CN102010319A - Method for reclaiming coarse diacid by using dimer acid filtered argil residue water substitution method - Google Patents

Method for reclaiming coarse diacid by using dimer acid filtered argil residue water substitution method Download PDF

Info

Publication number
CN102010319A
CN102010319A CN2010105426854A CN201010542685A CN102010319A CN 102010319 A CN102010319 A CN 102010319A CN 2010105426854 A CN2010105426854 A CN 2010105426854A CN 201010542685 A CN201010542685 A CN 201010542685A CN 102010319 A CN102010319 A CN 102010319A
Authority
CN
China
Prior art keywords
controlled
water
preferentially
generally
carclazyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105426854A
Other languages
Chinese (zh)
Other versions
CN102010319B (en
Inventor
钟民强
徐青云
徐建彬
殷小平
顾经东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yonglin Chemical Oil Co Ltd
Original Assignee
Jiangsu Yonglin Chemical Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yonglin Chemical Oil Co Ltd filed Critical Jiangsu Yonglin Chemical Oil Co Ltd
Priority to CN 201010542685 priority Critical patent/CN102010319B/en
Publication of CN102010319A publication Critical patent/CN102010319A/en
Application granted granted Critical
Publication of CN102010319B publication Critical patent/CN102010319B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)

Abstract

The invention relates to a method for reclaiming coarse diacid by using a dimer acid filtered argil residue water substitution method. The method comprises the following steps of: 1, quantitative delivery with an auger; 2, slurry preparation from argil residue and hot water; 3, steady-flow and quantitative delivery with a screw pump; 4, direct steam heating and boosting water substitution reaction; 5, standing, settlement and oil-residue separation; and 6, centrifugal dehydration of residue slurry.

Description

A kind of dimeracid filters the carclazyte pulp water reclaims thick diacid for method method
Technical field
The present invention relates to a kind of dimeracid and filter the carclazyte pulp water reclaims thick diacid for method method.Belong to the oil chemistry industrial circle.
Background technology
In the dimeracid synthetic reaction process, the carclazyte that uses oleic acid weight about 12% contains 25~35% thick diacid and filter in the clay dregs as catalyzer, the thick disposable words of diacid in the clay dregs, this waste residue not only causes environmental pollution, and follows the wasting of resources.At present, the method for dimeracid manufacturing enterprise hydraulic pressure squeezing commonly used reclaims thick diacid, and this method not only labour intensity is big, and it is low to reclaim yield.The waste residue Residual oil is in 13~16% (thick two acid recovering rate 40~50%).Because thick diacid is very unstable in the useless carclazyte, oxidizing reaction easily takes place, form thickness superoxide and polymkeric substance, cause the rate of recovery of thick diacid to descend, the useless carclazyte shelf-time is long more, and the peroxide value of thick diacid is just high more, and iodine number descends obvious more, show that severe oxidation has taken place thick diacid, cause the rate of recovery of thick diacid to decline to a great extent.Polymerization, acidifying, the useless clay dregs after the filtration will in time reclaim thick diacid, can guarantee the quality and the rate of recovery of thick diacid like this.Big in order to solve in the useless clay dregs thick two acid recovery labour intensity; the recovery yield is low; waste residue causes environmental pollution problems; we have invented a kind of dimeracid and have filtered the carclazyte pulp water reclaims thick diacid for method method; this method is pollution-free; the production technique cleaning; waste residue Residual oil low (residual 5~6%); thick two acid recovering rate height (rate of recovery is up to more than 80%), the technology cost is low, and labour intensity is little; continuous mechanized operation; the thick diacid that reclaims can be used for preparing the commodity dimeracid, and the carclazyte that removes thick diacid can be used as molding or makes material of construction, or is used for flower culture as the filling soil of acidity cultivation soil.Also can be further processing regenerated to removing thick diacid carclazyte, circulation re-uses.
Summary of the invention
The present invention is big in order to solve in the useless carclazyte thick two acid recovery labour intensity, and it is low to reclaim yield, and waste residue causes environmental pollution problems, and we have invented a kind of dimeracid and have filtered the carclazyte pulp water and reclaim the method for thick diacid for method, and this method may further comprise the steps:
1, auger is quantitatively carried.
1.1 frequency of delivery generally is controlled at 1~50Hz, preferentially is controlled at 10~40Hz, especially 20~30Hz;
1.2 operational throughput generally is controlled at 0.01~2m 3/ h preferentially is controlled at 0.05~1.5m 3/ h, especially 0.2~0.8m 3/ h.
2, clay dregs and hot water are made slurry.
2.1 the weight ratio of clay dregs and hot water generally is controlled at 1: 1~5, preferentially is controlled at 1: 1.5~3.5, especially 1: 2~3;
2.2 the hot water temperature generally is controlled at 50~100 ℃, preferentially is controlled at 60~98 ℃, especially 85~95 ℃.
3, the spiral pump current stabilization is quantitatively carried.
3.1 feed flow generally is controlled at 0.1~5m3/h, preferentially is controlled at 0.3~3m3/h, especially 0.5~1.5m3/h;
3.2 transfer pressure generally is controlled at 0.1~1.2Mpa, preferentially is controlled at 0.3~1Mpa, especially 0.5~0.7MPa.
4, open steam increasing temperature and pressure water is for reaction.
4.1 adopt radio frequency admittance level gauge instrument control bed depth, adopt integration variable valve control input, output flat
4.2 water generally is controlled at 0.1~0.8Mpa for reaction pressure, preferentially is controlled at 0.3~6Mpa, especially 0.45~0.55MPa;
4.3 open steam pressure generally is controlled at 0.4~1.0Mpa, preferentially is controlled at 0.5~1Mpa, especially 0.6~0.8MPa;
4.4 water generally is controlled at 50~120n/min for the reaction stirring velocity, preferentially is controlled at 60~100n/min, especially 80~90n/min;
4.5 water generally is controlled at 10~100min for the reaction times, preferentially is controlled at 20~60min, especially 30~40min;
4.6 water generally is controlled at 140~160 ℃ for temperature of reaction, preferentially is controlled at 145~155 ℃, especially 148~152 ℃.
5, the standing sedimentation dregs of fat separate.
5.1 adopt radio frequency admittance water-oil interface instrument control water-oil interface, adopt integration variable valve control input, the balance of output;
5.2 standing sedimentation dregs of fat separation temperature generally is controlled at 70~100 ℃, preferentially is controlled at 80~95 ℃, especially 85~90 ℃;
5.3 standing sedimentation dregs of fat disengaging time generally is controlled at 10~60min, preferentially is controlled at 20~50min, especially 30~35min.
6, slag slurry centrifuge dehydration.
6.1 the slag slurry is by horizontal sedimentation helical-conveyer centrifugal solid-liquid separation, liquid enters process water pond, Gu slag enters the comprehensive utilization manufacturing procedure;
6.2 the water liquid of slag slurry centrifuge dehydration is made the process water of slurry as clay dregs hot water.
Embodiment
Filter clay dregs by the frequency conversion auger with 0.3m 3The operational throughput of/h is balancedly sent to making beating and jar is mixed with 85~95 ℃ technology hot water, makes slurry, and the weight ratio of clay dregs and hot water was controlled at 1: 2, slurry inflow screw rod current stabilization transferpump, and the variable frequency regulating speed control flow is at 0.65m 3/ h, transfer pressure is controlled at 0.55Mpa, slurry is sent into water for the reactor bottom, open the bottom open steam and heat the sparger valve that boosts, opening water stirs for reactor, control stirring velocity 90n/min, the reactor pressure-stabilisation is at 0.5Mpa, the slurry bed of material is through arriving high-order discharge port behind the 40min, about 150 ℃ of control material temperature keep water for reactor 0.5Mpa, control water for the reactor bed depth by the radio frequency admittance level gauge instrument, open slurry discharging integral control variable valve, make input, output reaches balance.Enter the standing sedimentation separating tank that hot water is housed from water for the mixed liquor tangent line of reactor, because the difference of proportion, thick diacid come-up is accumulated as oil reservoir, by liquid level control output collection slowly, the carclazyte slurry that removes thick diacid progressively is cooled to 90 ℃ in the settling process, open settlement separate jar of slurry discharging integral control variable valve, by radio frequency admittance water-oil interface instrument regulated valve open degree, slurry enters horizontal sedimentation helical-conveyer centrifugal, isolating hot water circulation is used, and isolating clay dregs enters the comprehensive utilization operation.

Claims (7)

1. a dimeracid filters the carclazyte pulp water and reclaims the method for thick diacid for method, and this method comprises the steps:
1.1 auger is quantitatively carried;
1.2 clay dregs and hot water are made slurry;
1.3 the spiral pump current stabilization is quantitatively carried;
1.4 open steam increasing temperature and pressure water is for reaction;
1.5 the standing sedimentation dregs of fat separate;
1.6 slag slurry centrifuge dehydration.
2. a kind of dimeracid according to claim 1 filters the carclazyte pulp water and reclaims the method for thick diacid for method, it is characterized in that the auger described in the step 1 quantitatively carries, and adopts the speed control by frequency variation auger quantitatively to carry.
2.1 frequency of delivery generally is controlled at 1~50Hz, preferentially is controlled at 10~40Hz, especially 20~30Hz;
2.2 operational throughput generally is controlled at 0.01~2m 3/ h preferentially is controlled at 0.05~1.5m 3/ h, especially 0.2~0.8m 3/ h.
3. a kind of dimeracid according to claim 1 filters the carclazyte pulp water and reclaims the method for thick diacid for method, it is characterized in that clay dregs described in the step 2 and hot water makes slurry.
3.1 the weight ratio of clay dregs and hot water generally is controlled at 1: 1~5, preferentially is controlled at 1: 1.5~3.5, especially 1: 2~3;
3.2 the hot water temperature generally is controlled at 50~100 ℃, preferentially is controlled at 60~98 ℃, especially 85~95 ℃.
4. a kind of dimeracid according to claim 1 filters the carclazyte pulp water and reclaims the method for thick diacid for method, it is characterized in that the spiral pump current stabilization described in the step 3 quantitatively carries.
4.1 feed flow generally is controlled at 0.1~5m 3/ h preferentially is controlled at 0.3~3m 3/ h, especially 0.5~1.5m 3/ h;
4.2 transfer pressure generally is controlled at 0.1~1.2Mpa, preferentially is controlled at 0.3~1Mpa, especially 0.5-0.7MPa.
5. a kind of dimeracid according to claim 1 filters the carclazyte pulp water and reclaims the method for thick diacid for method, it is characterized in that the open steam increasing temperature and pressure water described in the step 4 is for reaction.
5.1 adopt radio frequency admittance level gauge instrument control bed depth, adopt integration variable valve control input, the balance of output;
5.2 water generally is controlled at 0.1~0.8Mpa for reaction pressure, preferentially is controlled at 0.3~6Mpa, especially 0.45~0.55MPa;
5.3 open steam pressure generally is controlled at 0.4~1.0Mpa, preferentially is controlled at 0.5~1Mpa, especially 0.6~0.8MPa;
5.4 water generally is controlled at 50~120n/min for the reaction stirring velocity, preferentially is controlled at 60~100n/min, especially 80~90n/min;
5.5 water generally is controlled at 10~100min for the reaction times, preferentially is controlled at 20~60min, especially 30~40min;
5.6 water generally is controlled at 140~160 ℃ for temperature of reaction, preferentially is controlled at 145~155 ℃, especially 148~152 ℃.
6. a kind of dimeracid according to claim 1 filters the carclazyte pulp water and reclaims the method for thick diacid for method, it is characterized in that the standing sedimentation dregs of fat described in the step 5 separate.
6.1 adopt radio frequency admittance water-oil interface instrument control water-oil interface, adopt integration variable valve control input, the balance of output;
6.2 standing sedimentation dregs of fat separation temperature generally is controlled at 70~100 ℃, preferentially is controlled at 80~95 ℃, especially 85~90 ℃;
6.3 standing sedimentation dregs of fat disengaging time generally is controlled at 10~60min, preferentially is controlled at 20~50min, especially 30~35min.
7. a kind of dimeracid according to claim 1 filters the carclazyte pulp water and reclaims the method for thick diacid for method, it is characterized in that the slag slurry centrifuge dehydration described in the step 6.
7.1 the slag slurry is by horizontal sedimentation helical-conveyer centrifugal solid-liquid separation, liquid enters process water pond, Gu slag enters the comprehensive utilization manufacturing procedure;
7.2 the water liquid of slag slurry centrifuge dehydration is made the process water of slurry as clay dregs hot water.
CN 201010542685 2010-11-15 2010-11-15 Method for reclaiming coarse diacid by using dimer acid filtered argil residue water substitution method Active CN102010319B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010542685 CN102010319B (en) 2010-11-15 2010-11-15 Method for reclaiming coarse diacid by using dimer acid filtered argil residue water substitution method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010542685 CN102010319B (en) 2010-11-15 2010-11-15 Method for reclaiming coarse diacid by using dimer acid filtered argil residue water substitution method

Publications (2)

Publication Number Publication Date
CN102010319A true CN102010319A (en) 2011-04-13
CN102010319B CN102010319B (en) 2013-08-14

Family

ID=43840676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010542685 Active CN102010319B (en) 2010-11-15 2010-11-15 Method for reclaiming coarse diacid by using dimer acid filtered argil residue water substitution method

Country Status (1)

Country Link
CN (1) CN102010319B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529749A (en) * 2014-12-29 2015-04-22 江苏金马油脂科技发展有限公司 Device and method for recycling dimer fatty acid from waste carclazyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101760326A (en) * 2010-01-06 2010-06-30 江苏永林油脂化工有限公司 Method for recovering fatty acid from clay dregs for dimeric dibasic acid synthesis
CN101843280A (en) * 2009-11-20 2010-09-29 冀中能源邢台矿业集团有限责任公司油脂分公司 Ground sesame seed oil fine filtering method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101843280A (en) * 2009-11-20 2010-09-29 冀中能源邢台矿业集团有限责任公司油脂分公司 Ground sesame seed oil fine filtering method
CN101760326A (en) * 2010-01-06 2010-06-30 江苏永林油脂化工有限公司 Method for recovering fatty acid from clay dregs for dimeric dibasic acid synthesis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李勤忠 等,: "介绍几种香油生产设备", 《《轻工机械》》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529749A (en) * 2014-12-29 2015-04-22 江苏金马油脂科技发展有限公司 Device and method for recycling dimer fatty acid from waste carclazyte
CN104529749B (en) * 2014-12-29 2016-10-26 江苏金马油脂科技发展有限公司 A kind of device and method reclaiming dimer (fatty acid) yl from discarded hargil

Also Published As

Publication number Publication date
CN102010319B (en) 2013-08-14

Similar Documents

Publication Publication Date Title
CN103073915B (en) Process for extracting and separating capsanthin and capsaicin by using biological enzyme
CN108658638A (en) A kind of device with anaerobic fermentation and medium temperature oxidization combination operation production organic fertilizer
CN108239299B (en) Method for recovering paraffin from polytetrafluoroethylene resin clear kettle material
CN102776074A (en) Method for producing fatty acid from plant oil scraps
CN106943775B (en) Device and method for continuously separating solid phase from liquid phase in caprolactam distillation heavy residual liquid
CN102010319B (en) Method for reclaiming coarse diacid by using dimer acid filtered argil residue water substitution method
CN103113910B (en) Pretreatment method for raw material of coal-based needle coke
CN210261601U (en) Continuous production device of dioctyl adipate
CN105367425A (en) Purification system for chemical method for preparing BHET monomer from waste PET material
CN104744214A (en) Novel method for recycling residual butyl octanol solution
CN214553573U (en) Chlormequat chloride continuous production device
CN205999315U (en) A kind of rosin waste residue recovery system
CN214456861U (en) Coking sulfur refining device
CN202671225U (en) System for producing liquid polyaluminium chloride
CN103396309A (en) Method for producing high-purity propylgallate by virtue of pressurization process
CN112080206B (en) Low-water-consumption and low-emission rosin processing method
CN206408168U (en) A kind of hydro-thermal reaction system
CN209923226U (en) System for retrieve BA and catalyst in PTA residue
CN219342321U (en) Impurity removing device
CN217221431U (en) Polymerization reaction system
CN209144095U (en) The comprehensive Oil processing complete set of equipments of linseed, soybean, peanut, mustard seed
CN214004474U (en) Four raw materials of carbon refined water wash except that methyl alcohol device
CN202322785U (en) Waste animal and vegetable oil reclaiming system
CN217677384U (en) Production line for preparing asphalt by utilizing fine distillation residues
CN103173283A (en) Solvent de-acidifying method for edible idesia oil

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: 224000 Nanhua Industrial Park, Jianhu County, Yancheng City, Jiangsu Province

Patentee after: Jiangsu Yonglin Oil Technology Co., Ltd

Address before: Nanhua Industrial Park 224700 Yancheng City Jianhu County in Jiangsu province Zhong Zhuang

Patentee before: JIANGSU YONGLIN CHEMICAL OIL Co.,Ltd.

CP03 Change of name, title or address