CN102012501A - 一种受地形影响的雷达探测范围三维可视化的修正方法 - Google Patents

一种受地形影响的雷达探测范围三维可视化的修正方法 Download PDF

Info

Publication number
CN102012501A
CN102012501A CN2010102422921A CN201010242292A CN102012501A CN 102012501 A CN102012501 A CN 102012501A CN 2010102422921 A CN2010102422921 A CN 2010102422921A CN 201010242292 A CN201010242292 A CN 201010242292A CN 102012501 A CN102012501 A CN 102012501A
Authority
CN
China
Prior art keywords
sampled point
radar
angle
point
influence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102422921A
Other languages
English (en)
Other versions
CN102012501B (zh
Inventor
邱航
陈雷霆
蔡洪斌
黄焰
曹跃
何明耘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201010242292A priority Critical patent/CN102012501B/zh
Publication of CN102012501A publication Critical patent/CN102012501A/zh
Application granted granted Critical
Publication of CN102012501B publication Critical patent/CN102012501B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种受地形影响的雷达探测范围三维可视化的修正方法,其特征在于该方法包括以下步骤:(1)判断雷达中心位置与地形高程值的关系,决定是否绘制雷达探测范围。(2)从雷达中心开始,确定受地形影响的采样点。(3)采用插值的方法,将被遮挡的采样点修正到地形处。本发明相对于其他地形修正方法,不仅效率上有了大幅提升,而且对于不同的地形,都能得到较好的修正精度。

Description

一种受地形影响的雷达探测范围三维可视化的修正方法
技术领域
本发明属于雷达探测范围三维可视化技术领域,特别是涉及了存在地形影响下对雷达探测范围的修正方法。
背景技术
近年来,随着虚拟现实和可视化技术在军事领域的广泛应用,虚拟战场环境得到了长足的发展,电磁信息的可视化倍受指挥员和技术研究人员的关注。雷达作为战场电磁信息的主要来源,其作用范围本身是不可见的,而且受到环境因素的极大制约,从虚拟战场环境中获取相关的地形(陆地和海洋)、气象等信息,建立起考虑地形和气象等因素的雷达作用范围模型,将其以某种可视的、多分辨率的、与用户可交互的方式呈现在虚拟数字化战场环境当中,具有十分重要的意义。本发明正是为修正雷达探测范围三维可视化时受地形影响而产生的误差。现有已公开的雷达三维可视化受地形影响的修正方法比较少。2006年孟国明在其硕士论文中(国防科技大学)提出了一种修正方法,该方法以几何光学为基础,将受影响的采样点垂直修正到对应的地形点处或原点与地形最高点连线的延长线上,同时,该方法采用直接的赋值法对受地形影响的采样点进行修正,如图5所示,但此在地形较为陡峭时修正精度不高,根据此种方法,当一段山坡遮挡了雷达波瓣时,会将采样点垂直修正到对应的地形上,在采样点间隔不变的情况下,山坡越陡峭,修正到地形上的采样点越少,这样就造成了精度不高的问题。2007年陈鹏在其博士论文中(国防科技大学)提出了另一种修正方法,该方法首先记录第一个受地形影响的采样点,找到地形的最高点(即山峰),将记录点与山峰之间的采样点修正为对应的地形高程(即将点垂直的提到上面),山峰后受地形影响的采样点在不同情况下修正到AFC折线段或直线AB上,如图6所示,但此方法不仅在地形陡峭时修正精度较低,同时对于图2(b)所示的情况,此方法首先找到第一个受地形影响的P点,然后找到山峰,将这之间的采样点修正为对应的地形,实际上此时雷达波瓣被地形完全截断,应该将受影响的采样点修正到截断面处,故此方法并不适用于全部的地形情况。此外,此种方法首先对单峰进行处理,再扩展到多峰的情况,处理速度较慢。
发明内容
本发明目的是解决现有技术的不足,提供一种受地形影响的雷达探测范围三维可视化的修正方法,使其在雷达探测范围三维可视化时,有较高效率且适应各种不同地形的地形修正方法。
为实现上述目的,本发明的修正方法以几何光学中的光的直线传播为基本原理,对各种地形遮挡情况分别确定受地形影响的采样点范围,用线性插值对受地形影响的采样点进行修正,其特点包括下列步骤:
(1)判断雷达中心位置与对应地形高度的关系,决定是否绘制雷达探测范围;
(2)从雷达中心开始,根据不同的地形情况,确定雷达波瓣上受地形影响需修正的的采样点;
(3)使用线性插值法将受地形影响的采样点修正到地形处。
决定是否绘制雷达探测范围其步骤如下:设雷达中心位置O(x,yO),对应地形点
Figure BSA00000212752700021
判断雷达中心位置O(x,yO)与对应地形点
Figure BSA00000212752700022
高程值的关系,若
Figure BSA00000212752700031
则绘制雷达探测范围,反之则不绘制。
确定雷达波瓣上受地形影响需修正的采样点包括以下步骤:
(1)从雷达中心点O开始,当前为采样点P(x,yP),对应地形点为Q(x,yQ);若yP<yQ,则记录P之前的采样点P0进入下一步,反之进入步骤(7);
(2)计算OQ与x轴的夹角angle,找出俯仰角为angle的采样点Q′,需修正的采样点范围即为OP0与OQ′夹角之间的采样点,若OQ′>OQ,则将采样点使用线性插值法修正到直线P0Q,进入下一步;反之不处理,进入下一步;
(3)沿OQ方向增加微小步长Δr到K,若OQ′>OK,则进入下一步;反之进入步骤(7);
(4)计算K(x,yK)对应的地形点
Figure BSA00000212752700032
Figure BSA00000212752700033
进入步骤(6);反之进入下一步;
(5)计算OQ1与x轴的夹角angle,找出俯仰角为angle的采样点Q1′,需修正的采样点范围即为OQ′与OQ1′夹角之间的采样点,若OQ1′>OQ1,则使用线性插值法将采样点修正到直线QQ1,令Q=Q1,进入步骤(3);反之不处理,令Q=Q1,进入步骤(3);
(6)令Q=K,进入步骤(3);
(7)处理下一个未处理的采样点P,进入步骤(1),若一个波瓣中的所有采样点已处理,则进入下一个波瓣;若所有波瓣的采样点均已处理,则结束方法。
使用线性插值法将采样点修正到直线P0Q上,具体包括以下步骤:
(1)记录OP0、OQ的长度r0、r1,OP0与OQ′之间采样点的数目int erval,当前需修正的采样点的俯仰角angle0以及从P0开始到当前采样点的个数loop;
(2)由线性插值公式可得当前采样点修正后的距离tp=r0+(r1-r0)*loop/int erval;
(3)由极坐标与直角坐标转换公式可得修正后采样点的坐标。
本发明的有益效果在于:
修正雷达探测范围三维可视化时受地形影响而产生的误差,适应各种不同地形,修正精度高,处理速度快。具体表现为:
①本发明将采样点回缩到地形处而非垂直提到地形处,故不存在当一段山坡遮挡了雷达波瓣时,会将采样点垂直修正到对应的地形上,在采样点间隔不变的情况下,同样长度的山坡越陡峭,修正到山坡地形上的采样点越少,造成了精度不高等问题。
②本发明不考虑单峰与多峰情况,一次性对地形进行处理,速度较快。
附图说明
图1是雷达中心位置O低于对应地形点Q0的几何图。
图2是连接OQ出现的两种不同情况的几何图;图2(a)为OQ′>OQ,图2(b)为OQ′<OQ。
图3是增加微小步长Δr到K,K与其对应地形点Q1的两种情况的几何图;图3(a)为图3(b)为
Figure BSA00000212752700042
图4是连接OQ1出现的两种不同情况的几何图;图4(a)为OQ1′>OQ1,图4(b)为OQ1′<OQ1
图5是孟国明其硕士论文中地形修正方法的几何图。
图6是陈鹏博士论文中地形修正方法的几何图。
图7是本发明的流程图。
图8是确定受地形影响的采样点的范围方法的流程图。
具体实施方式
下面,我们结合附图对本发明做进一步的阐述:
如图7所示;
1.根据雷达中心位置高度和对应的地形高度,判断是否绘制雷达探测范围
设置visible标志,在绘制时使用;读取雷达中心坐标(x,yP)以及对应的地形坐标(x,yQ);若则令visible=true,绘制雷达探测范围;反之令visible=false,不绘制雷达探测范围。
2.确定雷达波瓣上受地形影响的采样点的范围,如图8所示。
(1)从雷达中心点O开始,当前为采样点P(x,yP),对应地形点为Q(x,yQ);若yP<yQ,则记录P之前的采样点P0进入下一步,如图2(a)所示;反之进入步骤(7)。
(2)计算OQ与x轴的夹角angle,找出俯仰角为angle的采样点Q′,需修正的采样点范围即为OP0与OQ′夹角之间的采样点。若OQ′>OQ,则将采样点使用第3步中的插值法修正到直线P0Q,进入下一步,如图2(a)所示;反之不处理,进入下一步,如图2(b)所示。
(3)沿OQ方向增加微小步长Δr到K。若OQ′>OK,则进入下一步;反之进入步骤(7)。
(4)计算K(x,yK)对应的地形点
Figure BSA00000212752700052
Figure BSA00000212752700053
进入步骤(6),如图3(a);反之进入下一步,如图3(b)所示。
(5)计算OQ1与x轴的夹角angle,找出俯仰角为angle的采样点Q1′,需修正的采样点范围即为OQ′与OQ1′夹角之间的采样点。若OQ1′>OQ1,则使用权利要求4中的插值法将采样点修正到直线QQ1,令Q=Q1,进入步骤(3),如图4(a)所示;反之不处理,令Q=Q1,进入步骤(3),如图4(b)所示。
(6)令Q=K,进入步骤(3)。
(7)处理下一个未处理的采样点P,进入步骤(1)。若一个波瓣中的所有采样点已处理,则进入下一个波瓣;若所有波瓣的采样点均已处理,则结束方法。
3.使用线性插值的修正受地形影响的采样点
(1)记录OP0、OQ的长度r0、r1,OP0与OQ′之间采样点的数目int erval,当前需修正的采样点的俯仰角angle0以及从P0开始到当前采样点的个数loop。
(2)由线性插值公式可得当前采样点修正后的距离tp=r0+(r1-r0)*loop/int erval。
(3)由极坐标与直角坐标转换公式可得修正后采样点的坐标。

Claims (4)

1.一种受地形影响的雷达探测范围三维可视化的修正方法,该修正方法以几何光学中的光的直线传播为基本原理,对各种地形遮挡情况分别确定受地形影响的采样点范围,用线性插值法对受地形影响的采样点进行修正,其特征在于该方法包括以下步骤:
(1)判断雷达中心位置与对应地形高度的关系,决定是否绘制雷达探测范围;
(2)从雷达中心开始,根据不同的地形情况,确定雷达波瓣上受地形影响需修正的采样点;
(3)使用线性插值法将受地形影响的采样点修正到地形处。
2.根据权利要求1所述的受地形影响的雷达探测范围三维可视化的修正方法,其特征在于决定是否绘制雷达探测范围其步骤如下:设雷达中心位置O(x,yO),对应地形点判断雷达中心位置O(x,yO)与对应地形点
Figure FSA00000212752600012
高程值的关系,若
Figure FSA00000212752600013
则绘制雷达探测范围,反之则不绘制。
3.根据权利要求1所述的受地形影响的雷达探测范围三维可视化的修正方法,其特征在于确定雷达波瓣上受地形影响需修正的采样点包括以下步骤:
(1)从雷达中心点O开始,当前为采样点P(x,yP),对应地形点为Q(x,yQ);若yP<yQ,则记录P之前的采样点P0进入下一步,反之进入步骤(7);
(2)计算OQ与x轴的夹角angle,找出俯仰角为angle的采样点Q′,需修正的采样点范围即为OP0与OQ′夹角之间的采样点,若OQ′>OQ,则将采样点使用线性插值法修正到直线P0Q,进入下一步;反之不处理,进入下一步;
(3)沿OQ方向增加微小步长Δr到K,若OQ′>OK,则进入下一步;反之进入步骤(7);
(4)计算K(x,yK)对应的地形点
Figure FSA00000212752600014
Figure FSA00000212752600015
进入步骤(6);反之进入下一步;
(5)计算OQ1与x轴的夹角angle,找出俯仰角为angle的采样点Q1′,需修正的采样点范围即为OQ′与OQ1′夹角之间的采样点,若OQ1′>OQ1,则使用线性插值法将采样点修正到直线QQ1,令Q=Q1,进入步骤(3);反之不处理,令Q=Q1,进入步骤(3);
(6)令Q=K,进入步骤(3);
(7)处理下一个未处理的采样点P,进入步骤(1),若一个波瓣中的所有采样点已处理,则进入下一个波瓣;若所有波瓣的采样点均已处理,则结束方法。
4.根据权利要求1或2所述的受地形影响的雷达探测范围三维可视化的修正方法,其特征在于:使用线性插值法将采样点修正到直线P0Q上,具体包括以下步骤:
(1)记录OP0、OQ的长度r0、r1,OP0与OQ′之间采样点的数目int erval,当前需修正的采样点的俯仰角angle0以及从P0开始到当前采样点的个数loop;
(2)由线性插值公式可得当前采样点修正后的距离tp=r0+(r1-r0)*loop/int erval;
(3)由极坐标与直角坐标转换公式可得修正后采样点的坐标。
CN201010242292A 2010-08-02 2010-08-02 一种受地形影响的雷达探测范围三维可视化的修正方法 Expired - Fee Related CN102012501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010242292A CN102012501B (zh) 2010-08-02 2010-08-02 一种受地形影响的雷达探测范围三维可视化的修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010242292A CN102012501B (zh) 2010-08-02 2010-08-02 一种受地形影响的雷达探测范围三维可视化的修正方法

Publications (2)

Publication Number Publication Date
CN102012501A true CN102012501A (zh) 2011-04-13
CN102012501B CN102012501B (zh) 2012-10-17

Family

ID=43842732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010242292A Expired - Fee Related CN102012501B (zh) 2010-08-02 2010-08-02 一种受地形影响的雷达探测范围三维可视化的修正方法

Country Status (1)

Country Link
CN (1) CN102012501B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267396A (zh) * 2014-10-17 2015-01-07 中国电子科技集团公司第二十九研究所 雷达探测范围的三维图成像方法
CN105701859A (zh) * 2016-02-22 2016-06-22 武汉华信联创技术工程有限公司 一种雷达单站极坐标数据的三维格点化处理方法和系统
CN106777917A (zh) * 2016-11-29 2017-05-31 武汉理工大学 水工建筑物对海事交管雷达遮蔽区域计算和影响评价方法
CN106932772A (zh) * 2017-03-15 2017-07-07 华北计算技术研究所(中国电子科技集团公司第十五研究所) 一种面向数字地球的受地形影响的雷达探测范围显示方法
CN109283499A (zh) * 2018-09-10 2019-01-29 西北工业大学 一种基于雷达方程的有源干扰下探测范围三维可视化方法
CN111859255A (zh) * 2020-07-17 2020-10-30 中国人民解放军78125部队 一种地形遮蔽影响下雷达探测范围计算方法
CN115032605A (zh) * 2022-08-10 2022-09-09 中国航天科工集团八五一一研究所 一种基于目标能力画像的雷达目标体系分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731780A (en) * 1990-12-11 1998-03-24 Hollandse Signaalapparaten B.V. Radar system
CN101482616A (zh) * 2008-08-13 2009-07-15 中国科学院电子学研究所 一种地形测量方法
CN101533529A (zh) * 2009-01-23 2009-09-16 北京建筑工程学院 基于深度图像的三维空间数据处理方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731780A (en) * 1990-12-11 1998-03-24 Hollandse Signaalapparaten B.V. Radar system
CN101482616A (zh) * 2008-08-13 2009-07-15 中国科学院电子学研究所 一种地形测量方法
CN101533529A (zh) * 2009-01-23 2009-09-16 北京建筑工程学院 基于深度图像的三维空间数据处理方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《电子测量与仪器学报》 20100630 邱航等 地形影响下雷达作用范围三维可视化研究 第24卷, 第6期 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267396A (zh) * 2014-10-17 2015-01-07 中国电子科技集团公司第二十九研究所 雷达探测范围的三维图成像方法
CN105701859A (zh) * 2016-02-22 2016-06-22 武汉华信联创技术工程有限公司 一种雷达单站极坐标数据的三维格点化处理方法和系统
CN106777917A (zh) * 2016-11-29 2017-05-31 武汉理工大学 水工建筑物对海事交管雷达遮蔽区域计算和影响评价方法
CN106777917B (zh) * 2016-11-29 2019-10-01 武汉理工大学 水工建筑物对海事交管雷达遮蔽区域计算和影响评价方法
CN106932772A (zh) * 2017-03-15 2017-07-07 华北计算技术研究所(中国电子科技集团公司第十五研究所) 一种面向数字地球的受地形影响的雷达探测范围显示方法
CN109283499A (zh) * 2018-09-10 2019-01-29 西北工业大学 一种基于雷达方程的有源干扰下探测范围三维可视化方法
CN109283499B (zh) * 2018-09-10 2022-09-13 西北工业大学 一种基于雷达方程的有源干扰下探测范围三维可视化方法
CN111859255A (zh) * 2020-07-17 2020-10-30 中国人民解放军78125部队 一种地形遮蔽影响下雷达探测范围计算方法
CN111859255B (zh) * 2020-07-17 2021-02-09 中国人民解放军78125部队 一种地形遮蔽影响下雷达探测范围计算方法
CN115032605A (zh) * 2022-08-10 2022-09-09 中国航天科工集团八五一一研究所 一种基于目标能力画像的雷达目标体系分析方法

Also Published As

Publication number Publication date
CN102012501B (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
CN102012501B (zh) 一种受地形影响的雷达探测范围三维可视化的修正方法
CN102999910B (zh) 一种图像深度计算方法
CN102646275B (zh) 通过跟踪和定位算法实现虚拟三维叠加的方法
CN107767453B (zh) 一种基于规则约束的建筑物lidar点云重构优化方法
CN104463108A (zh) 一种单目实时目标识别及位姿测量方法
CN108958282A (zh) 基于动态球形窗口的三维空间路径规划方法
CN111521195B (zh) 一种智能机器人
CN111596665B (zh) 一种适用于腿足机器人规划的稠密高度地图构建方法
CN109816664A (zh) 一种三维点云分割方法及装置
CN104793182B (zh) 非高斯噪声条件下基于粒子滤波的室内定位方法
CN103529959B (zh) 基于关键点射线碰撞检测的框选方法、系统及电子设备
CN107123134A (zh) 一种基于特征的危岩体滑坡监测方法
CN103093223A (zh) 一种光斑图像中心的快速定位方法
CN110796741B (zh) 一种基于双向布料模拟的机载激光测深点云滤波方法
CN106932772A (zh) 一种面向数字地球的受地形影响的雷达探测范围显示方法
CN109146990B (zh) 一种建筑轮廓的计算方法
CN110110687A (zh) 基于颜色信息和三维轮廓信息的树上水果自动识别方法
CN105631852A (zh) 基于深度图像等高线的室内人体检测方法
He et al. Robust laser stripe extraction for 3D measurement of complex objects
CN113096157B (zh) 一种可靠的局部目标跟踪方法及跟踪器
CN103307968A (zh) 机器人承载平台姿态的检测方法
CN104898106B (zh) 面向复杂地形机载激光雷达数据的地面点提取方法
CN109783842A (zh) 一种基于体素数据的射线检测方法及系统
CN105758411A (zh) 一种基于车载摄像头提升车载gps定位精度的系统和方法
CN104217458A (zh) 一种三维点云的快速配准方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121017