CN102045133A - Chip for wireless sensor network node and on-chip digital baseband system - Google Patents
Chip for wireless sensor network node and on-chip digital baseband system Download PDFInfo
- Publication number
- CN102045133A CN102045133A CN 200910236528 CN200910236528A CN102045133A CN 102045133 A CN102045133 A CN 102045133A CN 200910236528 CN200910236528 CN 200910236528 CN 200910236528 A CN200910236528 A CN 200910236528A CN 102045133 A CN102045133 A CN 102045133A
- Authority
- CN
- China
- Prior art keywords
- module
- digital
- unit
- data
- sensor network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 38
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000005070 sampling Methods 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 15
- 238000007493 shaping process Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 11
- 230000001427 coherent effect Effects 0.000 claims abstract description 8
- 230000003044 adaptive effect Effects 0.000 claims description 15
- 230000001629 suppression Effects 0.000 claims description 15
- 238000001914 filtration Methods 0.000 claims description 13
- 230000015654 memory Effects 0.000 claims description 11
- 230000010354 integration Effects 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 230000001934 delay Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 18
- 238000013524 data verification Methods 0.000 abstract description 2
- 238000004891 communication Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 108700026140 MAC combination Proteins 0.000 description 10
- 238000013461 design Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005562 fading Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 235000013628 Lantana involucrata Nutrition 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 235000006677 Monarda citriodora ssp. austromontana Nutrition 0.000 description 1
- 240000007673 Origanum vulgare Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005059 dormancy Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004622 sleep time Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明提供一种用于无线传感器网络节点芯片的数字基带系统,包括基带调制单元、基带解调单元、自动增益控制单元以及循环码校验器;其中,循环码校验器将经过校验的待发送数据传输到基带调制单元,由基带调制单元完成包括直接序列扩频、延迟、数字信号成形调制、模数转换在内的调制处理,然后将处理后的数据发送出去;基带解调单元对接收到的数据做包括模数转换、解扩频、最佳相干解调、位同步抽样判决在内的解调处理,然后将处理后的数据传输到所述的循环码校验器做数据校验;自动增益控制单元根据数据发送或接收过程中的信号强度RSSI以及链路质量LQI调整增益判决门限,从而实现对发射增益和接收增益的控制。
The invention provides a digital baseband system for wireless sensor network node chips, including a baseband modulation unit, a baseband demodulation unit, an automatic gain control unit, and a cyclic code checker; The data to be sent is transmitted to the baseband modulation unit, and the baseband modulation unit completes the modulation processing including direct sequence spread spectrum, delay, digital signal shaping modulation, analog-to-digital conversion, and then sends the processed data; the baseband demodulation unit The received data is subjected to demodulation processing including analog-to-digital conversion, despreading, optimal coherent demodulation, and bit synchronization sampling judgment, and then the processed data is transmitted to the cyclic code checker for data verification The automatic gain control unit adjusts the gain judgment threshold according to the signal strength RSSI and the link quality LQI in the process of data transmission or reception, so as to realize the control of the transmission gain and the reception gain.
Description
技术领域technical field
本发明涉及无线传输领域,特别涉及用于无线传感器网络节点的芯片及芯片上的数字基带系统。The invention relates to the field of wireless transmission, in particular to a chip used for wireless sensor network nodes and a digital baseband system on the chip.
背景技术Background technique
无线传感器网络(Wireless Sensor Network,WSN)是由大量密集部署在监控区域的自治节点构成的一种自组织网络应用系统。它的应用前景十分广阔,能够广泛应用于军事、环境监测、医疗健康、交通管理以及商业应用等领域。虽然无线传感器网络节点有着各种各样的应用,但这些应用对无线传感器网络节点有着一些相同的要求,其中最具挑战性的要求就是如何使无线传感器网络节点的计算能力更强、应用环境更广、功耗更低、体积更小、成本更低、通信质量更好。Wireless sensor network (Wireless Sensor Network, WSN) is a self-organizing network application system composed of a large number of autonomous nodes densely deployed in the monitoring area. It has broad application prospects and can be widely used in military, environmental monitoring, medical health, traffic management, and commercial applications. Although wireless sensor network nodes have various applications, these applications have some common requirements for wireless sensor network nodes. The most challenging requirement is how to make wireless sensor network nodes have stronger computing power and a better application environment. wide, lower power consumption, smaller size, lower cost, and better communication quality.
目前的无线传感器网络节点大多采用通用的嵌入式平台来实现。由于此类传感器网络节点的器件不是专门为无线传感器网络设计的,因此处理能力、功耗和体积等指标往往难以达到实际应用的要求。而随着FPGA/ASIC技术的发展以及片上系统(System on chip)技术的出现,采用片上系统的方法在FPGA上实现无线传感器网络节点平台,并在有大规模应用时将其转为ASIC批量生产的设计方法将成为解决节点处理能力、功耗和体积等问题的关键技术手段。Most of the current wireless sensor network nodes are realized by common embedded platforms. Since the devices of such sensor network nodes are not specially designed for wireless sensor networks, indicators such as processing power, power consumption and volume are often difficult to meet the requirements of practical applications. With the development of FPGA/ASIC technology and the emergence of system on chip (System on chip) technology, the method of system on chip is used to realize the wireless sensor network node platform on FPGA, and it will be converted to ASIC mass production when there are large-scale applications. The design method will become a key technical means to solve the problems of node processing capacity, power consumption and volume.
信号采集、信号处理及组网通信是无线传感器网络节点的三大功能。根据上述功能,无线传感器网络节点通常由传感模块、处理模块、无线通信模块以及能量模块四个部分组成,其中的无线通信模块占整个无线传感器网络节点功耗的绝大部分,无线通信模块中的数字基带在无线通信模块中起到了控制射频收发增益、信道编解码、对射频载波泄漏抑制控制、数字信号成形调制、最佳相干解调、位同步及抽样判决等作用,这些都影响到了无线传感器网络节点的功耗、性能、硬件成本及误码率,因此,设计低功耗、高性能、低误码率的数字基带系统对于降低无线传感器网络节点的功耗与硬件成本、提高节点通信质量及增强节点对环境的适应性有着重要的作用。Signal acquisition, signal processing and networking communication are the three major functions of wireless sensor network nodes. According to the above functions, a wireless sensor network node is usually composed of four parts: sensing module, processing module, wireless communication module, and energy module. The wireless communication module accounts for most of the power consumption of the entire wireless sensor network node. The digital baseband plays a role in the wireless communication module to control the gain of radio frequency transmission and reception, channel codec, control of radio frequency carrier leakage suppression, digital signal shaping modulation, optimal coherent demodulation, bit synchronization and sampling judgment, etc., all of which affect wireless The power consumption, performance, hardware cost and bit error rate of sensor network nodes. Therefore, designing a digital baseband system with low power consumption, high performance, and low bit error rate is important for reducing the power consumption and hardware cost of wireless sensor network nodes and improving node communication. The quality and enhancement of nodes play an important role in the adaptability of the environment.
为了满足无线传感器网络节点低功耗、低成本的设计目标,ZigBee联盟推出了针对WSN的ZigBee协议,使得该协议成为无线传感器网络的一个新兴的通信标准。该协议的物理层(PHY)和媒体接入层(MAC)由IEEE802.15.4工作组制定,该工作组所制定的IEEE802.15.4标准中定义了900MHz和2.4GHz两个频段,在2.405GHz-2.480GHz的范围内共定义了16个频道,信道间隔为5MHz,调制方式为O-QPSK,其数据传输速率为250Kb/s,采用了基于伪随机噪声(PN)码的直接序列扩频(DSSS)技术,扩频增益为8。上述通信协议的应用有利于不同厂家所生成的无线传感器网络节点间的相互通信,有利于降低无线传感器网络节点的功耗与成本,有利于无线传感器网络的推广与应用。In order to meet the design goals of low power consumption and low cost of wireless sensor network nodes, the ZigBee alliance has launched the ZigBee protocol for WSN, making this protocol an emerging communication standard for wireless sensor networks. The physical layer (PHY) and media access layer (MAC) of the protocol are formulated by the IEEE802.15.4 working group. The IEEE802.15.4 standard formulated by the working group defines two frequency bands, 900MHz and 2.4GHz, in 2.405GHz-2.480 A total of 16 channels are defined in the GHz range, the channel spacing is 5MHz, the modulation method is O-QPSK, and the data transmission rate is 250Kb/s, using direct sequence spread spectrum (DSSS) based on pseudo-random noise (PN) codes technology with a spreading gain of 8. The application of the above-mentioned communication protocol is beneficial to the mutual communication between the wireless sensor network nodes generated by different manufacturers, it is beneficial to reduce the power consumption and cost of the wireless sensor network nodes, and it is beneficial to the promotion and application of the wireless sensor network.
但在现有技术中,采用片上系统设计方法实现的无线传感器大多采用各自制定的通信标准,很少根据IEEE802.15.4标准设计传感器中的数字基带系统。例如,瑞士CMES开发的无线传感器网络节点WiseNet,虽然采用了片上系统的技术并且专为无线传感器网络设计,但该节点中的数字基带采用2FSK调制,最高数据率为100kb/s,均不符合IEEE802.15.4的标准,使芯片不具有兼容其它符合IEEE802.15.4标准的传感器网络节点芯片的通用性。However, in the prior art, most wireless sensors implemented by SoC design methods adopt their own communication standards, and few digital baseband systems in sensors are designed according to the IEEE802.15.4 standard. For example, WiseNet, a wireless sensor network node developed by CMES in Switzerland, adopts system-on-chip technology and is specially designed for wireless sensor networks, but the digital baseband in this node adopts 2FSK modulation with a maximum data rate of 100kb/s, which does not comply with IEEE802 The standard of .15.4 makes the chip not compatible with other sensor network node chips that comply with the IEEE802.15.4 standard.
现有技术中也存在符合IEEE802.15.4标准的数字基带系统,如Chipcon公司的CC2431和CC2510以及JENNIC公司的JN5121系列芯片中的数字基带系统,但包含这些数字基带系统的芯片仍然存在一定的局限性,包括:There are also digital baseband systems that comply with the IEEE802.15.4 standard in the prior art, such as the digital baseband systems in Chipcon's CC2431 and CC2510 and JENNIC's JN5121 series chips, but the chips containing these digital baseband systems still have certain limitations ,include:
1、这些芯片的数字基带系统可以做自动增益控制,且增益范围可通过软件配置,但自动增益控制过程中所涉及的判决门限采用固定门限值,不具有自适应调整的特性。而且普遍采用信号强度RSSI作为反馈值进行控制,将信号放大至饱和,而很少综合考虑接收链路质量LQI。信道内的窄带干扰会增加RSSI,但会降低链路质量LQI,因此采用单一RSSI作为反馈调整接受增益是不准确的。考虑到无线传感器网络节点应用环境广泛的实际情况,在实际应用过程中会面临信道情况复杂多变、发射功率不确定以及通信距离的实时变化等问题,这些都会影响节点丢包率和能耗,现有数字基带系统采用固定门限值的判决方式会导致节点的环境适应性下降。1. The digital baseband system of these chips can do automatic gain control, and the gain range can be configured through software, but the decision threshold involved in the automatic gain control process adopts a fixed threshold value, which does not have the feature of adaptive adjustment. Moreover, the signal strength RSSI is generally used as the feedback value for control, and the signal is amplified to saturation, and the receiving link quality LQI is rarely considered comprehensively. The narrowband interference in the channel will increase the RSSI, but will reduce the link quality LQI, so it is inaccurate to use a single RSSI as feedback to adjust the acceptance gain. Considering the fact that wireless sensor network nodes have a wide range of application environments, in the actual application process, they will face problems such as complex and changeable channel conditions, uncertain transmission power, and real-time changes in communication distances, which will affect the node packet loss rate and energy consumption. The existing digital baseband system adopts a fixed threshold decision method, which will lead to a decrease in the environmental adaptability of the node.
2、这些芯片的数字基带系统在进行信号相位判决时没有采用自适应门限的施密特触发器方式,而是采用传统的过零触发方式进行信号相位判决,因此不能避免因输入相位的频繁跳变而造成的解调误码率升高。2. The digital baseband system of these chips does not use the adaptive threshold Schmitt trigger method for signal phase judgment, but uses the traditional zero-crossing trigger method for signal phase judgment, so it cannot be avoided due to frequent jumps in the input phase. The change causes the demodulation error rate to increase.
3、这些芯片的数字基带系统在做循环码校验时采用了固定生成多项式而非软件可配置,造成基带的灵活性和通用性都不强。3. The digital baseband system of these chips uses a fixed generator polynomial instead of software configurable when doing cyclic code verification, resulting in poor flexibility and versatility of the baseband.
4、这些芯片的数字基带系统没有抑制载波泄漏的功能,因此对射频芯片质量要求很高,提高了节点成本。4. The digital baseband system of these chips does not have the function of suppressing carrier leakage, so the quality requirements of radio frequency chips are very high, which increases the node cost.
发明内容Contents of the invention
本发明的一个目的是提供一种能够对自动增益控制的判决门限值做自适应调整的数字基带系统。An object of the present invention is to provide a digital baseband system capable of adaptively adjusting the decision threshold of automatic gain control.
本发明的另一个目的是克服信号相位判决时因输入相位的频繁跳变而造成的解调误码率升高的缺陷,从而提供一种能降低解调误码率的数字基带系统。Another object of the present invention is to overcome the defect that the demodulation bit error rate increases due to frequent input phase jumps during signal phase judgment, thereby providing a digital baseband system capable of reducing the demodulation bit error rate.
本发明的又一个目的是提供一种包含用户可配置的循环码校验器的数字基带系统,增强数字基带的灵活性和通用性。Another object of the present invention is to provide a digital baseband system including a user-configurable cyclic code checker, which enhances the flexibility and versatility of the digital baseband.
本发明的再一个目的是提供一种包含自动抑制射频载波泄漏的数字基带系统,降低对射频芯片的质量要求,降低节点成本。Another object of the present invention is to provide a digital baseband system including automatic suppression of radio frequency carrier leakage, which reduces the quality requirements for radio frequency chips and reduces node costs.
为了实现上述目的,本发明提供了一种用于无线传感器网络节点芯片的数字基带系统,包括基带调制单元、基带解调单元、自动增益控制单元以及循环码校验器;其中,In order to achieve the above object, the present invention provides a digital baseband system for a wireless sensor network node chip, including a baseband modulation unit, a baseband demodulation unit, an automatic gain control unit, and a cyclic code checker; wherein,
所述的循环码校验器将经过校验的待发送数据传输到所述的基带调制单元,由所述的基带调制单元完成包括直接序列扩频、延迟、数字信号成形调制、模数转换在内的调制处理,然后将处理后的数据发送出去;The cyclic code checker transmits the verified data to be sent to the baseband modulation unit, and the baseband modulation unit completes the process including direct sequence spread spectrum, delay, digital signal shaping modulation, and analog-to-digital conversion. Internal modulation processing, and then send the processed data out;
所述的基带解调单元对接收到的数据做包括模数转换、解扩频、最佳相干解调、位同步抽样判决在内的解调处理,然后将处理后的数据传输到所述的循环码校验器做数据校验;The baseband demodulation unit performs demodulation processing on the received data including analog-to-digital conversion, despreading, optimal coherent demodulation, and bit synchronization sampling judgment, and then transmits the processed data to the Cyclic code checker for data check;
所述的自动增益控制单元根据数据接收过程中的信号强度RSSI以及链路质量LQI调整增益判决门限,配合软硬件协同的工作方式,从而实现对发射增益和接收增益的控制。The automatic gain control unit adjusts the gain judgment threshold according to the signal strength RSSI and the link quality LQI in the data receiving process, and cooperates with the working mode of software and hardware, so as to realize the control of the transmission gain and the reception gain.
上述技术方案中,还包括用于自动监测载波泄露功率,补偿并抑制发射端载波泄漏的抑制载波泄漏单元;该单元与外部的发射端连接。The above technical solution also includes a suppressing carrier leakage unit for automatically monitoring the carrier leakage power, compensating and suppressing the carrier leakage of the transmitting end; the unit is connected with the external transmitting end.
上述技术方案中,所述的基带调制单元包括直接序列扩频模块、延迟模块、O-QPSK数字调制模块以及第一数模转换模块、第二数模转换模块;其中,In the above technical solution, the baseband modulation unit includes a direct sequence spread spectrum module, a delay module, an O-QPSK digital modulation module, a first digital-to-analog conversion module, and a second digital-to-analog conversion module; wherein,
所述的直接序列扩频模块根据直接序列扩频编码表对所要发送的数据做扩频编码,并将扩频编码后的数据转换成I、Q两路串行数据;所述的延迟模块延迟Q路数据;所述的I、Q两路串行数据都在所述的O-QPSK数字调制模块中做成形调制,然后分别在所述的第一数模转换模块和第二数模转换模块中做模数转换。Described direct sequence spread spectrum module carries out spread spectrum coding to the data to be sent according to direct sequence spread spectrum coding table, and the data after spread spectrum coding is converted into I, Q two-way serial data; Described delay module delay Q road data; described I, Q two road serial data all do shape modulation in described O-QPSK digital modulation module, then respectively in described first digital-to-analog conversion module and the second digital-to-analog conversion module Do analog-to-digital conversion.
上述技术方案中,所述的O-QPSK数字调制模块采用两个分别保存有正弦和余弦的波形码表的ROM存储器实现。In the above technical solution, the O-QPSK digital modulation module is realized by using two ROM memories respectively storing waveform code tables of sine and cosine.
上述技术方案中,所述的基带解调单元包括第一模数转换模块、第二模数转换模块、第一匹配滤波器模块、第二匹配滤波器模块、第三匹配滤波器模块、第四匹配滤波器模块、第一位同步模块、第二位同步模块以及扩频解调模块;其中,In the above technical solution, the baseband demodulation unit includes a first analog-to-digital conversion module, a second analog-to-digital conversion module, a first matched filter module, a second matched filter module, a third matched filter module, a fourth A matched filter module, a first bit synchronization module, a second bit synchronization module and a spread spectrum demodulation module; wherein,
所述的第一模数转换模块、第二模数转换模块分别将接收到的模拟波形信号的I路信号和Q路信号转换成波形电平数字信号;所述的第一匹配滤波器模块、第二匹配滤波器模块、第三匹配滤波器模块、第四匹配滤波器模块分别对信号做滤波操作,消除接收信号的码间串扰并对其进行最佳相干解调;滤波后的信号经积分、比较后得到判决时刻的输出信号,然后通过所述的第一位同步模块、第二位同步模块提取抽样判决脉冲进行采样判决,输出解调结果到扩频解调模块;所述的扩频解调模块将接收到的经过扩频调制的片码解码为数据码流,同时得到链路质量LQI值;经过前述滤波后的信号的强度RSSI以及链路质量LQI值被传输到所述自动增益控制模块。The first analog-to-digital conversion module and the second analog-to-digital conversion module respectively convert the I-channel signal and the Q-channel signal of the received analog waveform signal into a waveform-level digital signal; the first matched filter module, The second matched filter module, the third matched filter module, and the fourth matched filter module respectively perform filtering operations on the signal, eliminate the intersymbol interference of the received signal and perform optimal coherent demodulation on it; the filtered signal is integrated , obtain the output signal of the judgment moment after comparison, then extract the sampling judgment pulse by the first bit synchronization module and the second synchronization module to carry out sampling judgment, and output the demodulation result to the spread spectrum demodulation module; The demodulation module decodes the received chip code through spread spectrum modulation into a data code stream, and obtains the link quality LQI value at the same time; the strength RSSI and the link quality LQI value of the signal after the aforementioned filtering are transmitted to the automatic gain control module.
上述技术方案中,所述的第一匹配滤波器模块、第二匹配滤波器模块、第三匹配滤波器模块、第四匹配滤波器模块采用电路复用实现,通过高频时钟驱动,将一个时钟周期完成的计算量分为数个时钟周期完成,将并行的大量组合逻辑电路分为少量时序逻辑电路。In the above technical solution, the first matched filter module, the second matched filter module, the third matched filter module, and the fourth matched filter module are implemented by circuit multiplexing, driven by a high-frequency clock, and a clock The amount of calculation completed in a cycle is divided into several clock cycles, and a large number of parallel combinational logic circuits are divided into a small number of sequential logic circuits.
上述技术方案中,所述的第一位同步模块、第二位同步模块采用了自适应门限的施密特触发器进行信号相位判决;其中,In the above technical solution, the first bit synchronization module and the second bit synchronization module use a Schmitt trigger with an adaptive threshold to determine the signal phase; wherein,
当本次相位判决输出1时,只有在所述匹配滤波器输出信号大于所述门限时,下一次输出才为0,否则输出1;当本次相位判决输出0时,只有在所述匹配滤波器输出信号小于门限时,下一次输出才为1,否则输出0。When this phase judgment outputs 1, only when the output signal of the matched filter is greater than the threshold, the next output is 0, otherwise it outputs 1; when this phase judgment outputs 0, only when the matched filter When the output signal of the device is less than the threshold, the next output will be 1, otherwise it will output 0.
上述技术方案中,所述的自适应门限的施密特触发器中的门限值根据信号强度RSSI自适应调整,同时用户根据信道环境来动态地配置判决系数。In the above technical solution, the threshold value in the Schmitt trigger of the adaptive threshold is adaptively adjusted according to the signal strength RSSI, and at the same time, the user dynamically configures the decision coefficient according to the channel environment.
上述技术方案中,自动增益控制单元的增益判决门限为LQI与RSSI的最大值的(k-1)/k,其中的k表示判决系数;In the above technical scheme, the gain decision threshold of the automatic gain control unit is (k-1)/k of the maximum value of LQI and RSSI, wherein k represents the decision coefficient;
所述自动增益控制单元在实现增益控制的过程中存在四种状态:初始状态、锁定状态、增加增益状态、降低增益状态;其中,在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI小于其最大值的(k-1)/k,从当前状态进入增加增益状态;在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI大于其最大值的(k-1)/k,从当前状态进入降低增益状态;在任何状态下,当LQI大于其最大值的(k-1)/k时进入锁定状态;当LQI和RSSI的值都大于它们各自的历史记录值,就会从锁定状态中跳出,把相应值存入最大值寄存器,然后进入初始状态,重新进行增益调整,直到锁定状态。The automatic gain control unit has four states in the process of realizing gain control: initial state, locked state, increased gain state, and reduced gain state; wherein, in any state, when the LQI is less than (k-1 of its maximum value )/k and RSSI is less than (k-1)/k of its maximum value, enter the state of increasing gain from the current state; in any state, when LQI is less than (k-1)/k of its maximum value and RSSI is greater than its maximum (k-1)/k of the value, enter the state of reducing the gain from the current state; in any state, enter the locked state when the LQI is greater than (k-1)/k of its maximum value; when the values of LQI and RSSI are greater than Their respective historical record values will jump out of the locked state, store the corresponding value in the maximum value register, and then enter the initial state, and re-adjust the gain until the locked state.
上述技术方案中,自动增益控制单元的门限初始值、增益初始值以及判决系数k都有用户设定。In the above technical solution, the initial value of the threshold, the initial value of the gain and the decision coefficient k of the automatic gain control unit are all set by the user.
上述技术方案中,所述循环码校验器的生成多项式系数根据用户需要进行配置。In the above technical solution, the generator polynomial coefficients of the cyclic code checker are configured according to user requirements.
上述技术方案中,所述的抑制载波泄漏模块包括AD采样单元、低通滤波单元、滑动窗积分单元以及直流补偿算法单元;基带信号依次经由所述的AD采样单元做AD采样、低通滤波单元做低通滤波以及滑动窗积分单元做积分后,得到发射信号直流强度,由直流补偿算法单元根据这一发射信号直流强度生成用于抑制载波泄漏的补偿值。In the above technical solution, the described carrier leakage suppression module includes an AD sampling unit, a low-pass filter unit, a sliding window integration unit, and a DC compensation algorithm unit; After low-pass filtering and integration by the sliding window integration unit, the DC intensity of the transmitted signal is obtained, and the DC compensation algorithm unit generates a compensation value for suppressing carrier leakage according to the DC intensity of the transmitted signal.
本发明还提供了一种用于无线传感器网络节点的芯片,包括所述的数字基带系统。The invention also provides a chip for wireless sensor network nodes, including the digital baseband system.
本发明的优点在于:The advantages of the present invention are:
1、本发明的数字基带系统在增益控制中采用基于信号强度RSSI与链路质量LQI综合反馈的自适应门限的自动增益控制机制,达到在保证一定通信质量的前提下降低节点误码率和节省功耗的目的,从而适应复杂多变的应用环境。1. The digital baseband system of the present invention adopts the automatic gain control mechanism based on the self-adaptive threshold of the comprehensive feedback of signal strength RSSI and link quality LQI in the gain control, so as to reduce the bit error rate of nodes and save The purpose of power consumption, so as to adapt to the complex and changeable application environment.
2、本发明的数字基带系统能够支持IEEE802.15.4通信协议标准,使得采用该数字基带系统的芯片与其它支持IEEE802.15.4通信协议标准的电子器件兼容。2. The digital baseband system of the present invention can support the IEEE802.15.4 communication protocol standard, so that the chip using the digital baseband system is compatible with other electronic devices supporting the IEEE802.15.4 communication protocol standard.
附图说明Description of drawings
图1为包含有数字基带系统的传感器网络节点芯片的一个实施例的结构示意图;Fig. 1 is a schematic structural diagram of an embodiment of a sensor network node chip comprising a digital baseband system;
图2为数字基带系统中的基带调制单元的结构示意图;FIG. 2 is a schematic structural diagram of a baseband modulation unit in a digital baseband system;
图3为数字基带系统中的基带解调单元和自动增益控制单元的结构示意图;Fig. 3 is a schematic structural diagram of a baseband demodulation unit and an automatic gain control unit in a digital baseband system;
图4为数字基带系统中的匹配滤波器的结构示意图;Fig. 4 is a schematic structural diagram of a matched filter in a digital baseband system;
图5为数字基带系统中的位同步模块实现相位判决的示意图;Fig. 5 is the schematic diagram that the bit synchronization module in the digital baseband system realizes the phase decision;
图6为数字基带系统中的自动增益控制单元的状态转换图;6 is a state transition diagram of an automatic gain control unit in a digital baseband system;
图7为数字基带系统中的循环码校验器的结构图;Fig. 7 is a structural diagram of a cyclic code checker in a digital baseband system;
图8为包含有数字基带系统的传感器网络节点芯片的另一个实施例的结构示意图;FIG. 8 is a schematic structural diagram of another embodiment of a sensor network node chip including a digital baseband system;
图9为抑制载波泄漏模块的结构图。FIG. 9 is a structural diagram of a carrier leakage suppression module.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明加以说明。The present invention will be described below in conjunction with the accompanying drawings and specific embodiments.
图1给出了本发明的用于无线传感器网络节点的芯片的一个实施例,下面结合图1对该芯片的结构加以说明。从图中可以看出,本发明的芯片包括有处理器1、程序存储器2、数据存储器3、MAC协议模块4、数字基带模块5、无线射频模块6以及其他模块7。其中,处理器1与数据存储器3、MAC协议模块4、数字基带模块5、无线射频模块6及其他模块7之间通过总线连接,而处理器1通过程序读取线连接到程序存储器2上;MAC协议模块4与数字基带模块5之间通过双向数据线连接,而数字基带模块5与无线射频模块6之间也通过数据线建立有数据收发通路。下面对芯片中的各个部件的具体功能以及实现加以说明。FIG. 1 shows an embodiment of a chip used in a wireless sensor network node according to the present invention. The structure of the chip will be described below in conjunction with FIG. 1 . It can be seen from the figure that the chip of the present invention includes a
处理器1是根据程序存储器2中的程序代码完成相应操作的逻辑器件,可选择现有的IP模块或开放源代码实现,如Oregano Systems的MC8051处理器源代码、ARM系列的处理器模块等。处理器1在程序代码的控制下会对芯片中的其他部件进行包括初始化设置、控制在内的多种操作,在下面对其他部件的说明中,当涉及到处理器1时,会就处理器1的具体作用做详细说明。
程序存储器2用于存储处理器1所要运行的程序。程序存储器2一般可采用FLASH或EEPROM等成熟的工艺设计方法实现。The
数据存储器3用于存储处理器1所要使用的数据,一般可以采用成熟的DRAM或是SRAM等工艺实现。The
MAC协议模块4在所述处理器1的控制下设定所述无线射频模块6的工作频率、休眠方式、冲突避免机制、发送功率及信道选择,并由所述处理器1配制它所要发送和接收数据的对象以及工作休眠时间的分配,完成对数据包的解析,对信道占用的判断及冲突随机退避等。MAC协议模块4的实现可采用现有技术中任何符合IEEE802.15.4通信标准或其他MAC协议的IP模块。The MAC protocol module 4 sets the operating frequency, dormancy mode, collision avoidance mechanism, transmission power and channel selection of the wireless radio frequency module 6 under the control of the
所述无线射频模块6用于无线发射数据的模拟部分调制发射以及无线接收数据的模拟部分解调接收。该模块包括发射单元61、接收单元62。可选择现有的符合IEEE802.15.4通信标准的IP模块实现。The wireless radio frequency module 6 is used for analog partial modulation transmission of wireless transmission data and analog partial demodulation reception of wireless reception data. This module includes a transmitting unit 61 and a receiving unit 62 . The existing IP module conforming to the IEEE802.15.4 communication standard can be selected for implementation.
其他模块7用于实现包括供电控制、传感器控制、输入输出在内的多种功能,该模块也可通过现有技术实现。
数字基带模块5具有控制射频收发增益、直接序列扩频、数字信号成形调制、数模/模数转换、解扩频、位同步抽样判决及循环码校验等诸多功能。根据数字基带模块5的上述功能,可对该模块做进一步划分,在图1中给出了数字基带模块5的一种实现方式,该模块包括基带调制单元51、基带解调单元52、自动增益控制单元53以及循环码校验器54。其中,通过数据线与MAC协议模块4连接的循环码校验器54从MAC协议模块4接收数据后,将经过校验的数据发送到基带调制单元51,基带调制单元51将调制后的数据发送到无线射频模块6中,通过无线射频模块6发射出去。无线射频模块6在接收到数据后,会将接收到的数据发送到基带解调单元52做数据解调,解调后的数据被发送到循环码校验器54做数据校验,校验后的数据被发送到MAC协议模块4,在数据解调的过程中,还会通过自动增益控制单元53实现自动增益的调整。本发明的数字基带模块5在实现时满足IEEE802.15.4标准,在下面的描述中将就该模块中所涉及的各个单元的具体结构以及工作原理分别予以说明。The digital baseband module 5 has many functions such as control of radio frequency transceiver gain, direct sequence spread spectrum, digital signal shaping modulation, digital-to-analog/analog-to-digital conversion, despreading, bit synchronous sampling judgment, and cyclic code check. According to the above-mentioned functions of the digital baseband module 5, this module can be further divided, and a kind of realization mode of the digital baseband module 5 has been provided in Fig. A
图2给出了基带调制单元51的结构示意图,根据IEEE802.15.4标准的相关规定,所述的基带调制单元51应当完成包括直接序列扩频、延迟、数字信号成形调制、模数转换在内的多种操作。根据上述功能,该单元包括直接序列扩频模块511、延迟模块512、O-QPSK数字调制模块513以及数模转换(DAC)模块514、515。Figure 2 shows a schematic structural diagram of the baseband modulation unit 51. According to the relevant regulations of the IEEE802.15.4 standard, the baseband modulation unit 51 should complete the functions including direct sequence spread spectrum, delay, digital signal shaping modulation, and analog-to-digital conversion. Various operations. According to the functions described above, the unit includes a direct sequence spread spectrum module 511 , a delay module 512 , an O-QPSK
直接序列扩频模块511实现了发送数据的码表变换,具体的说,是根据IEEE802.15.4通信标准提供的直接序列扩频编码表对4位2进制数据做一一映射的扩频编码,所得到的编码是伪随机噪声码并相互正交。直接序列扩频模块511可以采用一个ROM实现,当接收到来自MAC协议模块4的串行数据后,对这一串行数据做串-并变换,然后从ROM所保存的直接序列扩频编码表中读取对应码型,经过8倍扩频增益,使得数据流转换成2进制片码序列,最后用一个FIFO转换成I、Q两路串行数据。The direct-sequence spread spectrum module 511 realizes the code table conversion of the transmitted data, specifically, it is a spread-spectrum code that performs one-to-one mapping of 4-bit binary data according to the direct-sequence spread spectrum code table provided by the IEEE802.15.4 communication standard, The resulting codes are pseudorandom noise codes and are mutually orthogonal. Direct sequence spread spectrum module 511 can adopt a ROM to realize, after receiving the serial data from MAC protocol module 4, do serial-to-parallel conversion to this serial data, then from the direct sequence spread spectrum coding table that ROM saves Read the corresponding code pattern in the middle, after 8 times the spread spectrum gain, the data stream is converted into a binary chip code sequence, and finally converted into I and Q two-way serial data with a FIFO.
延迟模块512将Q路信号较I路信号延迟T/2(T表示符号周期),延迟后的Q路串行数据被传输到O-QPSK调制模块513,而I路信号则不经过延迟模块512直接被传输到O-QPSK调制模块513。The delay module 512 delays the Q-channel signal by T/2 (T represents the symbol period) compared with the I-channel signal, and the delayed Q-channel serial data is transmitted to the O-
O-QPSK数字调制模块513用于对数字信号做成形调制。O-QPSK数字调制模块513可以采用成型滤波器实现对数字信号的成型调制,但在本实施例中,作为一种优选实现方式,O-QPSK数字调制模块513可以采用两个分别保存有正弦和余弦的波形码表的ROM存储器,在做成形调制时,根据调制码型从波形码表中直接输出滤波后的电平。与前述的采用成型滤波器的实现方式相比,这一实现方式能够省去了成型滤波器,能够尽量减少不必要的能耗和硬件开销,符合传感器网络节点的低成本低功耗的需求。The O-QPSK
DAC模块514、515分别对I路信号和Q路信号做模数转换,将经过调制的波形电平数字信号转换为模拟波形信号。DA模块可以采用独立IP单元或是通用DA芯片实现,作为一种优选实现方式,在本实施例中,DA模块采用了独立的IP单元。The
图3给出了基带解调单元52和自动增益控制单元53的结构示意图。基带解调单元52应当完成包括模数转换、解扩频、最佳相干解调、位同步抽样判决在内的多种操作,根据上述功能,基带解调单元52包括模数转换(ADC)模块521、522,匹配滤波器模块523、524、525、526,位同步模块527、528,扩频解调模块529。FIG. 3 shows a schematic structural diagram of the baseband demodulation unit 52 and the automatic
ADC模块521、522将从无线射频模块6解调所得到的模拟波形信号的I路信号和Q路信号分别转换成波形电平数字信号。与前面所提到的DA模块相类似,AD模块同样可采用独立的IP单元或通用AD芯片实现,作为一种优选实现方式,在本实施例中,采用了独立的IP单元。The
匹配滤波器523、524、525、526分别对信号做滤波操作,消除接收信号的码间串扰并对其进行最佳相干解调。滤波后的结果经由积分器、比较器,从而得到判决时刻的输出信号s_diff=y1-y0,然后通过位同步模块527、528提取抽样判决脉冲进行采样判决,输出解调结果到扩频解调模块529。在此过程中还会同时得到信号通过前述匹配滤波器后的强度,该强度用RSSI=y1+y0,这一强度值将作为反馈被输出到自动增益控制模块53来实现增益控制。在计算信号强度时,先做匹配滤波有利于屏蔽背景噪声,从而得到更为精确的接收信号强度。The matched filters 523, 524, 525, and 526 perform filtering operations on the signals respectively, eliminate the intersymbol interference of the received signals and perform optimal coherent demodulation on them. The filtered result is passed through the integrator and comparator to obtain the output signal s_diff=y1-y0 at the decision time, and then the sampling decision pulse is extracted through the bit synchronization modules 527 and 528 for sampling and judgment, and the demodulation result is output to the spread
从上面的说明可以看出,匹配滤波器的作用在于实现对信号的滤波操作,因此现有技术中的相关滤波器从理论上都可用于本发明。但考虑到无线传感器网络节点要求低成本、低功耗的特点,图4给出了匹配滤波器在硬件上的一种优选实现方式。从图中可以看出,在这一实现方式中,根据电路复用的思想,通过采用高频时钟驱动,将一个时钟周期完成的计算量分为数个时钟周期完成,将并行的大量组合逻辑电路分为少量时序逻辑电路,对这些时序逻辑电路复用数个周期,实现相同的计算功能,以减少硬件实现单元数量,如减少乘法器和加法器,在保证线性滤波器的性能的同时达到了减少硬件资源开销的目的。如在一个实例中,假设有24MHz的AD采样率,码片速率是2MHz,因此每个采样周期要完成12次乘加运算,如果要做并行计算需要12个加法器和乘法器。而通过复用设计,采用6倍于采样频率的时钟驱动匹配滤波器模块,一个采样周期计算6个时钟周期,每个周期只使用两个加法器和乘法器,利用最少的乘法器和加法器实现了滤波器,相比传统的并行滤波器节省了5/6的硬件资源,实现了降低硬件成本的目的,符合传感器网络节点低成本的要求。It can be seen from the above description that the function of the matched filter is to realize the filtering operation on the signal, so the correlation filters in the prior art can be used in the present invention theoretically. However, considering that the wireless sensor network nodes require low cost and low power consumption, Figure 4 shows a preferred implementation of the matched filter in hardware. It can be seen from the figure that in this implementation, according to the idea of circuit multiplexing, by using high-frequency clock drive, the calculation amount completed in one clock cycle is divided into several clock cycles to complete, and a large number of parallel combinational logic circuits It is divided into a small number of sequential logic circuits, and these sequential logic circuits are multiplexed for several cycles to achieve the same calculation function, so as to reduce the number of hardware implementation units, such as reducing multipliers and adders, while ensuring the performance of linear filters. The purpose of reducing hardware resource overhead. For example, in an example, assume that there is an AD sampling rate of 24MHz, and the chip rate is 2MHz, so 12 multiplication and addition operations must be completed in each sampling period, and 12 adders and multipliers are required for parallel calculations. However, through the multiplex design, a clock that is 6 times the sampling frequency is used to drive the matched filter module. One sampling cycle calculates 6 clock cycles, and only two adders and multipliers are used in each cycle, using the least number of multipliers and adders. The filter is implemented, which saves 5/6 hardware resources compared with the traditional parallel filter, realizes the purpose of reducing hardware cost, and meets the requirement of low cost of sensor network nodes.
位同步模块用于调整接收端本地同步采样脉冲的相位,使之与接收的解调信号相位一致,使解调信号得到准确的采样。现有技术中,位同步模块在实现对接收解调信号的相位判决时,采用了直接对匹配滤波器的输出进行过零检测的方法,来确定输出的解调信号相位。由于在设计匹配滤波器时要求必须完全确知信号形状(包括频率、相位、幅度、到达时间等)才能达到理想的最佳接收条件,但在实际应用中,频率误差、随机相位、随机幅度、定时不准等任何一个问题都会导致无法满足匹配滤波器的“最佳接收”条件,从而使得匹配滤波器的输出在过零处发生多次过零触发,造成位同步输入会在0,1状态间频繁跳变,影响位同步效果,造成解调误码率升高。The bit synchronization module is used to adjust the phase of the local synchronous sampling pulse at the receiving end to make it consistent with the phase of the received demodulated signal, so that the demodulated signal can be accurately sampled. In the prior art, the bit synchronization module adopts a method of directly performing zero-crossing detection on the output of the matched filter to determine the phase of the output demodulated signal when realizing the phase judgment of the received demodulated signal. Since it is required to completely know the signal shape (including frequency, phase, amplitude, arrival time, etc.) Any problem such as inaccurate timing will lead to the inability to meet the "best reception" condition of the matched filter, so that the output of the matched filter will trigger multiple zero-crossing triggers at the zero-crossing point, causing the bit synchronization input to be in the 0, 1 state Frequent jumps between them will affect the bit synchronization effect and cause an increase in the demodulation bit error rate.
针对现有技术在实现位同步模块时所存在的上述不足,图5给出了一种自适应门限的施密特触发器的方式进行信号相位判决,从而避免输入相位的频繁跳变。在这一实现方式中,当本次相位判决输出1时,只有在滤波器输出信号大于门限时,下一次输出才为0,否则输出1,当本次相位判决输出0时,只有在滤波器输出信号小于门限时,下一次输出才为1,否则输出0。由于无线传感器网络节点需要适应各种复杂通信环境,而且在恶劣的通信环境下往往无法满足“最佳接收”条件,匹配滤波器输出信号幅度较正常情况偏小,因此相位判决时的门限值应当是自适应可调,以避免相位判决误差。具体的说,利用前面所提到的信号强度值RSSI做反馈值来自适应地调节判决门限,同时可以根据信道环境来动态地配置判决系数k,以达到更高的可控制性和灵活性。从图中可以看出,当本次相位判决输出1时,只有在滤波器输出信号s_diff大于RSSI的k倍时,下一次输出才为0,否则输出1,当本次相位判决输出0时,只有在滤波器输出信号s_diff小于RSSI的-k倍时,下一次输出才为1,否则输出0。上述的判决方法可使判决门限根据信号强度实时变化,保证判决结果的正确率,使系统误码率不会因环境恶劣而显著降低,达到了适应多种通信环境的要求。在获得解调信号相位后,本发明采用数字锁相法进行位同步。不直接用于抽样判决,而是与从比较器所获得的匹配滤波器输出信号s_diff比较误差,通过一个控制器在信号钟输出的脉冲序列中附加或扣除一个或几个脉冲,达到输出抽样判决信号与接收信号同步的目的。位同步模块最终得到的位同步脉冲、2进制片码序列被输入扩频解调模块529中进行相关解调。In view of the above-mentioned shortcomings in the implementation of the bit synchronization module in the prior art, Fig. 5 shows a Schmitt trigger with an adaptive threshold to judge the signal phase, so as to avoid frequent jumps of the input phase. In this implementation, when this
扩频解调模块529用于将接收到的经过扩频调制的片码解码为数据码流。根据IEEE 802.15.4协议的规定,直接序列扩频是要将每4位数据映射为一个符号来选择16个准正交的伪随机序列,每个伪随机序列由32位片码组成。每个32位码被分成I、Q两路16位子码。由于16个伪随机序列的正交性,互相关系数很小,自相关系数很大,所以扩频解调模块529首先对接收到的信号的I路跟每个符号的I路作相关运算,根据最大似然准则取出最大值,然后跟Q路信号作相关运算,对相关结果进行符号判断,得到对应的解码4位数据。在上述解码的过程中还要同时统计接收的每个数据的片码在解码时与原片码的相关系数,相关系数越高说明信道的链路质量性能越好,将相关系数的平均值映射为链路质量LQI值。扩频解调后所得到的数据码流被送入循环码校验器54,计算得到的LQI值被送入自动增益控制单元53。The spread
自动增益控制单元53包括发射增益控制和接收增益控制。在发射增益控制中,用户根据链路质量LQI,通过软件对发射增益进行调整,通过处理器1对配置寄存器付值,MAC协议模块4在发送预处理时刻读取,这种软硬件结合的方式控制增益不仅一定程度上减少了用户使用的复杂性,而且大大增加了系统的灵活性,满足各种通信环境及低功耗的需要。在接收增益控制中,基于接收信号的信号强度RSSI与链路质量LQI的综合反馈结果对增益判决门限进行调整。下面结合图6对该方法的实现过程加以说明。The automatic
在前面的说明中已经说明了信号强度RSSI与链路质量LQI是如何获取的,在此不再重复说明。将LQI与RSSI的最大值的(k-1)/k分别作为增益判决门限,其中的k表示判决系数,可由用户设定。从图6中可以看出,增益控制过程中存在四种状态:初始状态、锁定状态、增加增益状态、降低增益状态。在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI小于其最大值的(k-1)/k,从当前状态进入增加增益状态;在任何状态下,当LQI小于其最大值的(k-1)/k且RSSI大于其最大值的(k-1)/k,从当前状态进入降低增益状态;在任何状态下,当LQI大于其最大值的(k-1)/k时进入锁定状态;当LQI和RSSI的值都大于它们各自的历史记录值,就会从锁定状态中跳出,把相应值存入最大值寄存器,然后进入初始状态,重新进行增益调整,直到锁定状态。此外,在对增益判决门限做自适应调整之前,门限初始值、增益初始值都可由用户自行设定,使得系统可以根据需求适用于多种通信环境下。How to obtain the signal strength RSSI and the link quality LQI has been described in the previous description, and the description will not be repeated here. The (k-1)/k of the maximum value of LQI and RSSI are respectively used as the gain decision threshold, where k represents the decision coefficient, which can be set by the user. It can be seen from Figure 6 that there are four states in the gain control process: initial state, locked state, increased gain state, and reduced gain state. In any state, when LQI is less than (k-1)/k of its maximum value and RSSI is less than (k-1)/k of its maximum value, enter the state of increasing gain from the current state; in any state, when LQI is less than (k-1)/k of its maximum value and RSSI is greater than (k-1)/k of its maximum value, enter the state of reducing gain from the current state; in any state, when LQI is greater than (k-1) of its maximum value )/k to enter the locked state; when the values of LQI and RSSI are greater than their respective historical record values, it will jump out of the locked state, store the corresponding value into the maximum value register, and then enter the initial state, and re-adjust the gain. until locked. In addition, before the adaptive adjustment of the gain decision threshold, the initial value of the threshold and the initial value of the gain can be set by the user, so that the system can be applied to various communication environments according to requirements.
与现有的自动增益控制方法相比,图6所示的方法中,自动增益控制的门限是与通过匹配滤波器之后的接收信号强度RSSI与链路质量LQI自适应的,因此,随信道环境、发射功率及通信距离的变化,确定增益最优值的判决门限也会随之变化。在信道环境较好,发射功率较大及通信距离较近时,RSSI与LQI增大,增益下降,判决门限提高,使信号不会放大至饱和,节省一定的接收功耗。在信道环境较差,发射功率较小及通信距离较远时,RSSI与LQI下降,增益升高,判决门限下降,得到更好的接收信号质量,减小节点的丢包率。此外,根据实际测量结果可以知道,信号强度RSSI在10m以内的区域中,其随距离的衰落趋势与链路质量LQI大致相同,但当距离加大时,RSSI的衰减曲线比较平缓,明显高于LQI的衰减曲线,而LQI的衰落曲线会随着距离的增大而增大振荡,同时还有较大的不规则的衰落。这一现象说明多径干扰、绕射、障碍物对信号质量的影响在距离增大时要明显高于对信号强度的影响,而且在接收增益大到接收信号饱和时,RSSI可能不会有明显变化,但因为饱和信号会超出AD线性范围,会造成解调码率升高及LQI下降,因此采用单一的RSSI作为反馈调整接受增益是不准确的。另一方面,由于LQI随距离的震荡变化比较大,采用单一的LQI作为反馈调整接受增益又会造成系统稳定性较差,因此采用基于信号强度RSSI与链路质量LQI综合反馈的自动增益控制算法能得到更准确的控制增益,在节省功耗的同时获得理想的链路质量和更稳定的接收信号Compared with the existing automatic gain control method, in the method shown in Figure 6, the threshold of the automatic gain control is adaptive to the received signal strength RSSI and the link quality LQI after passing through the matched filter. , the transmission power and the communication distance change, the decision threshold for determining the optimal value of the gain will also change accordingly. When the channel environment is good, the transmission power is high, and the communication distance is short, the RSSI and LQI increase, the gain decreases, and the decision threshold increases, so that the signal will not be amplified to saturation and save a certain amount of receiving power consumption. When the channel environment is poor, the transmission power is small and the communication distance is long, the RSSI and LQI will decrease, the gain will increase, and the decision threshold will decrease, so as to obtain better received signal quality and reduce the packet loss rate of nodes. In addition, according to the actual measurement results, it can be known that in the area where the signal strength RSSI is within 10m, its fading trend with distance is roughly the same as that of the link quality LQI, but when the distance increases, the decay curve of RSSI is relatively flat, which is obviously higher than The attenuation curve of the LQI, and the fading curve of the LQI will increase the oscillation with the increase of the distance, and there will be a large irregular fading at the same time. This phenomenon shows that the impact of multipath interference, diffraction, and obstacles on signal quality is significantly higher than the impact on signal strength when the distance increases, and when the receiving gain is so large that the receiving signal is saturated, the RSSI may not be significantly affected. However, because the saturated signal will exceed the AD linear range, the demodulation bit rate will increase and the LQI will decrease. Therefore, it is inaccurate to use a single RSSI as feedback to adjust the receiving gain. On the other hand, since the LQI fluctuates greatly with the distance, using a single LQI as feedback to adjust the receiving gain will cause poor system stability. Therefore, an automatic gain control algorithm based on the comprehensive feedback of signal strength RSSI and link quality LQI is adopted. Can get more accurate control gain, while saving power consumption, get ideal link quality and more stable received signal
循环码校验器54用于实现循环校验码的检错纠错。循环码校验器54可以采用传统的采用固定生成多项式系数的循环码校验器,但这种循环码校验器只能支持一种循环校验码,灵活性和通用性都不强。图7给出了循环码校验器54的一种优选实现方式,从图中可以看出,循环码校验器54的生成多项式系数可通过总线由处理器1按照用户需要进行配置。在对输出数据包中的数据做循环校验时,作为高8位的8位输入数据与作为低8位的8位0并行输入缓存器(相当于对输入信息码升8阶),然后进入移位寄存器序列,与生成多项式系数进行逐位异或(相当于除以生成多项式求余),所得到的余式即为监督码元,监督码元与升高8阶的输入信息码相加输出,得到循环码编码后的系统码,对输入的数据循环计算,最后得到整个数据包的校验码。对接收数据包中的数据做循环校验时,重复上述计算过程,得到计算出的接收数据包的校验码,与接收的最后几个字节校验码进行比较,检验数据包是否有错误。由于循环码校验器54的生成多项式系数可通过总线配置,因此能够满足各种循环码校验的需要,可以满足CRC-16、CRC-CCITT、CRC-12等多种循环校验码的校验,使数字基带适用的通信标准更广泛,灵活性更强。The
以上是对本发明的无线传感器网络节点芯片的一个实施例的说明,在另一个较佳实施例中,如图8所示,该芯片的数字基带模块5还包括有与无线射频模块6连接的抑制载波泄漏单元55,该单元用于自动监测载波泄露功率,补偿并抑制发射端载波泄漏。载波泄漏一般是由于器件或工艺本身不理想造成的,本振高频信号通过天线泄漏,与有用信号混合在一起造成载波泄漏,载波泄漏不属于有用信号,当它泄漏到发射机端口后会造成干扰,影响接收端解调效果,造成误码率和丢包率提高。当数字基带模块5具有抑制载波泄漏单元55时,无线射频模块6还包括有射频开关63,且无线射频模块6具有两种工作模式,即正常工作模式与抑制载波泄漏配制模式,两种工作模式间的切换通过所述的射频开关63实现。The above is a description of an embodiment of the wireless sensor network node chip of the present invention. In another preferred embodiment, as shown in FIG. The carrier leakage unit 55 is used to automatically monitor the carrier leakage power, compensate and suppress the carrier leakage at the transmitting end. Carrier leakage is generally caused by the unsatisfactory device or process itself. The local oscillator high-frequency signal leaks through the antenna and mixes with the useful signal to cause carrier leakage. Carrier leakage is not a useful signal. When it leaks to the transmitter port, it will cause Interference affects the demodulation effect at the receiving end, resulting in an increase in the bit error rate and packet loss rate. When the digital baseband module 5 has a suppression carrier leakage unit 55, the wireless radio frequency module 6 also includes a
图9示出了抑制载波泄漏单元55的结构图,在无线射频模块6工作在抑制载波泄漏配制模式下时,通过射频开关63同时打开接收单元62和发射单元61的数据通道。由于载波泄漏可等效为发射端IQ路存在直流分量,在接收端下变频后会产生相应的直流分量,干扰基带解调,因此,抑制载波泄漏单元55通过对射频解调出的基带信号进行AD采样551、低通滤波552,滑动窗积分553得到接收监听的发射信号直流强度,直流补偿算法单元554与处理器总线相连,通过软件程序配置其初始控制信号值,使其具有灵活的可控制性。其中的AD采样单元551可以采用独立的IP单元或是通用AD芯片来实现,如采用独立的IP单元;低通滤波单元552和滑动窗积分单元553可以采用通用的数字格型滤波器与循环累加器实现;直流补偿算法单元554可以采用一个ROM实现,将采样滤波积分后得到的IQ路发射信号直流强度的8位数据映射为控制射频的抑制载波泄漏寄存器的补偿值,反馈到射频发射模块进行IQ路直流补偿,达到自适应抑制载波泄漏的目的,降低了对射频模块性能的要求,提高了射频芯片成品率,降低了节点成本。FIG. 9 shows a structural diagram of the carrier leakage suppression unit 55. When the radio frequency module 6 is working in the carrier leakage suppression configuration mode, the data channels of the receiving unit 62 and the transmitting unit 61 are simultaneously opened through the
从上述实施例的说明可以看出,本发明的数字基带系统在增益控制中采用基于信号强度RSSI与链路质量LQI综合反馈的自适应门限的自动增益控制机制,达到在保证一定通信质量的前提下降低节点误码率和节省功耗的目的,从而适应复杂多变的应用环境。It can be seen from the description of the above embodiments that the digital baseband system of the present invention adopts an automatic gain control mechanism based on an adaptive threshold based on the comprehensive feedback of signal strength RSSI and link quality LQI in gain control, so as to achieve the premise of ensuring a certain communication quality The purpose of lowering the bit error rate of nodes and saving power consumption is to adapt to complex and changeable application environments.
本发明的数字基带系统在位同步中采用自适应门限的施密特触发器的方式进行信号相位判决,达到避免因输入相位频繁跳变而造成的解调误码率升高的目的,降低了节点的误码率。The digital baseband system of the present invention uses an adaptive threshold Schmitt trigger to judge the signal phase in bit synchronization, so as to avoid the increase of the demodulation bit error rate caused by frequent input phase jumps, and reduce the Node error rate.
本发明的数字基带系统中的匹配滤波器采用了对滤波器的加法器和乘法器进行复用的设计方法,在保证线性滤波器的性能的同时达到了减少硬件资源开销,降低成本的目的。The matched filter in the digital baseband system of the present invention adopts the design method of multiplexing the adder and multiplier of the filter, and achieves the purpose of reducing hardware resource overhead and cost while ensuring the performance of the linear filter.
本发明的数字基带系统兼容IEEE802.15.4通信标准,并带有可软件配置生成多项式系数的循环码校验器,使数字基带系统所在的芯片在通信上具有兼容其它传感器网络节点芯片的通用性,并有很高的灵活性。The digital baseband system of the present invention is compatible with the IEEE802.15.4 communication standard, and has a cyclic code checker that can be configured by software to generate polynomial coefficients, so that the chip where the digital baseband system is located has the versatility of being compatible with other sensor network node chips in communication, And has high flexibility.
本发明的无线传感器网络节点数字基带具有自适应抑制载波泄漏的控制模块,可根据自适应算法配置射频芯片的抑制载波泄漏寄存器,从而实现对IQ路信号的直流补偿,达到自适应抑制载波泄漏的目的,降低了对射频模块性能的要求,提高了射频芯片成品率,降低节点成本。The wireless sensor network node digital baseband of the present invention has a control module for adaptive carrier leakage suppression, and can configure the carrier leakage suppression register of the radio frequency chip according to an adaptive algorithm, thereby realizing DC compensation for IQ channel signals, and achieving adaptive suppression of carrier leakage The purpose is to reduce the performance requirements of radio frequency modules, improve the yield of radio frequency chips, and reduce node costs.
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than limit them. Although the present invention has been described in detail with reference to the embodiments, those skilled in the art should understand that modifications or equivalent replacements to the technical solutions of the present invention do not depart from the spirit and scope of the technical solutions of the present invention, and all of them should be included in the scope of the present invention. within the scope of the claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910236528 CN102045133B (en) | 2009-10-23 | 2009-10-23 | Chip for wireless sensor network node and on-chip digital baseband system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910236528 CN102045133B (en) | 2009-10-23 | 2009-10-23 | Chip for wireless sensor network node and on-chip digital baseband system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102045133A true CN102045133A (en) | 2011-05-04 |
CN102045133B CN102045133B (en) | 2013-04-03 |
Family
ID=43910967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910236528 Active CN102045133B (en) | 2009-10-23 | 2009-10-23 | Chip for wireless sensor network node and on-chip digital baseband system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102045133B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102799800A (en) * | 2011-05-23 | 2012-11-28 | 中国科学院计算技术研究所 | Security encryption coprocessor and wireless sensor network node chip |
CN106130944A (en) * | 2016-07-13 | 2016-11-16 | 华南理工大学 | Pulse modulation signal receiving and processing system and method |
CN103716137B (en) * | 2013-12-30 | 2017-02-01 | 上海交通大学 | Method and system for identifying reasons of ZigBee sensor network packet loss |
CN106714282A (en) * | 2015-11-18 | 2017-05-24 | 博世科智能股份有限公司 | Wireless network system |
CN109428679A (en) * | 2017-09-05 | 2019-03-05 | 上海交通大学 | ZigBee adaptive multi-rate transmission method |
CN110380774A (en) * | 2019-07-05 | 2019-10-25 | 东南大学 | A kind of the UAV Communication multidiameter delay transmission method and system of adaptive distance |
CN110896341A (en) * | 2018-09-06 | 2020-03-20 | 力同科技股份有限公司 | Signal processing method, integrated talkback chip and interphone |
CN111770566A (en) * | 2020-07-09 | 2020-10-13 | 烟台毓璜顶医院 | A wireless medical equipment interference suppression system based on synchronous state monitoring |
WO2021134638A1 (en) * | 2019-12-31 | 2021-07-08 | 深圳迈瑞生物医疗电子股份有限公司 | Signal transmitting circuit, signal receiving circuit, and portable monitoring device |
CN113644990A (en) * | 2021-08-16 | 2021-11-12 | 恒玄科技(上海)股份有限公司 | Wireless transmission signal calibration method and device and wireless signal transmission system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201130952Y (en) * | 2007-07-18 | 2008-10-08 | 湖南省建筑工程集团总公司 | Intelligent control system for numeralization formations furniture based on ZigBee technique |
US8218684B2 (en) * | 2008-01-15 | 2012-07-10 | Broadcom Corporation | Method and system for an adaptive automatic gain control (AGC) reference for HSDPA and WCDMA |
CN101478287B (en) * | 2009-01-15 | 2011-03-16 | 上海全波通信技术有限公司 | Carrier leakage adaptive elimination system in direct frequency conversion modulation |
-
2009
- 2009-10-23 CN CN 200910236528 patent/CN102045133B/en active Active
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102799800A (en) * | 2011-05-23 | 2012-11-28 | 中国科学院计算技术研究所 | Security encryption coprocessor and wireless sensor network node chip |
CN102799800B (en) * | 2011-05-23 | 2015-03-04 | 中国科学院计算技术研究所 | Security encryption coprocessor and wireless sensor network node chip |
CN103716137B (en) * | 2013-12-30 | 2017-02-01 | 上海交通大学 | Method and system for identifying reasons of ZigBee sensor network packet loss |
CN106714282A (en) * | 2015-11-18 | 2017-05-24 | 博世科智能股份有限公司 | Wireless network system |
CN106130944A (en) * | 2016-07-13 | 2016-11-16 | 华南理工大学 | Pulse modulation signal receiving and processing system and method |
CN109428679B (en) * | 2017-09-05 | 2021-05-25 | 上海交通大学 | ZigBee adaptive multi-rate transmission method |
CN109428679A (en) * | 2017-09-05 | 2019-03-05 | 上海交通大学 | ZigBee adaptive multi-rate transmission method |
CN110896341A (en) * | 2018-09-06 | 2020-03-20 | 力同科技股份有限公司 | Signal processing method, integrated talkback chip and interphone |
CN110380774A (en) * | 2019-07-05 | 2019-10-25 | 东南大学 | A kind of the UAV Communication multidiameter delay transmission method and system of adaptive distance |
WO2021134638A1 (en) * | 2019-12-31 | 2021-07-08 | 深圳迈瑞生物医疗电子股份有限公司 | Signal transmitting circuit, signal receiving circuit, and portable monitoring device |
CN114097203A (en) * | 2019-12-31 | 2022-02-25 | 深圳迈瑞生物医疗电子股份有限公司 | Signal transmitting circuit, signal receiving circuit and portable monitoring equipment |
CN114097203B (en) * | 2019-12-31 | 2024-02-23 | 深圳迈瑞生物医疗电子股份有限公司 | Signal transmitting circuit, signal receiving circuit and portable monitoring equipment |
CN111770566A (en) * | 2020-07-09 | 2020-10-13 | 烟台毓璜顶医院 | A wireless medical equipment interference suppression system based on synchronous state monitoring |
CN113644990A (en) * | 2021-08-16 | 2021-11-12 | 恒玄科技(上海)股份有限公司 | Wireless transmission signal calibration method and device and wireless signal transmission system |
CN113644990B (en) * | 2021-08-16 | 2024-01-16 | 恒玄科技(上海)股份有限公司 | Calibration method and device for wireless transmitting signals and wireless signal transmitting system |
Also Published As
Publication number | Publication date |
---|---|
CN102045133B (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102045133B (en) | Chip for wireless sensor network node and on-chip digital baseband system | |
US10728853B2 (en) | Wake up radio frame with spectrum spreading based single carrier | |
KR101188834B1 (en) | Wireless receiver | |
JP5557406B2 (en) | Data transmission apparatus and method in low frequency band in human body communication system, and human body communication system | |
US10389482B2 (en) | Radio-frequency apparatus with improved power consumption and associated methods | |
JP2017520201A (en) | ZIGBEE (registered trademark) compatible receiver with digital baseband near threshold | |
WO2013056521A1 (en) | Power line communication device based on channel recognition technology | |
CN107769816A (en) | A kind of Chirp spread spectrum communication system receivers clock synchronization system and method | |
US10461796B2 (en) | Multimode receiving device, multimode transmitting device and multimode transceiving method | |
WO2015176597A1 (en) | Ebpsk-based communication method and system | |
Lokanatha et al. | Design and performance analysis of human body communication digital transceiver for wireless body area network applications | |
CN101662822B (en) | Energy-saving wireless communication transceiver based on constant modulus signals | |
CN101471705A (en) | Sensor Network Node End with Environmental Adaptive Automatic Gain Adjustment | |
CN205336269U (en) | Frequency hopping transceiver on on -vehicle net platform | |
Gorantla et al. | Simulink model for Zigbee transceiver using OQPSK modulation under fading channels | |
GB2472774A (en) | IEEE 802.15.4 receiver with demodulation phase dependent upon early/on time/late correlations of oversampled pseudo noise spread signal | |
Bucci et al. | Architecture of a digital wireless data communication network for distributed sensor applications | |
Sujaya et al. | PHY-DTR: An efficient PHY based digital transceiver for body coupled communication using IEEE 802.3 on FPGA platform | |
CN102201894A (en) | Iterative timing synchronization circuit and method for interleave-division multiple-access system | |
CN103152076B (en) | A kind of Ethernet radio network gateway based on multi input ZigBee technology | |
Hossain et al. | Channel decoding using cyclic elimination algorithm for pulse based uwb transceiver | |
KR20100120041A (en) | Apparatus and method for transmitting data of low-frequency band in human body communication system and the system thereof | |
Sebastiano et al. | Impulse based scheme for crystal-less ULP radios | |
Bernier et al. | An ultra low power soc for 2.4 ghz ieee802. 15.4 wireless communications | |
CN103199890A (en) | Ethernet wireless gateway based on multi-output Zigbee technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |