CN102053000B - 剪切流下斜置立管的涡激振动旋转测试装置 - Google Patents

剪切流下斜置立管的涡激振动旋转测试装置 Download PDF

Info

Publication number
CN102053000B
CN102053000B CN 201010552029 CN201010552029A CN102053000B CN 102053000 B CN102053000 B CN 102053000B CN 201010552029 CN201010552029 CN 201010552029 CN 201010552029 A CN201010552029 A CN 201010552029A CN 102053000 B CN102053000 B CN 102053000B
Authority
CN
China
Prior art keywords
module
riser
cantilever
cylindorical rod
standpipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010552029
Other languages
English (en)
Other versions
CN102053000A (zh
Inventor
付世晓
杨建民
任铁
李润培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN 201010552029 priority Critical patent/CN102053000B/zh
Publication of CN102053000A publication Critical patent/CN102053000A/zh
Application granted granted Critical
Publication of CN102053000B publication Critical patent/CN102053000B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种海洋工程技术领域的剪切流下斜置立管的涡激振动旋转测试装置,包括:立管模型机构、测量分析系统平台模块、驱动模块、顶部悬臂模块、圆筒轴分段模块、底部立管固定模块和底部支撑模块,立管模型机构固定设置于顶部悬臂模块和底部立管固定模块之间,圆筒轴分段模块垂直置于海洋工程深水池中并分别与底部支撑模块、驱动模块和顶部悬臂模块和底部立管固定模块连接,底部支撑模块固定设置于升降底上,驱动模块与圆筒轴分段模块相连接并输出动力,顶部悬臂模块的两端与驱动模块或者圆筒轴分段模块以及圆筒轴分段模块相连,测量分析系统平台模块与立管模型、顶部悬臂模块以及底部立管固定模块相连。本发明能够模拟实际尺寸立管、剪切流场。

Description

剪切流下斜置立管的涡激振动旋转测试装置
技术领域
本发明涉及的是一种海洋工程技术领域的装置,具体是一种斜置于海洋工程深水池中柔性立管模型在剪切流下的涡激振动旋转测试装置。
背景技术
根据流体力学,将柱状结构物置于一定速度的来流当中,其两侧会发生交替泻涡。与漩涡的生成和泻放相关联,柱体会受到横向和流向的脉动压力。如果此时柱体是弹性支撑的,那么脉动流体力会引发柱体的振动,柱体的振动反过来又会改变其尾流结构。这种流体结构物相互作用的问题称为涡激振动。例如在海流的作用下,悬置于海中的海洋平台立管、拖缆、海底管线、spar平台的浮筒、系泊缆索等柔性管件上会出现涡激振动现象,将会导致柔性管件的疲劳破坏。
由于海洋油气开采向深水推进,深水环境中的立管可视为细长柔性结构,小变形理论不再适用,这使得立管的涡激振动问题更加突出。目前为止,对柔性管件涡激振动现象的研究最重要的方法之一就是模型测试方法。测试中模拟的现象更加接近于自然界中的真实情况,采用先进的测试装置可以保证测试数据的可靠性。通过模型测试的方法可以设计出更好的抑制海洋立管涡激振动的抑振装置。
经过对现有技术的检索发现,目前的涡激振动测试装置一般在拖曳海洋工程深水池中进行,有的在环形水槽中进行,有的用拖船拖动立管进行涡激振动测试。在第14届国际近海与极地工程会议“Proceedings of the Fourteen(2004)International Offshore and PolarEngineering Conference”中的论文“Laboratory Investigation of Long Riser VIVResponse”(长立管涡激振动响应的测试研究)是关于柔性管件涡激振动测试研究的,文中提到了一种柔性管件涡激振动模型测试技术,把柔性立管横置于拖曳水池中,拖车拖动立管模型产生均匀流场。用布置在立管内部的加速度传感器来测量立管的运动,在立管壁内布置光栅测量立管壁内的应变量。经分析,该测试技术的不足之处在于:1.一般只能模拟小尺度管件的涡激振动,难以有效的进行实雷诺数下的涡激振动测试。2.受拖曳海洋工程深水池长度的限制,所得到的测试段距离较小,测得的测试数据较少。3.一般只能模拟均匀流场中立管的涡激振动,不能模拟阶梯流场中立管的涡激振动。
发明内容
本发明针对现有技术存在的上述不足,提供一种剪切流下斜置立管的涡激振动旋转测试装置,能够模拟实际尺寸立管、不同流剖面剪切流场、且可以长时间置于海洋工程深水池中进行柔性立管模型的涡激振动旋转测试。
本发明是通过以下技术方案实现的,本发明包括:立管模型机构、测量分析系统平台模块、驱动模块、顶部悬臂模块、圆筒轴分段模块、底部立管固定模块和底部支撑模块,其中:立管模型机构固定设置于顶部悬臂模块和底部立管固定模块之间,圆筒轴分段模块垂直置于海洋工程深水池中并分别与底部支撑模块、驱动模块和顶部悬臂模块和底部立管固定模块垂直连接,底部支撑模块固定设置于海洋工程深水池的升降底上,驱动模块与圆筒轴分段模块相连接并输出动力,顶部悬臂模块上部与驱动模块或者圆筒轴分段模块相连,下部与圆筒轴分段模块相连,测量分析系统平台模块分别与立管模型、顶部悬臂模块以及底部立管固定模块相连并接收检测数据。
所述的立管模型机构包括:立管模型、万向节、三分力传感器、滑动轴、立管固定接头、直线轴承、缓冲弹簧和立管固定座,其中:三分力传感器设置于立管模型的顶端,第一立管固定接头的两端分别与立管模型的顶端和第一万向节的一端相连,第一万向节的另一端固定设置于固定设置于立管固定座上,第二立管固定接头的两端分别与立管模型的底端和第二万向节的一端相连,第二万向节的另一端固定设置于三分力传感器上,直线轴承与滑动轴相连,直线轴承和缓冲弹簧相连。
所述的立管模型的单位长度质量与其单位长度排开水的质量之比为1∶1。
所述的测量分析系统平台模块包括:测量单元、水下录像单元、计算单元和无线传输单元,其中:计算单元设置于海洋工程深水池的拖车机房内并与无线传输单元相连接以传输水下录像单元和测量单元输出的无线测量信号,计算单元实时地对接收到的无线测量信号进行存储和处理。
所述的驱动模块为整个系统提供动力,并对装置的转动速度进行精确控制。该驱动模块包括:伺服驱动电机、齿轮传动机构、变速齿轮箱、驱动齿轮、驱动轴和可调节支撑底座,其中:伺服驱动电机与变速齿轮箱相连接,变速齿轮箱与驱动轴相连接,驱动轴与驱动齿轮相连接,伺服驱动电机、变速齿轮箱、驱动齿轮、驱动轴分别固定设置于可调节支撑底座,实现封装。安装的时候将整个驱动模块直接固定到拖车上。并通过模块与拖车之间的连接件设计,实现驱动模块的上下及左右移动,以补偿假底升沉控制精度的不足。驱动模块上部留有连接头与测量分析系统平台模块相连接;下部通过法兰与顶部悬臂模块相连接。
所述的变速齿轮箱的减速比为40∶1。
所述的该齿轮传动机构的减速比为7。
所述的顶部悬臂模块包括:斜拉锁、悬臂、桁架、顶部悬臂圆筒轴,其中:悬臂上部使用斜拉锁和顶部悬臂圆筒轴相连接,为悬臂提供预应力,悬臂下部使用桁架和顶部悬臂圆筒轴相连接。悬臂的末端将与立管模型机构中的顶端固定装置连接。数据线通过试件的末端和悬臂进入圆筒轴,然后通过顶部悬臂圆筒轴向上连接到测量分析系统平台模块。顶部悬臂模块上部通过连接法兰与驱动模块或者圆筒轴分段模块相连,下部通过连接法兰与圆筒轴分段模块相连。
所述的连接模块由万向节、拉力传感器和数据线接头组成。
所述的悬臂采用预应力矩形钢桁架结构,该悬臂的长度为18m。
所述的底部支撑模块包括:底部支撑法兰盘、底部固定轴承、底部固定轴和底部基座,其中:底部固定轴上端通过底部支撑法兰盘与圆筒轴分段模块或底部立管固定模块连接,下端整体插入到底部固定轴承内,轴承实现油密,底部固定轴承焊接在底部基座上,底部基座通过高强度螺丝与水池升降底连接。
所述的圆筒轴分段模块具体为若干段由连接法兰固定相连的圆筒轴分段机构,每个圆筒轴分段机构的两个端部均环形布置有螺栓孔,圆筒轴分段机构与海洋工程深水池的升降底相垂直。
所述的底部立管固定模块为以下三种结构中的任意一种:
a)该底部立管固定模块包括:连接法兰盘、底部固定圆筒轴、圆板桁架和支撑圆板,其中:支撑圆板的一端与底部固定圆筒轴相连接,另一端与立管模型的下端相连接;底部固定圆筒轴上部通过连接法兰盘与圆筒轴分段模块连接,下部通过底部支撑法兰盘与底部支撑模块连接;连接法兰盘安装于底部固定圆筒轴上端的位置并与圆筒轴分段模块相连接,圆板桁架安装于支撑圆板的下方位置并与底部固定圆筒轴相连接。
b)该底部立管固定模块包括:连接法兰盘、底部固定圆筒轴、矩形钢桁架和矩形支撑板,其中:矩形支撑板的一端与底部固定圆筒轴相连接,另一端与所述立管模型的下端相连接,底部固定圆筒轴上部通过连接法兰盘与圆筒轴分段模块连接,下部通过底部支撑法兰盘与底部支撑模块连接,连接法兰盘安装于底部固定圆柱筒上端的位置并与圆筒轴分段模块相连接,矩形钢桁架安装于矩形支撑板的下方位置并与底部固定圆筒轴相连接。
c)该底部立管固定模块包括:连接法兰盘、底部固定圆筒轴、立管底部固定端、底部固定圆筒轴上开口、底部固定圆筒轴下开口,其中:底部固定圆筒轴上部通过连接法兰盘与圆筒轴分段模块连接,下部通过底部支撑法兰盘与底部支撑模块连接,所述立管模型通过立管底部固定端穿过底部固定圆筒轴上开口和底部固定圆筒轴下开口固定在底部固定圆筒轴内部。
与现有技术相比,本发明的优点包括:
1.本发明可以实现立管在不同流剖面的剪切来流作用下的涡激振动测试;
2.其旋转装置可以大大延长测试时间,增加了测试数据的准确性;
3.本发明可以充分利用海洋工程深水池的深度模拟大型管件的实雷诺数涡激振动;
4.本发明采用模块化设计,优点在于便于安装,便于升级与更改,并满足不同的功能要求;
5.本发明能够更加真实的模拟海洋真实环境的流场,比以往在拖曳水池以及拖船上测试有显著的进步。
附图说明
图1a为实施例1示意图。
图1b为实施例2示意图。
图1c为实施例3示意图。
图2是驱动模块的结构正视图。
图3是驱动模块结构示意图。
图4是顶部悬臂模块的结构示意图。
图5是顶部悬臂模块中悬臂结构的示意图:
图6是底部支撑模块的结构示意图。
图7是立管模型机构中底部固定端的侧视图。
图8是立管模立管模型机构中底部固定端的仰视图。
图9是立管模型机构中顶部固定端的结构示意图。
图10是立管模型机构结构示意图。
图11是底部支撑模块的结构示意图。
具体实施方式
下面通过实施例对本发明作详细说明,本实施例在以本发明技术方案为前提下进行实施的,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1a所示,本实施例包括:立管模型机构1、测量分析系统平台模块2、驱动模块3、顶部悬臂模块4、圆筒轴分段模块5、底部立管固定模块6和底部支撑模块7,其中:立管模型机构1固定设置于顶部悬臂模块和底部立管固定模块之间,圆筒轴分段模块5垂直置于海洋工程深水池中并分别与底部支撑模块7、驱动模块3和顶部悬臂模块4垂直连接,底部支撑模块7固定设置于海洋工程深水池的升降底8上,驱动模块3分别与圆筒轴分段模块5和顶部悬臂模块4相连接并输出动力,顶部悬臂模块4的左右两端分别与圆筒轴分段模块5相连,测量分析系统平台模块2分别与立管模型37、顶部悬臂模块4以及底部立管固定模块6相连并接收检测数据。
所述的测量分析系统平台模块2包括:测量单元10、水下录像单元11、计算单元12和无线传输单元13,其中:计算单元12设置于海洋工程深水池的拖车9的机房内并与无线传输单元13相连接以传输水下录像单元11和测量单元10输出的无线测量信号,计算单元12实时地对接收到的无线测量信号进行存储和处理。
如图2和图3所示,所述的驱动模块3包括:变速齿轮箱14、伺服驱动电机15、传递齿轮16、驱动轴17、可调节支撑底座18和驱动齿轮19,其中:伺服驱动电机15与变速齿轮箱14相连接,变速齿轮箱14与驱动轴17相连接,驱动轴17与驱动齿轮19相连接,伺服驱动电机15、变速齿轮箱14、驱动齿轮19、驱动轴17分别固定设置于可调节支撑底座18,实现封装。可调节支撑底座18安装于海洋工程深水池拖车9的钢架上。
所述的变速齿轮箱14的减速比为40∶1。
所述的齿轮传动机构的减速比为7。
如图4所示,所述的顶部悬臂模块4包括:斜拉锁20、悬臂21、桁架22、顶部悬臂圆筒轴23,其中:悬臂21上部使用斜拉锁14和顶部悬臂圆筒轴23相连接,为悬臂21提供预应力,悬臂21下部使用桁架22和顶部悬臂圆筒轴23相连接。悬臂21的末端将与立管模型机构1中的顶端固定装置连接。数据线通过试件的末端和悬臂15进入圆筒轴25,然后通过顶部悬臂圆筒轴17向上连接到测量分析系统平台模块2。顶部悬臂模块4上部通过连接法兰与驱动模块3或者圆筒轴分段模块5相连,下部通过连接法兰与圆筒轴分段模块5相连。
如图5所示,悬臂21采用预应力矩形钢桁架结构。桁架分段间使用连接板30连接。桁架的腹杆和弦杆的尺寸分别为,腹杆:外径0.05m,厚度0.004m,弦杆:外径0.03m,厚度0.004m。所述的悬臂21的长度为18m。
如图6所示,所述的底部支撑模块7包括:底部支撑法兰盘26、底部固定轴承27、底部固定轴28和底部基座29,其中:底部固定轴28上端通过底部支撑法兰盘26与圆筒轴分段模块5或底部立管固定模块6连接,下端整体插入到底部固定轴承28内,轴承实现油密,底部固定轴承27焊接在底部基座29上,底部基座29通过高强度螺丝与水池升降底8连接。
所述的圆筒轴分段模块5具体为若干段由连接法兰固定相连的圆筒轴分段机构,每个圆筒轴分段机构的两个端部均环形布置有螺栓孔,圆筒轴分段机构与海洋工程深水池的升降底8相垂直。
如图7、图8、图9和图10所示,所述的立管模型机构1包括:连接板30、缓冲弹簧31、直线轴承32、滑动轴33、三分力传感器34、万向节35、立管固定接头36、立管模型37、驱动伺服电机38、轨道39、滑块40、立管固定座41,其中:万向节35、立管固定接头36在立管模型底端和顶端各设一个,三分力传感器34只在顶端设置。其中:立管模型37顶端通过两个销子与立管固定接头36连接,立管固定接头36另一端连接在万向节35上,万向节35另一端固定在三分力传感器34上,三分力传感器34使用高强度螺丝固定在立管固定座41上,立管固定座41与滑块40固定连接,通过控制驱动伺服电机38使滑块40沿着轨道39滑动。立管模型37底端的固定连接方式与顶端类似,依次连接立管固定接头36、万向节35和三分力传感器34,然后与滑动轴33连接,滑动轴33插入到直线轴承32内,所有直线轴承32固定在连接板30上,连接板30连接直线轴承32和底部固定底部立管固定模块6,连接板在底部固定底部立管固定模块6上的位置可以调节,从而实现模拟不同流剖面的剪切流。
所述的立管模型37的单位长度质量与其单位长度排开水的质量之比为1∶1。
如图1c所示,本实施例中的底部立管固定模块6包括:连接法兰盘24、底部固定圆筒轴25、圆板桁架42和支撑圆板43,其中:支撑圆板43的一端与底部固定圆筒轴25相连接,另一端与立管模型37的下端相连接;底部固定圆筒轴25上部通过连接法兰盘24与圆筒轴分段模块5连接,下部通过底部支撑法兰盘26与底部支撑模块7连接;连接法兰盘24安装于底部固定圆筒轴25的上端位置并与圆筒轴分段模块5相连接,圆板桁架42安装于支撑圆板43的下方位置并与底部固定圆筒轴25相连接。
实施例2
如图1b所示,本实施例中的底部立管固定模块6包括:连接法兰盘24、底部固定圆筒轴25、矩形钢桁架44和矩形支撑板45,其中:矩形支撑板45的一端与底部固定圆筒轴25相连接,另一端与立管模型37的下端相连接,底部固定圆筒轴25上部通过连接法兰盘24与圆筒轴分段模块5连接,下部通过底部支撑法兰盘26与底部支撑模块7连接,连接法兰盘24安装于底部固定圆筒轴25的上端位置并与圆筒轴分段模块5相连接,矩形钢桁架44安装于矩形支撑板45的下方位置并底部固定圆筒轴25相连接。
实施例3
如图1c所示,本实施例中的底部立管固定模块6包括:连接法兰盘24、底部固定圆筒轴25、立管底部固定端46、底部固定圆筒轴上开口47、底部固定圆筒轴下开口48,其中,底部固定圆筒轴25上部通过连接法兰盘24与圆筒轴分段模块5连接,下部通过底部支撑法兰盘26与底部支撑模块7连接。立管模型37通过立管底部固定端46穿过底部固定圆筒轴上开口47和底部固定圆筒轴下开口48固定在底部固定圆筒轴25内部。
本装置通过以下方式进行测试:先根据海洋工程深水池的尺寸、管件的实际尺寸、测试工况的具体情况和测试的经济性选择合适的模型缩尺比和测试工况。按照整个测试装置得强度控制要求以及振动控制要求确定各个模块的具体尺寸和材料。各模块准备好后具体的安装过程如下。
在地面组装底部支撑模块7,组装完成后升高海洋工程深水池的升降底8,将底部支撑模块7得底座29用螺栓固定在升降底8上。然后适当降低升降底8安装底部立管固定模块6,然后将立管模型机构1也就是测试管件的一端用万向连轴器固定在底部立管固定模块6上,另一端搭在池壁上,数据线从连接装置穿过横梁进入圆筒轴25中,降低升降底8。根据测试管件的长度要求确定圆筒轴分段模块5的长度,然后将圆筒轴分段模块5用小车吊至海洋工程深水池中央进行吊装。在安装上述模块得同时,在地面组装测量分析系统平台模块2、驱动模块3、顶部悬臂模块4。圆筒轴分段模块5安装完成后吊装顶部悬臂模块4,各模块之间的连接采用法兰连接,数据线从连接装置穿过横梁进入圆筒轴中。顶部悬臂模块4吊装完成后,将立管模型机构1测试管件的另一端穿过套筒固定在顶部悬臂模块4的连接模块上。安装完成后,用小车将3吊至顶部悬臂模块4正上方,顶部悬臂模块4与驱动模块3的连接要特别注意精度控制,连接后将驱动模块3用螺栓固定在小车上。最后安装测量分析系统平台模块2,将圆筒轴中的数据线连接到测量分析系统平台模块2上。
在测量分析系统平台模块2中的计算机上安装好计算机实时分析软件和图像处理软件,然后将从测试管件两端导出来的数据线连接到电脑上。同时将测试装置中的测量仪器导出来的电源线接上电源。

Claims (9)

1.一种剪切流下斜置立管的涡激振动旋转测试装置,其特征在于,包括:立管模型机构、测量分析系统平台模块、驱动模块、顶部悬臂模块、圆筒轴分段模块、底部立管固定模块和底部支撑模块,其中:立管模型机构固定设置于顶部悬臂模块和底部立管固定模块之间,圆筒轴分段模块垂直置于海洋工程深水池中并分别与底部支撑模块、驱动模块、顶部悬臂模块和底部立管固定模块垂直连接,底部支撑模块固定设置于海洋工程深水池的升降底上,驱动模块与圆筒轴分段模块相连接并输出动力,顶部悬臂模块上部与驱动模块或者圆筒轴分段模块相连,下部与圆筒轴分段模块相连,测量分析系统平台模块分别与立管模型、顶部悬臂模块以及底部立管固定模块相连并接收检测数据;
所述的立管模型机构包括:立管模型、万向节、三分力传感器、滑动轴、立管固定接头、直线轴承、缓冲弹簧和立管固定座,其中:三分力传感器设置于立管模型的顶端,第一立管固定接头的两端分别与立管模型的顶端和第一万向节的一端相连,第一万向节的另一端固定设置于立管固定座上,第二立管固定接头的两端分别与立管模型的底端和第二万向节的一端相连,第二万向节的另一端固定设置于三分力传感器上,直线轴承与滑动轴相连,直线轴承和缓冲弹簧相连。
2.根据权利要求1所述的剪切流下斜置立管的涡激振动旋转测试装置,其特征是,所述的立管模型的单位长度质量与其单位长度排开水的质量之比为1:1。
3.根据权利要求1所述的剪切流下斜置立管的涡激振动旋转测试装置,其特征是,所述的测量分析系统平台模块包括:测量单元、水下录像单元、计算单元和无线传输单元,其中:计算单元设置于海洋工程深水池的拖车机房内并与无线传输单元相连接以传输水下录像单元和测量单元输出的无线测量信号,计算单元实时地对接收到的无线测量信号进行存储和处理。
4.根据权利要求1所述的剪切流下斜置立管的涡激振动旋转测试装置,其特征是,所述的驱动模块包括:伺服驱动电机、齿轮传动机构、变速齿轮箱、驱动齿轮、驱动轴和可调节支撑底座,其中:伺服驱动电机与变速齿轮箱相连接,变速齿轮箱与驱动轴相连接,驱动轴与驱动齿轮相连接,变速齿轮箱通过齿轮传动机构设置在可调节支撑底座上,伺服驱动电机、变速齿轮箱、驱动齿轮、驱动轴分别固定设置于可调节支撑底座上,实现封装,可调节支撑底座固定设置于海洋工程水池拖车的钢架上。
5.根据权利要求1所述的剪切流下斜置立管的涡激振动旋转测试装置,其特征是,所述的顶部悬臂模块包括:斜拉锁、悬臂、桁架、顶部悬臂圆筒轴,其中:悬臂上部使用斜拉锁和顶部悬臂圆筒轴相连接,为悬臂提供预应力,悬臂下部使用桁架和顶部悬臂圆筒轴相连接,悬臂的末端将与立管模型机构中的顶端固定装置连接,数据线通过立管模型的末端和悬臂进入圆筒轴,然后通过顶部悬臂圆筒轴向上连接到测量分析系统平台模块,顶部悬臂模块上部通过连接法兰与驱动模块或者圆筒轴分段模块相连,下部通过连接法兰与圆筒轴分段模块相连。
6.根据权利要求1所述的剪切流下斜置立管的涡激振动旋转测试装置,其特征是,所述的底部立管固定模块包括:连接法兰盘、底部固定圆筒轴、圆板桁架和支撑圆板,其中:支撑圆板的一端与底部固定圆筒轴相连接,另一端与立管模型的下端相连接;底部固定圆筒轴上部通过连接法兰盘与圆筒轴分段模块连接,下部通过底部支撑法兰盘与底部支撑模块连接;连接法兰盘安装于底部固定圆筒轴上端的位置并与圆筒轴分段模块相连接,圆板桁架安装于支撑圆板的下方位置并与底部固定圆筒轴相连接。
7.根据权利要求1所述的剪切流下斜置立管的涡激振动旋转测试装置,其特征是,所述的底部支撑模块包括:底部支撑法兰盘、底部固定轴承、底部固定轴和底部基座,其中:底部固定轴上端通过底部支撑法兰盘与圆筒轴分段模块或底部立管固定模块连接,底部固定轴下端整体插入到底部固定轴承内,底部固定轴承焊接在底部基座上,底部固定轴承和底部基座依次固定设置于海洋工程深水池的升降底上。
8.根据权利要求1所述的剪切流下斜置立管的涡激振动旋转测试装置,其特征是,所述的底部立管固定模块包括:连接法兰盘、底部固定圆筒轴、矩形钢桁架和矩形支撑板,其中:矩形支撑板的一端与底部固定圆筒轴相连接,另一端与所述立管模型的下端相连接,底部固定圆筒轴上部通过连接法兰盘与圆筒轴分段模块连接,下部通过底部支撑法兰盘与底部支撑模块连接,连接法兰盘安装于底部固定圆筒轴上端的位置并与圆筒轴分段模块相连接,矩形钢桁架安装于矩形支撑板的下方位置并与底部固定圆筒轴相连接。
9.根据权利要求1所述的剪切流下斜置立管的涡激振动旋转测试装置,其特征是,所述的底部立管固定模块包括:连接法兰盘、底部固定圆筒轴、立管底部固定端、底部固定圆筒轴上开口、底部固定圆筒轴下开口,其中:底部固定圆筒轴上部通过连接法兰盘与圆筒轴分段模块连接,下部通过底部支撑法兰盘与底部支撑模块连接,所述立管模型通过立管底部固定端穿过底部固定圆筒轴上开口和底部固定圆筒轴下开口固定在底部固定圆筒轴内部。
CN 201010552029 2010-11-19 2010-11-19 剪切流下斜置立管的涡激振动旋转测试装置 Active CN102053000B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010552029 CN102053000B (zh) 2010-11-19 2010-11-19 剪切流下斜置立管的涡激振动旋转测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010552029 CN102053000B (zh) 2010-11-19 2010-11-19 剪切流下斜置立管的涡激振动旋转测试装置

Publications (2)

Publication Number Publication Date
CN102053000A CN102053000A (zh) 2011-05-11
CN102053000B true CN102053000B (zh) 2013-01-02

Family

ID=43957550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010552029 Active CN102053000B (zh) 2010-11-19 2010-11-19 剪切流下斜置立管的涡激振动旋转测试装置

Country Status (1)

Country Link
CN (1) CN102053000B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279085A (zh) * 2011-05-31 2011-12-14 上海交通大学 均匀流下受预张力的深海立管列阵模型涡激模拟试验装置
CN102288376B (zh) * 2011-08-02 2013-02-06 上海交通大学 均匀流和阶梯流下顶部可运动竖置立管涡激振动旋转装置
CN102410919A (zh) * 2011-08-02 2012-04-11 上海交通大学 剪切流下顶部可运动的斜置立管涡激振动旋转测试装置
CN102410920B (zh) * 2011-08-05 2013-09-25 上海交通大学 阶梯剪切流下顶部可运动斜置立管涡激振动旋转测试装置
CN104502058B (zh) * 2014-12-02 2017-09-08 上海交通大学 一种剪切流下测量细长立管动力响应装置
CN104502044B (zh) * 2014-12-02 2017-08-01 上海交通大学 一种斜向均匀流下测量细长立管动力响应装置
CN104502042B (zh) * 2014-12-02 2017-11-14 上海交通大学 一种水平斜向强迫振荡下测量细长立管动力响应装置
CN104811009B (zh) * 2015-04-30 2016-06-08 江苏科技大学 翼摆式海洋立管涡激振动自发电监测装置
CN105300636B (zh) * 2015-09-18 2017-12-05 天津大学 局部流速增大倾角来流海洋立管束涡激振动试验装置
CN113029520B (zh) * 2021-03-31 2023-02-03 济南大学 一种连续式水下机械臂涡激振动测试装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200962068Y (zh) * 2006-10-26 2007-10-17 上海交通大学 单柱式海洋平台涡激运动模型试验装置
CN101089578A (zh) * 2007-07-12 2007-12-19 上海交通大学 横置于拖曳水池中柔性管件模型的涡激振动试验装置
CN101387188A (zh) * 2008-11-04 2009-03-18 中国海洋大学 海洋立管涡激振动的抑振方法及其抑振装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200962068Y (zh) * 2006-10-26 2007-10-17 上海交通大学 单柱式海洋平台涡激运动模型试验装置
CN101089578A (zh) * 2007-07-12 2007-12-19 上海交通大学 横置于拖曳水池中柔性管件模型的涡激振动试验装置
CN101387188A (zh) * 2008-11-04 2009-03-18 中国海洋大学 海洋立管涡激振动的抑振方法及其抑振装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
姚宗等.流速分层流场中细长柔性立管涡激振动试验研究.《上海交通大学学报》.2009,(第08期), *
王颖等.均匀来流中浮式圆柱的涡激运动研究.《中国海洋平台》.2010, *
葛斐等.剪切流中大长细比圆柱体的二维涡激振动.《第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会文集》.2009, *

Also Published As

Publication number Publication date
CN102053000A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
CN102053000B (zh) 剪切流下斜置立管的涡激振动旋转测试装置
CN102053001B (zh) 均匀流和阶梯均匀流下竖置立管的涡激振动旋转测试装置
CN102109405B (zh) 双向剪切流和双向阶梯剪切流下立管的涡激振动测试装置
CN102012306B (zh) 双向剪切流下斜置立管的涡激振动旋转测试装置
CN102072805B (zh) 阶梯剪切流下斜置立管的涡激振动旋转测试装置
CN202033164U (zh) 一种海底管道均匀流涡激振动模拟试验装置
CN102305696B (zh) 阶梯流下顶部可运动深海立管列阵模型涡激振动试验装置
CN102147321A (zh) 一种海底管道均匀流涡激振动模拟试验装置
CN102410918B (zh) 均匀流下顶端可运动深海立管模型涡激振动模拟试验装置
US11255745B2 (en) Test device for simulating longitudinal-lateral-torsional coupled nonlinear vibration of drill string of deepwater riserless drilling and method therefor
CN102279085A (zh) 均匀流下受预张力的深海立管列阵模型涡激模拟试验装置
CN102313636B (zh) 阶梯流下顶端可运动深海立管模型涡激振动模拟试验装置
CN102288376B (zh) 均匀流和阶梯流下顶部可运动竖置立管涡激振动旋转装置
CN102410920B (zh) 阶梯剪切流下顶部可运动斜置立管涡激振动旋转测试装置
CN102323026B (zh) 阶梯流下受预张力的深海立管模型涡激振动模拟试验装置
CN101221097A (zh) 检测海底直铺管道侧向稳定性的模拟方法及其模拟装置
CN102305697B (zh) 均匀流下顶端可运动深海立管列阵模型涡激振动试验装置
CN102323025B (zh) 均匀流下受预张力的深海立管模型涡激振动模拟试验装置
CN104406753B (zh) 垂直强迫振荡下的深海细长立管的动力响应测试装置
CN102410919A (zh) 剪切流下顶部可运动的斜置立管涡激振动旋转测试装置
CN104458171A (zh) 水平强迫振荡状态下的深海细长立管的动力响应测试装置
CN116907790A (zh) 一种用于模拟沉管管节拖航过程的风浪流生成系统
CN104483083B (zh) 模拟海底管土与剪切流的深海细长立管动力响应测试装置
CN104502043A (zh) 模拟海底管土与水平强迫振荡测量细长立管动力响应装置
CN104458172A (zh) 一种均匀流下测量细长立管动力响应测试装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant