1 (en) Touch panel and display device using the same
US8536760B1 (en) Ball-electric power generator
CN101715155A (en) Earphone
JP2012209923A (en) Thermoacoustic device
CN1947203A (en) Touch panel-use transparent conductive molded product and touch panel
Huang et al. Wearable electronics of silver-nanowire/poly (dimethylsiloxane) nanocomposite for smart clothing
CN101464765A (en) Touch screen and display equipment
Zhao et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features
CN102306800A (en) Current collector and lithium ion battery
Dong et al. Breathable and wearable energy storage based on highly flexible paper electrodes
CN101924816A (en) Flexible mobile phone
US8248377B2 (en) Touch panel
Wang et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection
US20120250907A1 (en) Thermoacoustic device

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted