CN102037141B - 用于表征蠕虫卵特别是鞭虫卵的生物学活性的方法 - Google Patents

用于表征蠕虫卵特别是鞭虫卵的生物学活性的方法 Download PDF

Info

Publication number
CN102037141B
CN102037141B CN200980118522.9A CN200980118522A CN102037141B CN 102037141 B CN102037141 B CN 102037141B CN 200980118522 A CN200980118522 A CN 200980118522A CN 102037141 B CN102037141 B CN 102037141B
Authority
CN
China
Prior art keywords
ovum
whipworm
measuring
embryonization
larva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980118522.9A
Other languages
English (en)
Other versions
CN102037141A (zh
Inventor
伯恩哈德·特维斯
鲁道夫·威廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Falk Pharma GmbH
Original Assignee
Dr Falk Pharma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Falk Pharma GmbH filed Critical Dr Falk Pharma GmbH
Publication of CN102037141A publication Critical patent/CN102037141A/zh
Application granted granted Critical
Publication of CN102037141B publication Critical patent/CN102037141B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5029Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on cell motility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/43504Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates
    • G01N2333/43526Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates from worms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明涉及测定胚胎化鞭虫卵的生物学活性的方法,根据该方法进行以下步骤:a)借助定量PCR分析使用供确定基因组DNA拷贝数用的合适标志序列来测定和/或确认蠕虫卵胚胎发育的阶段,b)依靠生物化学和/或分子生物学方法测定胚胎化蠕虫卵的代谢活性,c)测定胚胎化蠕虫卵中基因表达的可诱导性,d)在升高的温度预孵育之后用显微镜经长时间观察测定在卵中存在的蠕虫幼虫的运动性,和/或e)测定实验动物中鞭虫幼虫的孵化率,其中将从肠内容物回收的完整的胚胎化卵相较于内部标准品进行定量。

Description

用于表征蠕虫卵特别是鞭虫卵的生物学活性的方法
本发明涉及用于测定处于生活史不同阶段的蠕虫(Helminth)卵、特别是鞭虫(Trichuris)卵、优选猪鞭虫(Trichuris suis)卵的生物学活性的方法。所述方法使得作为治疗性药品有效成分的蠕虫卵制备物(
Figure GSB00001009523600011
)能够以受控的方式得到生产,并且能够保证对人的安全的且在治疗上有效的应用。
寄生虫感染对激活其动物宿主免疫系统的影响是已知的(Review,D MMckay,Parasitology 2006,132:1-12)。这种激活还影响自身免疫病的发生和进程。流行病学研究显示,在蠕虫感染(Wurminfektion)比率高的区域中,自身免疫病少于因更好的卫生条件而使这些感染率较低的区域。患克罗恩氏病(Morbus Crohn)(一种慢性炎症性肠病)的患者的细胞因子概貌(Cytokinprofile)显示Th2-免疫细胞能够受到蠕虫感染的刺激。克罗恩氏病,一种Th1支配的自身免疫疾病,可以通过蠕虫感染来预防或影响(Summers等人,Am JGastroenterol 2003,98:2034-2041)。
早在1971年,Beer(Br.Med.J.,1971,3:41)就报道了猪鞭虫对于实现对人的定向中度感染而不诱导致病效果(例如,伴有人的病原体鞭虫(Trichuristrichiura)的感染)可能是一种合适的线虫。根据较新的研究,猪鞭虫对人的感染似乎只是暂时的,而且这些蠕虫显然在它们能够繁殖之前就遭驱除。不过,对于就慢性炎症性肠病使用猪鞭虫的积极临床研究指出这样的事实,即这种对人的暂时感染能够引发对免疫系统在治疗上有效的调节(Summers等人,Am.J.Gastroenterol.2003,98:2034-2041)。
猪鞭虫的生活史(Lebenszyklus)始于产下未胚胎化的卵(L0期),这些卵随着粪便从受感染的动物排出。在土壤中历时3-6个月的时间胚胎化(Embryonierung)成第一幼虫期L1。在达到L1期之后的最开始的几天中,能够在卵中观察到幼虫的运动,然后卵进入休眠状态,在这种状态它们能够维持数年而不丧失它们的感染性。在由合适的宿主经口摄入之后,在肠腔中L1幼虫从卵孵出并在几个小时之内穿透进入盲肠和结肠的粘膜。幼虫在接下来的几周中在肠粘膜中经历进一步的幼虫发育期(L2-L4),直到它们最终作为成体(adult)L5幼虫再次进入肠腔(Beer,Parasitol.1973,67:253-262)。
为了在制药上制备出猪鞭虫卵(Trichuris suis ova=TSO),使用合适的方法分离并纯化体外或原位产下的未胚胎化的TSO(L0)(WO 199933479,WO2007076868,WO 2007134761)。接下来,在受控的实验室条件下进行胚胎化,以形成有生物学活性的(L1)TSO,其表现为药品的药物活性部分。
具有治疗应用的蠕虫卵可归类为生物药品。在生物药品的生产和应用中必需检测的核心参数是生物学活性,其在根本上是对药品治疗效果的衡量。不分析生物学活性,就无法合理地开发和监控生产过程,也无法对在人中的计划应用来决定对患者的治疗效果所必需的以及患者所能承受的药品剂量。因此,只有那些生物学活性完全合格的蠕虫卵制备物才能安全且有效地用作药品。
迄今为止,已经向猪鞭虫提供了三种分析方法,然而它们仅仅是不充分地表征了生物学活性。
1.胚胎化率的测定(Kringel等人,Vet.Parasitol.2006,139:132-139,段落2.2(猪鞭虫);也见Johnson等人,Intl.J.Parasitol.1998,28,627-633(猪蛔虫(Ascaris suum))):该研究在显微镜下进行。其借助形态学标准评估卵是否含有完整的、完全成形的L1幼虫。然而,与在本申请中描述的分子生物学方法不同的是,仅从形态学评估无法绝对肯定地推出幼虫是否确实完全胚胎化。另一个限制在于这样一个事实,即胚胎化率没有提供关于胚胎化L1 TSO的生存力和生物学活性的信息。此外,形态学评估要求观察者的经验,而形态学边界情况的主观划分限制了这种方法的正确性和准确性。
2.感染率的测定:对于猪鞭虫,分析是对猪进行的。在感染之后的特定时间点,测定肠粘膜中形成的幼虫数,并与应用的TSO剂量建立关联(Kringel等人,Vet.Parasitol.,2006,139:132-139,也见Summers等人,2005,Gastroenterology,128:825-832或Johnson等人,Intl.J.Parasitol.1998,28,627-633(猪蛔虫))。在感染率测定中存在的问题是其不仅依赖于蠕虫卵的功能性,还同样依赖于个体宿主因素,诸如例如实验动物的免疫系统、肠内菌群和肠功能。因此,实验动物中感染率的测定本质上伴有高度可变性,并且由于天然测试系统的原因而无法进行标准化,这相当大地限制了作为生物学活性检测的适用性。对于猪鞭虫,对猪的感染性测试涉及至少三周的长时间孵育期,并且由于高度可变性还要涉及大量的动物,这使得此种检测的常规使用在伦理和经济两方面都产生了问题。
另外,Kringel等人描述了从受到蠕虫卵感染的动物的粪便回收卵作为蠕虫卵生物学活性的证据。此外,在动物受到感染之后,需要等待7-8周直到孵出的幼虫成熟到L5期、交配并产下它们自己的卵。并不存在下述直接的、定量的联系,即能根据这种联系由粪便中卵的数目表明成体幼虫的感染率或生物学活性。显然Kringel等人的方法与本申请中描述的在体内测定孵化率是有区别的,因为在Kringel等人的方法中分析的是下一代的卵。
3.WO 2007/134761描述了一种用于证明猪鞭虫卵生存力的方法,其中体外刺激卵通过猪的胃肠道,并由此使卵孵化。
然而,这些方法不足以以药用产品所要求的精确度来测定蠕虫卵制备物的生物学活性。
因此,在动物中检测其生物学活性的生物药品的主要问题之一就是制备物的标准化。动物模型的使用(如上文提及的猪的感染)是极其昂贵的并且要求大量的时间。因此在本发明的范围中描述了这样的一种方法,其中进行了不同类型的检测,这些检测涉及蠕虫卵发育及其生物学活性的不同方面。为了获得可靠的结论,必需对要分析的装料(charge)进行至少一种根据本发明的检测,然而,优选进行至少三种,更优选进行至少四种或者甚至五种本文描述的检测,其中在每种情况下测定相关的参数。整体上考虑单独检测的各个结果,其中合适的蠕虫制备物必需在每个检测中满足预定的极限值,从而能够由此得到该蠕虫卵制备物适于药物应用的结论。
如此,非常需要这样一种能够在工业上应用的方法,其全面可靠地分析了不同发育阶段的TSO和其它蠕虫卵的生物学活性并由此表征蠕虫卵的不同生物学功能。只有依靠这样的方法才能以受控的方式生产适合销售的药用产品。
本发明的目的是,通过下文详细描述的方法全面分析蠕虫卵的生物学活性,并由此在一方面使得生产过程能够得到严密控制,并且在另一方面使得在患者中实现安全的且在治疗上有效的应用。
鉴于目前已知方法的复杂问题和缺陷,显然生物学活性的可靠测定通常无法通过单个方法步骤实现。
因此本发明的主题是一种用于测定含有完全胚胎化幼虫的鞭虫卵的生物学活性的方法,并且在所述方法中进行下述测定中的至少一种:
使用生物化学和/或分子生物学方法测定鞭虫卵的温度诱导活性,特别是测量ATP含量,测定胚胎化鞭虫卵中基因表达的可诱导性,在通过升高温度下的预孵育进行活化之后经过长期观察在显微镜下测定卵中存在的鞭虫幼虫的运动性,和/或测定实验动物中鞭虫幼虫的孵化率,其中将从肠内容物回收的完整胚胎化卵相较于内部标准品(interner Standard)进行定量(quantifizieren)。
因此,开发了由五种测定组成的系统,这些测定分别研究蠕虫处于其生活史特定阶段的不同生物学功能。尽管在药物制备的单个生产步骤中只应用一种测定方法可能是足够的,但是为了测定终产品的生物学活性,通常必需进行至少3种在表1中描述的测定。
Figure GSB00001009523600041
表1
附图说明
图1:带有用于定量PCR的引物和Taqman探针的猪鞭虫ITS2序列的区段。
图2:用于定量检测三磷酸腺苷的萤光素酶反应。
图3:用于定量检测三磷酸腺苷的萤光素酶反应。
图3的注释:
-无预孵育有活性:未在37℃预处理19小时的未灭活的卵(在2-8℃处于休眠状态的卵);
-无预孵育无活性:未在37℃预处理19小时的冷冻灭活的卵;
-有预孵育有活性:在37℃预处理19小时的未灭活的卵;
-有预孵育无活性:在37℃预处理19小时的冷冻灭活的卵。
图4:三磷酸腺苷的标准曲线。
图5:推定的猪鞭虫热休克蛋白的蛋白质序列(区段)与秀丽隐杆线虫的hsp70的比较(相同碱基:“*”;物理化学性质相似的碱基:“.”或“:”)。
图6:用于检测有活性的胚胎化猪鞭虫卵中热休克蛋白mRNA表达的FISH探针(T:烯丙基-氨基-胸腺嘧啶碱基,荧光团与其偶联)。
图7:在39℃孵育之后有活性的和热灭活的猪鞭虫卵的运动性指数。
图8:在39.5℃不同时长的观察期之后猪鞭虫制备物的运动性指数。
图9:对由罗丹明X标记的TSO和作为对照的未标记TSO组成的混合物的荧光显微照相(左图:光学显微术;右图:荧光显微术)。箭头标出荧光标记的TSO。
图10:示出体外活性评分和感染性之间的关联性。
为了可靠地表征可药用蠕虫卵的生物学活性,完整的方法优选进行至少三个,优选四个并且更优选五个步骤。在适当的情况下,只进行所述方法的单独步骤就能足以表征生物学活性的某些方面或监控生产的子步骤。
所述五种单独的方法步骤追溯到在其它相关方面已经得到描述的检测原理。对胚胎化蠕虫卵,特别是胚胎化猪鞭虫卵的适用是新的,并且需要开发一组迄今为止尚未描述过的新的子步骤。完整的方法检查了五个不同方面的生物学活性并且以这样的方式使全面表征得以进行,这种完整的方法也是新的并且之前从未对于蠕虫卵、特别是对于猪鞭虫卵进行描述。所述五种方法中的三种的优选共有特征是通过在提高温度下的预孵育来活化休眠的鞭虫幼虫。这种方法的另一区别特征是其能够用完整的、活的蠕虫卵进行,并且测量的参数仅依赖于蠕虫卵的活性而不依赖于宿主因素或进行检测的人的特殊能力,并因此比迄今为止应用的方法更加客观。因而有可能进行对于药物用途而言所必需的标准化。
依靠该方法,能够可靠地测定蠕虫卵制备物的生物学活性,该生物学活性具有药品所要求的准确性。如本发明中所述,精确测定蠕虫卵的生物学活性是生产可应用药品中的关键步骤。
在下文中,更详细地解释作为所述方法的组成的五种测定方法。
a)测定基因组DNA的拷贝数
随着胚胎发育过程中的每次细胞分裂,染色体组加倍并分配给两个子细胞。因此,可将卵中基因组DNA的拷贝数视为发育中的幼虫体细胞数目的相关项。如此,测定基因组DNA的拷贝数可用于体现处于任何阶段的发育幼虫的胚胎发育状态。这与先前描述的方法(在显微镜下测定胚胎化率,见上文)相比存在明显的优势,用先前描述的方法只能分析持续约13周的胚胎化的最终结果并且不提供关于胚胎发育是否实际上全部完成的信息(即细胞数是否对应于完全形成的L1幼虫)。胚胎化是蠕虫卵药物生产方法的一部分。由于基因组DNA拷贝数的测定,过程伴随性分析(prozess-begleitendeAnalytik)首次成为可能。另一方面,其能够以合理的方式开发生产方法,并且能够分析方法变化的影响,并且在另一方面,使得在胚胎化阶段过程中能够常规地监控生产。
借助定量PCR技术能够测定样品中特定核酸序列的拷贝数。样品中特定核酸序列的可用拷贝数越多,达到扩增平台期会越快。依靠校准曲线能够相对准确地测定拷贝数。在此通常使用的方法之一是实时PCR,或者也叫做所谓的TaqMan PCR。可选的核酸扩增方法对于本领域技术人员是已知的,并且也能用于测定基因组DNA的拷贝数。精确的拷贝数通常用合适的校准曲线来确定。
优选地,编码核糖体RNA的一部分的ITS1-5.8S-ITS2区适合作为蠕虫基因组DNA的优选标志物。对于猪鞭虫(Cutillas等人,Parasitol Res 2001,100:383-389)并且对于其它鞭虫属类型和其它蠕虫,ITS1-5.8S-ITS2区的序列已经得到描述。也已经描述了依靠IST-1区的定量PCR监控猪蛔虫胚胎发育的存活力检测(Pecson等人,Appl.Envir.Microbiol.,2006,72,7864-7872)。
然而,这种检测有另一个目的,即检测用于灭活蠕虫的方法。
从ITS1-5.8S-ITS2区扩增的部分序列的定量PCR(q-PCR)尤其适合于测定标志区的拷贝数,并且由此测定基因组DNA的拷贝数。由于ITS1和ITS2元件是种特异性的,所述方法在分析胚胎化阶段之外,还适合作为生物体种类的定性证据。最重要的是这种检测在现有技术中没有记载,因为之前没有根据基因组的拷贝数而知道猪鞭虫的L1期包含约1000个细胞(参见实施例1)。
在图1中,显示了可以示例性用于测定基因组DNA拷贝数的猪鞭虫的相关基因序列。SEQ ID NO:1显示了所述相关基因序列。正向引物表示为SEQ ID NO:2,反向引物为SEQ ID NO:3,并将Taqman探针的序列表示为SEQ ID NO:4。对于本领域技术人员显而易见的是,来自猪鞭虫基因组的其它部分也可用于测定拷贝数。合适序列的条件是,其为在猪鞭虫中特异性存在的核苷酸序列,并且在其它可能作为污染物进入待分析样品的生物体中没有相似序列。
基因组DNA拷贝数的测定还具有第二重作用。由此能够确认期望的生物体存在于制备物中,并且在使用其它合适的序列时,能够证明其它生物体的污染是否存在。
在测定基因组DNA的拷贝数时必然不能忽视的一个重要方面是在测量之前必需破坏蠕虫卵。如实施例中所示,此处证明了“波特匀浆器”是特别合适的,其中在一个优选的实施方案中,使用了2ml体积并设定了空隙在0.01和0.03mm之间。匀浆优选进行5到15分钟的时间,优选约10分钟。如果对于各个分析步骤而言细胞成分必需处于可及(
Figure GSB00001009523600071
)的形式,那么总是要进行细胞破碎。
b)测定代谢活性
用于测定细胞生存力的许多方法都是基于对代谢活性的分析。三磷酸腺苷在细胞代谢中作为能量递质和能量储存者扮演着核心角色,并且能够用作测定胞内新陈代谢活性的标志物。本发明显示,对这种核苷酸的检测也能够用于测定分化生物体如猪鞭虫L1幼虫的生存力。
借助萤光素酶反应通过测量发光使得在生物体系中定量三磷酸腺苷成为可能。发光的定义是“冷”光的发射。发光体系基于对底物的化学、生物化学或电化学激活,所述底物在返回其基态时以光的形式发出一部分激发能。在检测三磷酸腺苷时,使用的萤光素酶分离自萤火虫(Photinus pyralis;firefly)。该真核生物酶在三磷酸腺苷、氧和镁离子的存在下并在发光条件下催化萤光素氧化成氧化萤光素(Oxyluciferin)。反应方程式示于图2。
成功建立对猪鞭虫胚胎化活卵中三磷酸腺苷的测定的先决条件是刺激L1幼虫中三磷酸腺苷的合成(其足以测得发光),通过合适的匀浆方法完全破坏卵以释放胞内形成的核苷酸,并且由此从复杂基质定量和无障碍地检测三磷酸腺苷。令人惊讶且至今尚未记载的是,发现L1幼虫的ATP含量在破坏胚胎发育之前较低,并且通过在特定温度下孵育较长的一段时间来适当活化之后,ATP含量也只是增加到一个恒定的高水平。另外,需要有效的灭活方法来分辨活的和死的L1幼虫,从而能够可重复地测定已被杀死的生物体中三磷酸腺苷的基础值。
测定ATP含量以供分析蠕虫卵群体的代谢活性根据本发明是优选的。
为了分析单个蠕虫卵的代谢活性,使用四唑化合物(Tetrazoliumverbiung)的染色方法也是合适的,该方法最初被开发用于细胞培养物或组织切片中自由可及的动物细胞。在代谢活性细胞中,四唑化合物由于线粒体酶的作用还原成有色的甲
Figure GSB00001009523600081
沉积在细胞中。为了将该染色方法从自由可及的动物细胞转移至在卵中存在的多细胞蠕虫L1幼虫,重要的是对卵进行预处理,使得底物能够透过而不影响卵中幼虫的生存力。猪鞭虫的L1幼虫被刚性的外壳包围,所述外壳将物质交换严格地限制在所围绕的区域内并阻止了分析所需底物的渗透。
证明了用次氯酸处理卵有利于温和分解卵壳,这在先前已经有过记载(Beer,Parasitol.,1973,67:263-178),并且视情况能够通过使用壳多糖酶和蛋白质酶的后续酶消化来促进。
为了能够测定代谢活性,必需决定一个“零值”。在此,这是一个比较值,从这个比较值测定各自的代谢活性。在一个优选的实施方案中,用非活性蠕虫卵测定“零值”。
已经证明冷冻灭活(快速冷冻并在-80℃储存24小时)是用于灭活卵的合适方法。来自以这种方法灭活的样品的三磷酸腺苷信号几乎能降低到背景噪声。冷冻灭活的卵样品的产生在磷酸盐缓冲的生理盐水溶液中进行。当然,冷冻灭活能够与其它测定方法一起使用。
作为实例,图3显示了使用了依靠萤光素酶反应进行三磷酸腺苷定量检测时的冷冻灭活效果。通过使用冷冻灭活特异性地测量预孵育的效果。在灭活(杀死)的蠕虫卵的情况下,无法识别出三磷酸腺苷的增加,即使是在预孵育之后。相反,生物学活性的蠕虫卵则具有活性,这种活性是通过在37℃预孵育19小时的时间之后三磷酸腺苷的增加而获得的。
在一个优选的实施方案中,对于每个批次使用550μl中的5500个卵。预孵育之后,将卵通过离心(在500rpm 5分钟)分离并重悬在225μl裂解缓冲液中。为了释放含有通过孵育形成的三磷酸腺苷的细胞内容物,用波特匀浆器(容积2ml;空隙宽度0.01-0.03mm)将卵匀浆化10分钟。只有这种方法导致对卵的完全破坏并且由此产生核苷酸的定量释放。为了使裂解三磷酸腺苷的水解酶失活,用裂解缓冲液(成分:磷酸pH 2)对卵进行破坏。在每种情况下,从各个批次用移液管移出50μl到96孔微孔板上,并将每个批次用另外100μl磷酸盐缓冲液稀释。通过加入100μl的商购的三磷酸腺苷试剂盒启动萤光素酶反应。温育2分钟后,在发光计中读取微孔板数据并测定发光(图3)。定量相对于磷酸盐缓冲液中的三磷酸腺苷标准曲线进行(1.0μM,0.1μM,10nM,1nM,0.1nM,10pM,1.0pM,0.1pM)。典型的ATP校准曲线示于图4中。
通过向匀浆化的冷冻灭活胚胎化卵样品有目的的添加三磷酸腺苷,在标准曲线的线性范围内(1-1000nM)能够实现84%的回收率。因而无法识别卵匀浆的复杂基质与萤光素酶反应的相关相互作用和发光。
所述实例明确地显示,测量发光能够用于将活的、胚胎化的猪鞭虫卵与经灭活并因此不能存活的卵加以区分。然而,该检测只有组合了优化的方法参数才能成功实施,所述方法参数由样品活化、样品匀浆化和通过优化的灭活方法生成合适的对照组成。生物学活性蠕虫卵的合适ATP含量在每个卵至少0.01pmol ATP的范围。
c)诱导型基因表达的分析
此方法的原理基于诱导基因表达,其只能在活细胞中进行,并且由此能够区分活的幼虫和死的幼虫。此外,基因表达的可诱导性很可能是使休眠的L1幼虫能够经过不同活化状态的先决条件,而这些活化状态是诱发生活史中下一阶段(孵化,在粘膜中建群等)所必需的。
对热休克蛋白表达的分析似乎尤其有利,因为其能够通过提高温度而简单地诱导,并且形成的信使RNA(mRNA)针对快速分解通常是稳定的。在本发明的范围中,首次在猪鞭虫中成功进行了对如下基因序列的检测,所述基因序列与来自蠕虫秀丽隐杆线虫(Caenorabhditis elegans)的热休克蛋白hsp70在很大程度上同源。
在本发明的一个优选实施方案中,分析猪鞭虫热休克蛋白的表达。在图5中,示出了猪鞭虫的蛋白质序列(SEQ ID NO:5),并与来自秀丽隐杆线虫的同源蛋白的氨基酸序列(SEQ ID NO:6)比较。
诱导型基因表达可以通过测定编码特定诱导型蛋白的信使RNA含量来进行。所述信使RNA的核苷酸序列可以从所述氨基酸序列衍生。建立合适的正向和反向引物并在它们之间决定Taqman探针的序列对于本领域技术人员不是问题。然后可以借助实时PCR测定基因的诱导。判断准确的测定的前提是对含有杀死的蠕虫卵的对照样品也进行测量。其必须还是能够简单且可靠地诱导的蛋白质。实例之一是热休克蛋白,但是能够由特定刺激物诱导的其它基因也同样可以用于测定。
在单个卵的水平对表达的信使RNA的检测也通过荧光原位杂交(FISH)使用合适的基因探针来实现。接下来特别有利的是将卵的群体借助流式细胞术(Durchfluβcytometrie)迅速且可靠地进行分析。
用于原位杂交的合适探针序列示于图6(SEQ ID NO:7)。
d)完整蠕虫卵中幼虫运动性的测定
所述方法的原理是基于检测机体运动作为卵中L1幼虫的功能性的参数。幼虫的运动性是其能够在合适环境条件下孵化的前提。对于自由生活的幼虫和蠕虫,如秀丽隐杆线虫,运动性分析作为可靠的生存力和功能的证据是有效的。
在本发明的范围内,在猪鞭虫的例子中,令人惊讶且是首次发现的是通过精确调节环境温度能够在位于卵中的非自由生活的蠕虫幼虫中也诱导出些微的运动。迄今为止,已经描述了幼虫在完成胚胎化后进入休眠状态,并且只有在被合适的宿主摄入之后才会活化和孵化。卵中幼虫的运动非常缓慢,并且如本发明所公开的只有用慢摄速放摄影机(Zeitraffer)经历长时间在显微镜下的检查才能检测到。可以与图像分析软件组合而使显微运动性检测自动化。运动性指数作为卵的生物学活性的参数如下计算:
Figure GSB00001009523600101
当测定幼虫的运动性时,精确的温度控制是该方法成功的关键。首先,将卵在精确设定在36℃到42℃之间,优选37℃到41℃并且特别优选设定在39.5℃的温度预孵育历时2-30小时,优选4-20小时的时间。在此预孵育之后,将幼虫置于合适的显微镜下,其中能够至少大致保持所述设定温度。然后在36℃到42℃之间,优选38℃到40℃的温度下采用慢摄速放摄影(Zeitrafferaufnahme)进行观察,历时2分钟至4小时,优选30分钟至2小时的时间。
图7显示了根据本发明测定的运动性指数的结果,其中用经灭活的虫卵根本无法观察到任何运动性,相反有活性的虫卵的运动性指数随着时间增加。
图8显示了与不同观察时间相关的运动性指数。
e)肠内孵化率的测定
此方法步骤的原理在于测定蠕虫幼虫在实验动物肠内或者在先前已经从实验动物取出的肠内容物中的孵化率。
在一个实施方案中,孵化率可以在从实验动物取出的肠内容物中测定,并且事实上优选取自结肠起始处或十二指肠末端。然后可以在肠内容物中测定孵化率,而非必需直接在实验动物体内测定孵化率。另外,所述方法也可以通过分析穿过了肠并从粪便回收的卵来进行。这样的优势是不必杀死实验动物,而可以多次使用该实验动物来测定孵化率。
在新开发的方法步骤中,在接种之后相对较短的时间分析肠内容物,并对完整的卵以及孵化后留下的胚胎膜(Ei-Hülle)进行计数。与现有技术中描述的感染性测定相比的显著优势在于,就孵化而言只是分析了生活史的第一个阶段,其仅受到个体宿主因素的轻微影响。
令人惊讶的是,对于猪鞭虫,首次能够证明幼虫不仅在作为合适宿主的猪体内大量孵化,而且在兔体内也是如此。因此,举例来说,对于猪鞭虫而言,可利用肠尺寸更小的实验动物,这使回收小到显微级的卵和胚胎膜大大简化。
令人惊讶地发现,使用开发用于标记蛋白质的商业荧光染料,能够将卵壳永久染色。将荧光染料与胚胎膜偶联使得卵的回收显著简化,因为可以借助荧光显微术来分析肠内容物。
另一重大的技术创新是使用未胚胎化的或灭活的蠕虫卵作为内部恒定的标准品。它们在肠内具有不变的通过或停留时间,相对于胚胎化和有生物学活性的卵,它们在通过肠后保持完整。通过用第二(不同的)荧光染料标记作为内部标准品提供的卵,能够简单地将该内部标准品与要分析的卵区分开。
为了分析,在接种之后合适的时间点分析肠内容物中用荧光染料1标记的完整卵和待分析样品的空胚胎膜和用荧光染料2标记的内部标准品的完整卵的数目。肠内的孵化率可以基于完整(未孵化)卵如下计算。
用于计算孵化率的方程式:
在下表2中,归纳了PCR反应以及优选的测定和由此能够获得的值,其代表了所分析的制备物是否具有所需生物学活性的优选极限值。
Figure GSB00001009523600122
表2
在优选的实施方案中,新的检测方法包括测定温度诱导的体外胚胎化蠕虫卵可活化性。测量两个互补参数(运动性指数和平均ATP含量),它们共同构成体外活性评分。所述体外活性评分展现出与体内生物学活性的好的相关性。然而,如果使用的幼虫是完全胚胎化的,那么其对于生物学活性只是预测性的。将定量PCR方法用于此处,该方法测量卵中的猪鞭虫基因组的拷贝数。依靠平行进行的新的体内孵化检测,确保了检查的卵在生理学条件下确实有活性。如下通过示意图展现优选的方法:
本发明的一个重要的方面是体外测定温度诱导的可活化性。
L1-TSO在完成胚胎化之后进入休眠状态,在休眠状态中它们能够存活数年,直到由宿主摄入之后,它们得到活化并孵化。出乎意料且至今尚无记载的是,发现通过在特定温度段(Temperaturfenster)内孵育一定的时间且无需加入其它因素也能简单地在体外将卵活化。活化态的卵通过测定两个互补的参数来定量:完整卵内幼虫的运动性和测定先前由溶胞产物活化的卵的ATP含量。出乎意料且与文献中记载的情况相反的是,此处描述的预孵育诱导了卵内幼虫些微的运动。幼虫的运动持续数个小时,且幼虫并不死亡或从卵孵出。因此,本文所述方法的一个优选实施方案是对卵进行导致活化的预孵育。通过用慢摄速放摄影机在显微镜下观察足够大量的卵来可靠地测定群体中含有活性的、可运动的幼虫的卵的比例(运动性指数)。然而,由于这种方法区分不了不同活性状态的幼虫个体,因而也区分不了不同的运动性/活性水平,所以将其与ATP测定结合,ATP测定提供对所分析的卵群体的总体活性的定量测量。两个分析参数(运动性指数作为直接的但不连续的量,而ATP含量作为间接的但连续的量)彼此互补,从而可靠地测定体外活性,该体外活性与体内活性较好地关联。体外活性评分能够根据所述两个参数计算,该评分与卵的体内活性较好关联。
根据本发明的体外方法明显不同于至今所知的方法。与此处描述的方法不同,仅通过视觉观察分析卵中完全形成的幼虫的存在的胚胎化率测定(Kringel等人)无法得出任何关于幼虫存活力或活性的结论。与此处描述的方法相比,通过刺激胃肠道进行的体外孵化率测定似乎复杂得多并且易于受到干扰。也没有记载所述体外孵化检测与体内活性的相关性。
在本发明的优选实施方案中测定胚胎化的状态。如果幼虫已经完整经历了胚胎发育,那么体外活性评分仅提供预测体内情况的有用结果。尽管未完全发育的幼虫可能对温度诱导的可活化性检测产生阳性反应,但是它们不是功能性的并且不能在宿主中孵化并随后进行幼虫的正常生活史。使用先前已知的方法,完全胚胎发育是依靠形态学标准用显微镜评估的。这种评估需要大量的经验,是不可靠的,并且本质上仅能对单个的卵进行。相对而言,根据本发明的方法客观地测量卵的大群体中基因组的拷贝数,由此能够计算出每个幼虫的平均体细胞数。
温度诱导的可活化性的检测结果优选通过新的体内检测来确认,该体内检测以一种简单快速的方式可靠地测定生理条件下的孵化率。惊讶地发现来自有生物学活性的卵的幼虫在肠道内大量孵化,而先前灭活的卵存活着通过肠而不发生变化。在新开发的方法中,制备物中活性TSO的比例通过仅计数通过实验动物肠道而不发生变化的无活性卵来间接测定。然而,定量只有通过使用新开发的内部标准品才能成功,所述内部标准品由荧光标记的非活性卵组成,其也通过肠道而不发生变化。令人惊讶且始料未及的是,还发现有生物学活性的TSO也在兔的肠内孵化。因此,该动物模型可以用作猪的替代品,其更经济也更易于饲养,并且有利的是具有显著更小的肠容量,这使得小到显微级的卵的回收更加简单。
根据本发明的体内检测有别于已知的在猪中进行的感染性检测。孵化率测定仅需要1-3天,而感染性检测持续数周。此外,当测定孵化率时,仅分析宿主中猪鞭虫生活史的第一步,其几乎不依赖于个体宿主因素。相对而言,猪中的感染率优选在感染之后进行3-4周的测定,并受到天然的生物可变性的影响,这种可变性的主要原因是形成的有个体差异的宿主免疫系统。
此处描述的测定法的进一步的优势依赖于这样一个事实,即卵能够从动物粪便回收并且因此不必为了检测而杀死动物。
实施例
实施例1:
基于猪鞭虫的ITS2序列,借助TaqMan系统开发了定量PCR方法。靶序列、引物和Taqman探针示于下文。选择靶序列从而使猪鞭虫得以区别于序列同样已知的其它鞭虫属类型。这样一来,除了关于ITS2拷贝数的信息,该检测还提供所分析的生物事实上是猪鞭虫的定性证据。
在样品的制备中,用波特匀浆器(体积2ml;空隙宽度0.01-0.03mm)将卵(500μl溶液中1000个卵)匀浆10分钟。显微检查证明这种方法令人惊讶地能够打开胚胎膜,而基因分离中惯用的其它破坏方法对于猪鞭虫卵还是不成功。在加入1.54μg鱼精DNA之后,根据制造商的说明将卵匀浆与用于分离基因的商用试剂盒(DNeasy-Blood and Tissue-Kit;Qiagen)反应。用DNA分离物(总体积50μl)根据下表示出的规程进行PCR反应。
Figure GSB00001009523600151
表3:用于来自猪鞭虫ITS2区的目标区段的PCR反应规程
所述方法的扩增效率在92%和98%之间,并且灵敏度足以能够测定单个卵中ITS2基因的拷贝数。
使用PCR方法,分析了未胚胎化的和完全胚胎化的猪鞭虫卵的ITS2拷贝数。结果示于下表中。
Figure GSB00001009523600161
(Ct值(循环阈值):获得显著区别于背景荧光的荧光信号所必需的PCR循环数)
表4:未胚胎化的和胚胎化的猪鞭虫卵中ITS2区的定量PCR
该PCR分析显示,胚胎化的TSO中的ITS2拷贝数比未胚胎化的TSO中的ITS2拷贝数高大约1000倍。由于可以将未胚胎化的卵(L0)认为是单个细胞,这就意味着猪鞭虫的L1幼虫具有约1000个体细胞。对于猪鞭虫而言,L1幼虫中的体细胞数至今尚为未知。对于相关生物秀丽隐杆线虫,存在数量为959个的体细胞,这与此处发现的约1000个细胞十分吻合。
为了检查幼虫发育的不同阶段是否能用所述检测方法分析,使TSO胚胎化4周,并用ITS2PCR定期进行分析(表5)。
Figure GSB00001009523600162
表5:相对ITS-2拷贝数依赖于胚胎化的持续时间
该实施例明确显示所述方法能够用于参照体细胞数来表征L0和L1之间的幼虫发育的不同阶段。因此,这种方法尤其适合于在胚胎化过程中伴随过程进行分析。在胚胎化最初的28天内达到50-1200的相对拷贝数似乎是生产蠕虫卵制备物时一个特别优选的指标。
实施例2:
为了检测三磷酸腺苷,有可商购的试剂盒可用,所述试剂盒含有反应所需的萤光素酶以及萤光素底物和镁盐等。通过预孵育胚胎化的卵来刺激三磷酸腺苷形成是必需的。处于休眠状态的活的胚胎化卵的三磷酸腺苷含量不能产生足以区别于死亡的卵的差异(图3)。由此证明了在37℃将卵孵育19小时时间的方法是合适的。所开发的分析方法的一个显著优势依赖于这样的事实,即不必为了这种孵育进行样品制备。现有的卵悬液可以直接使用,而不依赖于培养基的定性和定量组成。即使pH值小于2的强酸性培养基也可以在不进行样品制备的情况下使用并且对刺激卵中的三磷酸腺苷没有负面影响。活的和死亡的F1幼虫之间的明显区别因孵育而产生(图3)。
实施例3:
依靠自秀丽隐杆线虫中发现的热休克蛋白hsp70的序列和来自鼠鞭虫(Trichuris muris)和犬鞭虫(Trichuris vulpis)的同源序列衍生的引物,能够在来自猪鞭虫的RNA分离物中扩增基因序列。得自猪鞭虫的新序列翻译成蛋白质序列,与来自秀丽隐杆线虫的hsp70蛋白的蛋白质序列65%匹配(图5)。
对于来自猪鞭虫的推定的热休克蛋白,开发了定量RT-PRCR方法。该定量与组成型表达的18S-rRNA比较进行。对有活性的胚胎化猪鞭虫卵进行热激(45℃,20分钟),并将热休克蛋白的表达与未经处理的有活性的猪鞭虫中的表达比较。
实验#1 实验#2
对照 1.075±0.072 1.040±0.029
猪鞭虫45℃,20分钟 1.690±0.212 1.467±0.049
表6:有活性的胚胎化猪鞭虫卵(L1幼虫)中热休克蛋白的相对表达(2个独立实验,各用3个样品;误差:标准偏差):
相对表达分析清楚地显示,在猪鞭虫中与hsp70相似的mRNA的表达能够通过热激诱导(表6)。因此,这样的基因可用于活性检测,其表达能够通过选择合适的检测条件而主动诱导。
对单独的卵进行的活性基因表达检测借助荧光原位杂交技术(FISH)完成。为了能够检测推定的热休克蛋白,开发了荧光标记的DNA探针,例如图6中所示(SEQ ID NO:7)。
在荧光标记有活性的卵之后,还可以依靠流式细胞术分析卵群体。与显微镜分析相比,其优势在于该分析可更快速且更客观地进行的事实。
该实施例清楚地显示用此处描述的方法能够分析(单独的)蠕虫卵中基因表达的诱导。因此,第一次有了可用的能够用来分析休眠的L1蠕虫幼虫的可活化性的方法。
如果将基因表达的诱导用作蠕虫卵制备物在生产过程中有活性的生物学证明,那么合适的接受标准是25%-100%的阳性卵(positive Eier),优选50-100%的阳性蠕虫卵。
实施例4:
4.1运动性指数对分析条件的依赖
将有活性的猪鞭虫卵和通过在48℃孵育72小时而灭活的猪鞭虫卵在39℃孵育11小时。每小时观察每个卵5分钟并测定运动性。图7显示了随时间变化的运动性指数发展。
该实施例表明,为了将幼虫从休眠状态活化并测得恒定的、高运动性指数,在提高的温度下相对长时间的预孵育(此处:在39℃7小时)是必须的。这个观察结果是出乎意料的,因为时至今日一直将位于卵中的完全胚胎化的L1幼虫归为不运动的(Parasitology 1973,67:253-262)。之前从未观察到卵中幼虫的运动性可能是因为必须要长时间的预孵育并且缓慢的运动只能用慢摄速放摄影机才能看到。
有活性的和灭活的卵的比较清楚地显示,通过分析运动性,能够以简单的方式区分有生物学活性的猪鞭虫卵和无活性的猪鞭虫卵。
在活化期期间,观察窗口的长度影响测得的运动性指数,因为幼虫的运动不同步,因此较长的观察窗口可增加检测到有活力的卵中偶尔出现的运动的可能性。分析(图7)显示了这点,其中在活化期之后(在37℃8小时)在39.5℃到40℃对猪鞭虫制备物进行了时间长度不同的观察。该分析还显示运动性在整个8小时的观察期期间保持稳定。
因此,带有精确温度控制的活化期和长时间观察窗口是这种方法的特点和新特征。实施例4显示通过合适的温度和观察条件,能够诱导并测量仍在卵中存在的休眠L1幼虫中的运动。使用该方法,能够以简单的方式测定运动性,作为孵化的前提,并因此作为卵的生物学活性的参数,并且能够明确地区分有活性的和无活性的L1幼虫。
4.2有利的检测条件
以下检测条件已经证明是有利的:将300μlpH 7.4磷酸盐缓冲液中的15000个蠕虫卵转移至96孔板的孔中(底面积:0.31cm2)。以这种接种密度,在放大200倍时约有80-150个卵位于显微镜的视野中。在37℃孵育8小时(活化期)之后,将温度升至39.5℃并连续选择4个观察视野各观察2小时。由此以每分钟3张图像记录成一段影片。然后测定卵的数目和运动的幼虫的数目并计算运动性指数。样品的运动性指数从4个独立测量的平均值获得。
4.3可重复性和精确度——与感染性检测比较
为了分析在上述条件下运动性检测的可重复性,在不同的4天分析了4份类似的猪鞭虫装料样品。测量结果在下表中列出。作为比较,列出了使用感染性检测的4个系列测量的结果,其是用相同的猪鞭虫装料获得的。
表7:猪鞭虫装料的运动性指数测定(4个独立分析的结果,每个独立分析由4个测量组成)
来自4个独立测量系列的运动性指数彼此最多相差4.2%,相对而言来自4个独立测量系列的感染率的最大偏差是35.5%。运动性检测中单次测量的精确度在1.9%和6.3%之间,相对而言在感染性检测中的精确度在9.6%和58.4%之间。因此运动性检测在可重复性和精确度两方面都远胜于感染性检测。
4.4运动性和生物学活性之间的相关性(正确性)——与感染性检测的比较
为了分析运动性和生物学活性之间的相关性,生成了由活性TSO和热灭活TSO组成的混合物并使用运动性检测根据4.2中描述的条件进行分析。通过将卵在48℃加热72小时进行热灭活。为了获得客观的计数结果,将样品在测量之前盲化(blinded)。
将相对生物学活性作为测得的样品运动性指数和先前测定的活性TSO的运动性指数之商进行计算。测量的正确性得自比较所述相对生物学活性和样品中活性卵的实际比例。
使用来自相同装料的TSO的类似系列测量与相同的感染性检测一起进行。将实验动物用不同量的感染率已知的活性TSO感染。除去灭活的卵的混合物。结果示于下表申。
Figure GSB00001009523600201
表8:运动性检测的正确性和精确度
Figure GSB00001009523600202
表9:感染性检测的正确性和精确度
用此处示例的运动性检测,TSO样品的相对生物学活性能够正确地测定,在0%到100%之间的整个范围内与期望值的偏差小于10%。测量的精确度(测量值的变化)在50%到100%之间的相对生物学活性范围中小于5%。对于较低相对生物学活性的测定,精确度低于15%。
感染性检测的结果在0%到100%之间的相对生物学活性范围内与期望值相差约25-32%。测量值的变化在28%到80%之间。
该实施例清楚地显示运动性指数与相对生物学活性线性相关。运动性检测在正确性和精确度方面远优于感染性检测。
作为蠕虫卵制备物生物学活性的量度,运动性检测的合适范围为30%-100%,优选60-100%。
实施例5:
为了举例,将胚胎化的、未胚胎化的和灭活的胚胎化的卵的不同混合物口服施用给兔。8小时之后,通过显微镜分析所述实验动物的肠内容物,并对完整的卵和空胚胎膜进行计数。由于在此测定中,卵没有用荧光标记,所以孵化率是根据完整的胚胎化的卵和未胚胎化的卵的比例计算的(使用上述公式,其中[IE]=胚胎化的卵的数目,而[IS]=未胚胎化的卵的数目)。下表列出了所述分析和由此计算的孵化率的结果:
Figure GSB00001009523600211
表10:口服施用胚胎化的、未胚胎化的和灭活的卵的混合物之后8小时,兔的肠内容物中完整的未胚胎化猪鞭虫卵和胚胎化猪鞭虫卵以及空胚胎膜的数目。
(EE:完整的胚胎化卵;IEE:完整的热灭活的胚胎化卵;NEE:完整的未胚胎化的卵;ES:空胚胎膜;n.a.:不可用)
比较来自组1-3的数据,显示只有有活性的胚胎化的卵能够在兔体内孵化(能够通过完整的胚胎化卵数目的明显减少和大量空胚胎膜的存在来辨识)。相对而言,灭活的胚胎化的卵在肠内保持不变(组2)。这清楚地证明使用这种方法可以区分生物学活性卵和灭活的卵。另外,未胚胎化的卵尽管通过了整个肠道仍然保持完整(组3)。这使得使用未胚胎化的卵作为通过实验动物的整个肠道而不遭分解的内部标准品成为可能。这种内部标准品是必要的,因为肠内容物中卵的回收是不完全的,而回收的完整卵的绝对数目因此没有意义。将上述公式用于计算孵化率,其将内部标准品考虑在内。根据这个公式,此处分析的猪鞭虫卵显示了67.9%的孵化率,而灭活的猪鞭虫卵显示了0%的孵化率(算术值为-12.6%)。
为了实现改进的回收率以及对样品卵和内部标准品卵之间更清楚的区分,将猪鞭虫卵用荧光探针共价标记。例如使用罗丹明X琥珀酰亚胺酯作为荧光探针,其根据制造商的说明书能够与蛋白质中的伯胺基反应。将200μlpH 7.4磷酸盐缓冲液中的1000个猪鞭虫卵的悬液与20μl的1M碳酸氢钠溶液相混合,然后与5μl 0.5%罗丹明X琥珀酰亚胺酯的DMSO溶液反应。将所述溶液在室温下在转动的同时温育1小时。然后将卵通过离心(在500rpm10分钟)和更换上清缓冲液总共纯化8次。荧光显微术清楚地显示了胚胎膜染成红色(图9)。
荧光标记能够有利地用于通过显微镜评估孵化率。依靠荧光激活的流式细胞术(fluoreszenzaktivierte Durchfluβzytometrie)还使得客观快速的分析成为可能。
综上,所述实施例清楚地显示依靠此处显示的方法,能够定量分析孵化期,并且可将其用于测定生物学活性。作为对蠕虫卵制备物生物学活性的度量,孵化率的合适范围约为25%-100%。
实施例6:
温度诱导的体外可活化性与生物学体内活性的相关性
为了将温度诱导的可活化性与生物学体内活性关联,分析了12份不同量的TSO样品。首先,使用PCR方法检测所述样品胚胎发育的完成度。然后在温度诱导活化之后确定运动性指数和ATP含量。与其平行地对所述12份样品进行猪体内的感染性检测。所述感染性检测分别在5头猪中根据由Kringel等描述的方法进行。在体外活性评分中归纳了运动性和ATP含量两个体外参数:
Figure GSB00001009523600231
表11:测定数个样品的运动性指数
体外活性评分和感染性之间的关联性示于图10中。
所述实施例显示了体外活性评分和生物学体内活性之间的好的关联性。单个样品中的少量偏差更可能归因于体内检测的弱点,即体内检测背负有因生物学可变性(宿主因素)带来的固有不稳定性。
使用感染性检测来测量样品要6周,需要使用5头猪并且牵涉大量劳动力成本。此处所示的体外检测(由所示五种方法中的三种组成)要1-2天,且需要相对较低的劳动力和材料成本。
Figure ISB00000378377700011
Figure ISB00000378377700021

Claims (16)

1.用于测定胚胎化鞭虫(Trichuris)卵的生物学活性的方法,其中进行以下测定中的至少三种:
a)借助定量PCR分析通过使用供确定基因组DNA拷贝数用的合适标志序列来测定和/或确认鞭虫卵的胚胎发育阶段,其中所述合适标志序列为ITS1-5.8S-ITS2或IST-1,
b)依靠生物化学和/或分子生物学方法测定胚胎化鞭虫卵的代谢活性,
c)通过测定诱导性蛋白的表达测定胚胎化鞭虫卵中诱导型基因表达的可诱导性,
d)在36~42℃的温度预孵育后用显微镜经2分钟~8小时观察来测定在卵中存在的鞭虫幼虫的运动性,和/或
e)测定实验动物中鞭虫幼虫的孵化率,其中将从肠内容物回收的完整的胚胎化卵相较于内部标准品进行定量,其中所述内部标准品为未胚胎化的或灭活的鞭虫卵。
2.根据权利要求1的方法,其特征在于,在测定a)中,依靠定量PCR分析使用适合于猪鞭虫的特异性序列测定基因组DNA的拷贝数。
3.根据权利要求1的方法,其特征在于,在测定b)中,测量ATP含量以测定胚胎化鞭虫卵的代谢活性。
4.根据权利要求3的方法,其特征在于所述鞭虫卵在荧光测量之前在以下条件下预孵育:
aa)36℃-42℃,
bb)2-30小时,以及
cc)在pH0.1-3的悬浮培养基中。
5.根据权利要求1的方法,其特征在于,在测定b)中,将所述鞭虫卵先用选自次氯酸、壳多糖酶和/或蛋白酶的预处理剂处理,再用四唑盐染色。
6.根据权利要求1的方法,其特征在于,在测定c)中,测定热休克蛋白的可诱导性。
7.根据权利要求1的方法,其特征在于,在测定c)中,通过与荧光标记的核苷酸探针杂交来检测表达。
8.根据权利要求1的方法,其特征在于,在测定c)中,借助流式细胞术检测杂交。
9.根据权利要求1的方法,其特征在于,在测定d)中,卵中鞭虫幼虫的运动性是通过显微镜在历时2分钟到8小时的时间借助慢摄速放摄影来测定的。
10.根据权利要求1的方法,其特征在于,在测定e)中,待检验的鞭虫卵用荧光探针标记,并且内部标准品用具有不同颜色的第二种荧光探针标记。
11.根据权利要求1的方法,其特征在于,在测定e)中,将兔和/或猪的肠内容物用作检测体系。
12.根据权利要求1的方法,其特征在于,在测定e)中,将未胚胎化的鞭虫卵或灭活的鞭虫卵用作内部标准品用于确定孵化率。
13.根据权利要求1-12中任一项的方法,其特征在于进行至少四种选自测定1a)、1b)、1c)、1d)和/或1e)的测定。
14.根据权利要求1-12中任一项的方法,其特征在于在进行所述测定a)~e)之前将鞭虫卵预孵育30分钟到24小时的时间,其中所述预孵育任选还包括改变温度。
15.根据权利要求13的方法,其特征在于在进行所述测定a)~e)之前将鞭虫卵预孵育30分钟到24小时的时间,其中所述预孵育任选还包括改变温度。
16.使用鞭虫卵制备用于治疗自身免疫病的药物产品的方法,包括:
根据权利要求1-15中任一项的方法测定鞭虫卵的生物学活性来得到鞭虫卵制备物,其中至少50%的鞭虫卵是有生物学活性的;以及
将所述鞭虫卵制备物制备成药物产品。
CN200980118522.9A 2008-05-21 2009-05-20 用于表征蠕虫卵特别是鞭虫卵的生物学活性的方法 Expired - Fee Related CN102037141B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08009344.6 2008-05-21
EP08009344A EP2123774A1 (de) 2008-05-21 2008-05-21 Verfahren zur Charakterisierung der biologischen Aktivität von Helminth-Eiern
PCT/EP2009/056106 WO2009156232A1 (de) 2008-05-21 2009-05-20 Verfahren zur charakterisierung der biologischen aktivität von helminth-eiern, nämlich von trichuris eiern

Publications (2)

Publication Number Publication Date
CN102037141A CN102037141A (zh) 2011-04-27
CN102037141B true CN102037141B (zh) 2014-02-26

Family

ID=39768691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980118522.9A Expired - Fee Related CN102037141B (zh) 2008-05-21 2009-05-20 用于表征蠕虫卵特别是鞭虫卵的生物学活性的方法

Country Status (18)

Country Link
US (1) US8993332B2 (zh)
EP (2) EP2123774A1 (zh)
JP (1) JP5753778B2 (zh)
CN (1) CN102037141B (zh)
AU (1) AU2009262381B2 (zh)
CA (1) CA2723402C (zh)
CY (1) CY1116916T1 (zh)
DK (1) DK2279264T3 (zh)
ES (1) ES2552356T3 (zh)
HK (1) HK1147113A1 (zh)
HR (1) HRP20151173T1 (zh)
HU (1) HUE026151T2 (zh)
PL (1) PL2279264T3 (zh)
PT (1) PT2279264E (zh)
RU (1) RU2540145C2 (zh)
SI (1) SI2279264T1 (zh)
UA (1) UA103769C2 (zh)
WO (1) WO2009156232A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2492637C2 (ru) * 2011-07-26 2013-09-20 Закрытое акционерное общество "АЛЬФА-ТЭК" Способ предынкубационной обработки яиц препаратом галосепт
US9224200B2 (en) 2012-04-27 2015-12-29 Parasite Technologies A/S Computer vision based method for extracting features relating to the developmental stages of Trichuris spp. eggs
RU2609145C2 (ru) * 2015-06-08 2017-01-30 ФАНО России Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт фундаментальной и прикладной паразитологии животных и растений им. К.И. Скрябина (ФГБНУ "ВНИИП им. К.И. Скрябина") Способ сбора максимального количества зрелых (=оплодотворённых) яиц (in vitro) от самок возбудителя паразитарного зооноза trichuris (=trichocephalus) suis
US9603875B1 (en) 2016-01-07 2017-03-28 NeuOva, LLC Method of making a consumable product with purified embryonated Trichuris suis ova
JP6231709B1 (ja) 2016-05-31 2017-11-15 シスメックス株式会社 蛍光画像分析装置および分析方法
CN106689063B (zh) * 2016-12-07 2020-03-17 中国科学院动物研究所 一种稻螟赤眼蜂的人工繁育生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066671A3 (en) * 2001-02-16 2003-11-13 Promega Corp Improved method for detection of atp
WO2007076868A2 (en) * 2005-12-30 2007-07-12 Parasite Technologies A/S Composition comprising parasite eggs and methods for isolation and storage of parasite eggs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2430394T3 (es) 1997-12-31 2013-11-20 University Of Iowa Research Foundation Uso de agentes biológicos parasitarios para la prevención y el control de la enfermedad inflamatoria intestinal
DE102006023906A1 (de) * 2006-05-19 2007-11-22 Ovamed Gmbh Verfahren zum Nachweis der Viabilität

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066671A3 (en) * 2001-02-16 2003-11-13 Promega Corp Improved method for detection of atp
WO2007076868A2 (en) * 2005-12-30 2007-07-12 Parasite Technologies A/S Composition comprising parasite eggs and methods for isolation and storage of parasite eggs

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A real-time PCR method for quantifying viable ascaris eggs using the first internally transcribed spacer region of ribosomal DNA;Brian M. Pecson 等;《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》;20061231;第72卷;第7864-7872页 *
Brian M. Pecson 等.A real-time PCR method for quantifying viable ascaris eggs using the first internally transcribed spacer region of ribosomal DNA.《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》.2006,第72卷第7864–7872页.
Detection of a single viable Cryptosporidium parvum oocyst in environmental water concentrates by reverse transcription-PCR;TIMOTHY STINEAR 等;《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》;19960930;第62卷(第9期);第3385-3390页 *
Helene Kringel 等1.Trichuris suis population dynamics following a primary experimental infection.《Veterinary Parasitology》.2006,第139卷第132-139页.
TIMOTHY STINEAR 等.Detection of a single viable Cryptosporidium parvum oocyst in environmental water concentrates by reverse transcription-PCR.《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》.1996,第62卷(第9期),第3385–3390页.
Trichuris suis population dynamics following a primary experimental infection;Helene Kringel 等1;《Veterinary Parasitology》;20061231;第139卷;第132-139页 *

Also Published As

Publication number Publication date
CA2723402A1 (en) 2009-12-30
US20110191869A1 (en) 2011-08-04
JP2011523847A (ja) 2011-08-25
CY1116916T1 (el) 2017-04-05
WO2009156232A1 (de) 2009-12-30
US8993332B2 (en) 2015-03-31
AU2009262381B2 (en) 2015-03-26
AU2009262381A1 (en) 2009-12-30
RU2010152016A (ru) 2012-06-27
EP2123774A1 (de) 2009-11-25
HRP20151173T1 (hr) 2015-12-04
ES2552356T3 (es) 2015-11-27
US20120060229A9 (en) 2012-03-08
CN102037141A (zh) 2011-04-27
EP2279264A1 (de) 2011-02-02
UA103769C2 (ru) 2013-11-25
SI2279264T1 (sl) 2015-11-30
JP5753778B2 (ja) 2015-07-22
HUE026151T2 (en) 2016-05-30
CA2723402C (en) 2018-06-19
DK2279264T3 (en) 2015-11-23
RU2540145C2 (ru) 2015-02-10
HK1147113A1 (zh) 2011-07-29
PL2279264T3 (pl) 2016-01-29
PT2279264E (pt) 2015-11-20
EP2279264B1 (de) 2015-08-19
WO2009156232A9 (de) 2010-02-18

Similar Documents

Publication Publication Date Title
CN102037141B (zh) 用于表征蠕虫卵特别是鞭虫卵的生物学活性的方法
Trivedi et al. Clinical features and epidemiology of cryptococcosis in cats and dogs in California: 93 cases (1988–2010)
Fischer et al. Abscesses associated with a Brucella inopinata–like bacterium in a big-eyed tree frog (Leptopelis vermiculatus)
Kendall et al. Replacement, refinement, and reduction in animal studies with biohazardous agents
TW201713775A (zh) 用於自複雜的異源群集中分析微生物品系、預測及識別其機能性關係及交互作用,且依據前述選擇並合成微生物系集之方法、裝置及系統
Tartor et al. Diagnostic performance of molecular and conventional methods for identification of dermatophyte species from clinically infected Arabian horses in Egypt
Kozak et al. The performance of a PCR assay for field studies on the prevalence of Fasciola hepatica infection in Galba truncatula intermediate host snails
Trimpert et al. Elizabethkingia miricola infection in multiple anuran species
Clothier et al. Effects of bacterial contamination of media on the diagnosis of Tritrichomonas foetus by culture and real-time PCR
Whipps et al. Bacterial and fungal diseases of zebrafish
Ledwoń et al. Drug Susceptibility of Non-tuberculous Strains of Isolated from Birds from Poland
Frankel et al. The Galleria mellonella infection model for investigating the molecular mechanisms of Legionella virulence
Tanaka et al. Rhinocerebral zygomycosis due to a Lichtheimia ramosa infection in a calf: neural spread through the olfactory nerves
RU2687553C1 (ru) Способ прижизненной дифференциальной диагностики туберкулёза и микобактериозов крупного рогатого скота
RU2247987C2 (ru) Способ определения бактерицидной активности сыворотки крови
RU2657430C2 (ru) Способ прижизненной диагностики микобактериозов крупного рогатого скота
Dobrosavljević et al. Clinical, Dermatoscopical and Laboratory Essentials of Fish Tank Granuloma
RU2738133C1 (ru) Способ прижизненной диагностики туберкулёза крупного рогатого скота
Eshraghi et al. Assessment of Albendazole and Mebendazole Effects on the Excretory/Secretory Proteome of Gastrointestinal Strain of Echinococcus granulosus Protoscoleces Using Two-Dimensional Gel Electrophoresis.
RU2469296C1 (ru) Люминесцентно-микроскопический способ оценки состояния внутриклеточного обмена органических веществ в стенке железистого желудка птиц при клебсиеллезе
WO2021225089A1 (ja) 刺激物質と産生物質との相関関係を明らかにする方法
RU2393211C2 (ru) Штамм анаплазм "anaplasma speciosus omsk" нового генотипа, используемый для идентификации анаплазм и получения диагностических препаратов
Lizarraga et al. Snake Fungal Disease Caused by the Fungal Pathogen Ophidiomyces ophidiicola in Texas
Sarmeidani et al. Investigating and identifying Chlamydia psittaci in asymptomatic and symptomatic domestic dogs in middle province of Iran
Raissy et al. Diagnosis of infectious hematopoietic necrosis in rainbow trout hatcheries, Iran

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140226

Termination date: 20180520