CN102030308A - Method for assembling particle ordered array in polarized way based on ferroelectric film electric domain - Google Patents

Method for assembling particle ordered array in polarized way based on ferroelectric film electric domain Download PDF

Info

Publication number
CN102030308A
CN102030308A CN 201010521402 CN201010521402A CN102030308A CN 102030308 A CN102030308 A CN 102030308A CN 201010521402 CN201010521402 CN 201010521402 CN 201010521402 A CN201010521402 A CN 201010521402A CN 102030308 A CN102030308 A CN 102030308A
Authority
CN
China
Prior art keywords
thin film
ferroelectric
ferroelectric thin
electricdomain
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010521402
Other languages
Chinese (zh)
Other versions
CN102030308B (en
Inventor
沈臻魁
陈国平
刘冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2010105214028A priority Critical patent/CN102030308B/en
Publication of CN102030308A publication Critical patent/CN102030308A/en
Application granted granted Critical
Publication of CN102030308B publication Critical patent/CN102030308B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention belongs to the technical field of electronics, and in particular relates to a method for assembling a particle ordered array in a polarized way based on a ferroelectric material electric domain. In the method, an array pattern of surface charges is formed by selectively polarizing an electric domain of a ferroelectric film, and particles are selectively assembled and deposited on the surface of the ferroelectric film through the interaction of the array pattern and polar particles, so that corresponding array distribution of the particles is formed. By particle assembly technology, the method has the advantages of simple and convenient process, low cost and great application value.

Description

Assemble the method for molecule oldered array based on the polarization of ferroelectric thin film electricdomain
Technical field
The invention belongs to electronic technology field, thereby be specifically related to a kind of method that ferroelectric thin film surface charge array is applied to assemble distribution molecule array of constructing.
Background technology
It is that nano material reaches one of important channel of application that molecule is assembled in order, also is one of main means of device miniaturization.Device architecture can be controlled at molecule and even atomic level by package technique, guarantee high-sequential and the directionality of particle on yardstick, thereby promote the manufacturing of all kinds of micro-machine.Reach extensive use in fields such as biologic medical, electron detections.
Ferroelectric material is the widely used functional material of a class.Ferroelectric crystal is made up of many zonules (electricdomain), and the polarised direction unanimity in each electricdomain, the polarised direction of adjacent electricdomain are then different.From macroscopic view, whole crystal is non-polarized, is neutral.But under the external influence (as electric field), polarization enlarges along the electricdomain of direction of an electric field.When all electricdomains all along the external electric field direction, whole crystal becomes single domain crystal, the surface in ferroelectric thin film corresponding polarized zone had bound charge and produced and shield the built in field of ferroelectric thin film electricdomain after polarized this moment.We make its surface form the corresponding graphical electric charge that distributes by the ferroelectric thin film that optionally polarizes, and make it and need assembled particle interaction (positive and negative charge attraction), thereby finish the array pattern deposition of particle.
Summary of the invention
It is orderly to the objective of the invention is to propose a kind of polarization assembling molecule based on the ferroelectric thin film electricdomain
The method of array is to be used for fields such as electronics, biologic medical.
The method based on the polarization assembling molecule oldered array of ferroelectric thin film electricdomain that the present invention proposes specifically comprises the steps:
(1) deposit ferroelectric thin film on substrate;
(2) polarization ferroelectric thin film electricdomain;
(3) ferroelectric material after will polarizing places solution;
(4) from solution, take out ferroelectric thin film and being dried.
Among the present invention, described on substrate the method for deposited iron conductive film, comprising: spin coating, chemical method deposit or physical method deposit etc.
Among the present invention, described substrate comprises: silicon, platinum, ruthenium, iridium, chromium, gold, yttrium oxide or glass etc.
Among the present invention, described molecule can be metallic particles, biomolecule or cell etc.
Among the present invention, the material of described ferroelectric thin film comprises lead zirconate titanate, strontium bismuth titanate, bismuth lanthanum titanate, barium strontium or polyvinylidene fluoride base ferroelectric material etc.
Among the present invention, the method for described polarization ferroelectric thin film electricdomain comprise extra electric field, ultraviolet ray irradiation,
Chemical corrosion method or stamping technique etc.
Among the present invention, it is the solution that contains the negative ions of certain band polarity or biomolecule etc. that the ferroelectric material after described will the polarization places the solution of solution.
Among the present invention, describedly the ferroelectric thin film that takes out from solution is carried out dry drying means comprise hot plate heating and air-dry etc.
The two-dimensional array of the molecule that the method for assembling molecule oldered array provided by the present invention can effectively realize distributes, and is widely used, and reduces production costs greatly.
Description of drawings
Fig. 1-Fig. 5 is the example procedure generalized section according to the inventive method.
Number in the figure: 100 silicon substrates, 102 platinum substrates, 104 ferroelectric lead zirconate titanate films, 106 extra electric field equipment, 108 contain the solution of negative ions or biomolecule, cell, the molecule of 110 array distribution.
The specific embodiment
Hereinafter more specifically describe the present invention in the reference example, the invention provides preferred embodiment, but should not be considered to only limit to embodiment set forth herein in conjunction with being shown in.In the drawings, for convenience of description, amplified the thickness in layer and zone, shown in size do not represent actual size.
Reference diagram is the schematic diagram of idealized embodiment of the present invention, embodiment shown in the present should not be considered to only limit to the given shape in zone shown in the figure, in embodiments of the present invention, all represent with optical grating construction, expression among the figure is schematically, but this should not be considered to limit the scope of the invention.
Fig. 1-Fig. 5 is the preparation process generalized section according to the example of the inventive method application.
Fig. 1 is the cross-sectional view of substrate 100 and 102.Selected substrate can be silicon, platinum, ruthenium, iridium, chromium, gold and yttrium oxide, or glass.What example was selected herein is silicon and platinum.
Fig. 2 is the cross-sectional view behind spin coating one deck ferroelectric thin film 104 on the substrate 100, and ferroelectric thin film can be ferroelectric materials such as lead zirconate titanate or polyvinylidene fluoride base.What this example used is lead zirconate titanate, be spin-coated on the substrate 102 with 3000r/min, on the hot plate of 345-360 degree centigrade (preferred 350 degrees centigrade), it is heated 4-8 minute (preferred minute) then, and then under 600-700 degree centigrade (preferred 650 degrees centigrade), annealed 12-16 minute, thereby obtain ferroelectric thin film 104.
The cross-sectional view that Fig. 3 polarizes for the electricdomain to 104 ferroelectric thin films, polarization method can be electric field, ultraviolet irradiation, chemical attack or nanometer embossing etc.This example adopts and utilizes piezoelectricity atomic force microscopy apparatus 106 to utilize extra electric field (needle point adds negative voltage, substrate ground connection) that ferroelectric lead zirconate titanate film 104 is polarized.Extra electric field be distributed as the grating array figure, thereby obtain the ferroelectric thin film 104-1 of polarized (the electricdomain polarised direction up) that grating distributes.
Fig. 4 immerses the schematic diagram in the solution 108 that contains negative ions or band biomolecule or cell later for the ferroelectric thin film that will polarize.What adopt in this example is the tetrachloro alloy acid solution.Ferroelectric lead zirconate titanate film after the polarization is immersed in this solution, placed air ambient 15--25 minute, because the polarization up of ferroelectric thin film electricdomain, promptly make the surface, polairzed area be with corresponding negative electrical charge, gold ion in the solution will carry out oxidation in corresponding negative electrical charge distributed areas and precipitate, and forms the distribution of gold grain.
Fig. 5 is for finishing the sectional view that the molecule assembling distributes on ferroelectric thin film.What use in this example is ferroelectric lead zirconate titanate film, and the assembling of having finished the grating dress of gold grain distributes.
Under situation without departing from the spirit and scope of the present invention, can also constitute many very embodiment of big difference that have.Should be appreciated that except as defined by the appended claims, the invention is not restricted at the specific embodiment described in the specification.

Claims (9)

1. method based on the polarization of ferroelectric material electricdomain assembling molecule oldered array, it is characterized in that electricdomain by the ferroelectric material that optionally polarizes, make the ferroelectric material surface with going up the graphical surface charge that distributes, and then interact with the molecule that has polarity, make molecule optionally be assembled in the ferroelectric material surface, concrete steps are:
(1) deposit ferroelectric thin film on substrate;
(2) polarization ferroelectric thin film electricdomain;
(3) ferroelectric material after will polarizing places solution;
(4) from solution, take out ferroelectric thin film and being dried.
2. method according to claim 1 is characterized in that: the method that forms the ferroelectric thin film deposit on substrate is spin coating, chemical method deposit or physical method deposit.
3. method according to claim 1 is characterized in that: described substrate is silicon, platinum, ruthenium, iridium, chromium, gold, yttrium oxide or glass.
4. according to claim 1,2 or 3 described methods, it is characterized in that: described molecule is metallic particles, biomolecule or cell.
5. according to claim 1,2 or 3 described methods, it is characterized in that: the material of described ferroelectric thin film is lead zirconate titanate, strontium bismuth titanate, bismuth lanthanum titanate, barium strontium or polyvinylidene fluoride base ferroelectric material.
6. method according to claim 4 is characterized in that: the material of described ferroelectric thin film is lead zirconate titanate, strontium bismuth titanate, bismuth lanthanum titanate, barium strontium or polyvinylidene fluoride base ferroelectric material.
7. according to claim 1,2,3 or 4 described methods, it is characterized in that: the method for described polarization ferroelectric thin film electricdomain is extra electric field, ultraviolet irradiation, chemical attack or impression.
8. according to claim 1,2,3 or 4 described methods, it is characterized in that: described solution is to contain the negative ions of certain band polarity or the solution of biomolecule.
9. according to claim 1,2,3 or 4 described methods, it is characterized in that: described drying means is hot plate heating or air-dry.
CN2010105214028A 2010-10-27 2010-10-27 Method for assembling particle ordered array in polarized way based on ferroelectric film electric domain Expired - Fee Related CN102030308B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105214028A CN102030308B (en) 2010-10-27 2010-10-27 Method for assembling particle ordered array in polarized way based on ferroelectric film electric domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105214028A CN102030308B (en) 2010-10-27 2010-10-27 Method for assembling particle ordered array in polarized way based on ferroelectric film electric domain

Publications (2)

Publication Number Publication Date
CN102030308A true CN102030308A (en) 2011-04-27
CN102030308B CN102030308B (en) 2012-08-01

Family

ID=43883833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105214028A Expired - Fee Related CN102030308B (en) 2010-10-27 2010-10-27 Method for assembling particle ordered array in polarized way based on ferroelectric film electric domain

Country Status (1)

Country Link
CN (1) CN102030308B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204458A (en) * 2013-03-14 2013-07-17 西安交通大学 Ultraviolet polymerization electret based self-assembly method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562633B2 (en) * 2001-02-26 2003-05-13 International Business Machines Corporation Assembling arrays of small particles using an atomic force microscope to define ferroelectric domains
US6756236B2 (en) * 2000-12-05 2004-06-29 Sony International (Europe) Gmbh Method of producing a ferroelectric memory and a memory device
CN1937274A (en) * 2005-09-23 2007-03-28 清华大学 Ferroelectric domain array structure, and its preparing method and ferroelectric film having same
CN101612612A (en) * 2002-12-09 2009-12-30 北卡罗来纳-查佩尔山大学 Be used to assemble method and correlated product with the material of sorting of nanostructure-containing
CN101786599A (en) * 2010-01-14 2010-07-28 复旦大学 Method for constructing surface topography of ferroelectric film material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756236B2 (en) * 2000-12-05 2004-06-29 Sony International (Europe) Gmbh Method of producing a ferroelectric memory and a memory device
US6562633B2 (en) * 2001-02-26 2003-05-13 International Business Machines Corporation Assembling arrays of small particles using an atomic force microscope to define ferroelectric domains
CN101612612A (en) * 2002-12-09 2009-12-30 北卡罗来纳-查佩尔山大学 Be used to assemble method and correlated product with the material of sorting of nanostructure-containing
CN1937274A (en) * 2005-09-23 2007-03-28 清华大学 Ferroelectric domain array structure, and its preparing method and ferroelectric film having same
CN101786599A (en) * 2010-01-14 2010-07-28 复旦大学 Method for constructing surface topography of ferroelectric film material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204458A (en) * 2013-03-14 2013-07-17 西安交通大学 Ultraviolet polymerization electret based self-assembly method
CN103204458B (en) * 2013-03-14 2015-06-03 西安交通大学 Ultraviolet polymerization electret based self-assembly method

Also Published As

Publication number Publication date
CN102030308B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
Zhang et al. Organometallic-based hybrid perovskite piezoelectrics with a narrow band gap
Gao et al. Microstructure and properties of well-ordered multiferroic Pb (Zr, Ti) O3/CoFe2O4 nanocomposites
Gupta et al. Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application
Lv et al. 4-inch ternary BiFeO3–BaTiO3–SrTiO3 thin film capacitor with high energy storage performance
JP6049895B2 (en) Magnetoelectric sensor and method for manufacturing the sensor
JP2012519378A5 (en)
Xiang et al. Applications of Ion Beam Irradiation in multifunctional oxide thin films: A Review
CN101710527A (en) Double-layer barium titanate-cobalt ferrite multiferroic composite membrane material and preparation method thereof
Zhao et al. Effects of thickness on energy storage of (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric films deposited on LaNiO3 electrodes
Bai et al. Enhancement of polarization in ferroelectric films via the incorporation of gold nanoparticles
CN108574043B (en) Flexible magnetic field intensity sensor based on magnetoelectric composite film
Zhou et al. Tuning phase fractions and leakage properties of chemical solution deposition-derived mixed-phase BiFeO3 thin films
CN107910030A (en) A kind of preparation method of flexibility BNT ferroelectric thin films
CN102030308B (en) Method for assembling particle ordered array in polarized way based on ferroelectric film electric domain
CN109155357A (en) Transparent piezoelectric device and its manufacturing method
Wang et al. Polarization Evolution in Morphology-Engineered Freestanding Single-Crystalline BaTiO3 Membranes
CN110459671B (en) Flexible magnetoelectric coupling sensor and preparation method thereof
US10092928B2 (en) Process for the manufacture of a component comprising a stack of a functional layer on a composite film
KR101435913B1 (en) layered structure of enery havester and the method for manufacturing thereof
CN106458631B (en) Oxide dielectric body and method for manufacturing the same, and solid-state electronic device and method for manufacturing the same
CN101786599A (en) Method for constructing surface topography of ferroelectric film material
CN102021572B (en) Particle self-assembly method based on nano-imprinting of ferroelectric materials
CN110643948A (en) Strontium titanate/ruthenate strontium ferroelectric superlattice thin film material and preparation method thereof
KR101759861B1 (en) Manufacturing method for piezo-electric element
Meng et al. High-k lead-free ferroelectric KNN as an electron blocking layer toward efficient hybrid piezoelectric–triboelectric nanogenerators

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120801

Termination date: 20141027

EXPY Termination of patent right or utility model