CN102005801B - Charging circuit of solar charging controller with common ground structure - Google Patents
Charging circuit of solar charging controller with common ground structure Download PDFInfo
- Publication number
- CN102005801B CN102005801B CN201010613468.XA CN201010613468A CN102005801B CN 102005801 B CN102005801 B CN 102005801B CN 201010613468 A CN201010613468 A CN 201010613468A CN 102005801 B CN102005801 B CN 102005801B
- Authority
- CN
- China
- Prior art keywords
- circuit
- pin
- processing unit
- central processing
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005070 sampling Methods 0.000 claims abstract description 58
- 230000001360 synchronised effect Effects 0.000 claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims description 19
- 238000009499 grossing Methods 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 4
- 230000001052 transient effect Effects 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- 230000017525 heat dissipation Effects 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域 technical field
本发明涉及电源电路技术领域,尤其涉及一种共地结构的太阳能充电控制器的充电电路。 The invention relates to the technical field of power circuits, in particular to a charging circuit of a solar charging controller with a common ground structure. the
背景技术 Background technique
目前,市场上有很多类型的太阳能充电控制器,包括共正极结构和共地结构类型的充电电路,在实际运行中,存在一些不足: At present, there are many types of solar charge controllers on the market, including charging circuits with a common anode structure and a common ground structure. In actual operation, there are some shortcomings:
一些简易型的太阳能充电控制器的充电电路,在蓄电池充满后,为保护蓄电池,对太阳能电池板的正负极进行短路,这样会造成太阳能电池板阵列的节温过高,容易损坏太阳能电池板,降低太阳能电池板的使用寿命。 The charging circuit of some simple solar charge controllers, after the battery is fully charged, short-circuits the positive and negative poles of the solar panel to protect the battery, which will cause the temperature of the solar panel array to be too high and easily damage the solar panel , reducing the service life of solar panels.
一些共正极的太阳能充电控制器的充电电路,由于太阳能电池的负极和蓄电池的负极不共地,造成在太阳能电池电压采样方面的困难。 The charging circuits of some common positive solar charge controllers have difficulty in sampling the voltage of the solar battery because the negative pole of the solar battery and the negative pole of the storage battery do not share the same ground.
一些太阳能充电控制器的防倒流电路设计上,采用串入二极管的方式防止夜间蓄电池电流向太阳能电池倒灌。但在充电时,二极管的正向导通压降大,导通损耗大,导致充电控制器的转换效率低。 In the design of the anti-backflow circuit of some solar charge controllers, diodes are connected in series to prevent the battery current from flowing back into the solar battery at night. However, during charging, the forward conduction voltage drop of the diode is large, and the conduction loss is large, resulting in low conversion efficiency of the charge controller.
本发明的目的在于针对现有技术的不足而提供一种共地结构的太阳能充电控制器的充电电路,其转换效率高,太阳能电池电压采样方便、结构简洁、实现方便、低成本。 The object of the present invention is to provide a charging circuit for a solar charging controller with a common ground structure, which has high conversion efficiency, convenient solar battery voltage sampling, simple structure, convenient implementation and low cost.
本发明的目的通过以下技术措施实现:一种共地结构的太阳能充电控制器的充电电路,包括太阳能电池、蓄电池、中央处理器、PWM驱动电路、电流采样电路、电压采样电路,PWM驱动电路、电流采样电路、电压采样电路与中央处理器连接,还包括防倒流电路,防倒流电路与PWM驱动电路连接,太阳能电池的负极与蓄电池的负极接公共地GND。 The purpose of the present invention is achieved through the following technical measures: a charging circuit of a solar charge controller with a common ground structure, including a solar cell, a storage battery, a central processing unit, a PWM drive circuit, a current sampling circuit, a voltage sampling circuit, a PWM drive circuit, The current sampling circuit and the voltage sampling circuit are connected to the central processing unit, and an anti-backflow circuit is also included. The anti-backflow circuit is connected to the PWM driving circuit, and the negative pole of the solar cell and the negative pole of the storage battery are connected to the common ground GND.
其中,还包括功率MOSFET电路、平流电路,电压采样电路包括太阳能电池电压采样电路和蓄电池电压采样电路,功率MOSFET电路与电流采样电路、防倒流电路、PWM驱动电路连接,平流电路与太阳能电池正极连接,太阳能电池电压采样电路第一端口与太阳能电池正极连接,太阳能电池电压采样电路第二端口与太阳能电池负极连接,太阳能电池电压采样电路的控制端口与中央处理器连接,蓄电池电压采样电路的第一个端口与太阳能电池正极连接,蓄电池电压采样电路的第二个端口与太阳能电池负极连接,蓄电池电压采样电路的控制端口与中央处理器连接。 Among them, it also includes a power MOSFET circuit and an advection circuit. The voltage sampling circuit includes a solar cell voltage sampling circuit and a battery voltage sampling circuit. The power MOSFET circuit is connected with a current sampling circuit, an anti-backflow circuit, and a PWM drive circuit. The first port of the solar cell voltage sampling circuit is connected to the positive pole of the solar cell, the second port of the solar cell voltage sampling circuit is connected to the negative pole of the solar cell, the control port of the solar cell voltage sampling circuit is connected to the central processing unit, and the first port of the battery voltage sampling circuit is connected to the central processing unit. The first port is connected to the positive pole of the solar battery, the second port of the battery voltage sampling circuit is connected to the negative pole of the solar battery, and the control port of the battery voltage sampling circuit is connected to the central processing unit.
其中,防倒流电路包括功率MOSFET Q3、电阻R10,电阻R10一端与功率MOSFET Q3的驱动信号端DRVH连接, R10另一端和功率MOSFET Q3的栅极连接; Among them, the anti-backflow circuit includes a power MOSFET Q3 and a resistor R10, one end of the resistor R10 is connected to the drive signal terminal DRVH of the power MOSFET Q3, and the other end of R10 is connected to the gate of the power MOSFET Q3;
Q3的源极和功率MOSFET电路连接,Q3的漏极与蓄电池的正极连接。 The source of Q3 is connected to the power MOSFET circuit, and the drain of Q3 is connected to the positive pole of the battery.
其中,PWM驱动电路包括驱动器U1、电容C8、C9,电阻R13,U1的管脚3与中央处理器的信号输出管脚连接;
Wherein, the PWM driving circuit includes a driver U1, capacitors C8 and C9, and a resistor R13, and the
U1的管脚1为PWM驱动电路的第一输出端;
U1的管脚5为PWM驱动电路的第二输出端;
The
U1的管脚8为PWM驱动电路的第三输出端;
The
C9一端与U1的管脚2连接,C9的另一端与U1的管脚8连接;
One end of C9 is connected to
C8的一端与U1的管脚6、U1的管脚7接直流电,C8的另一端接地;
One end of C8 is connected to direct current with
R13的一端与U1的管脚3连接,R13的另一端与U1的管脚4连接。
One end of R13 is connected to
其中,功率MOSFET电路包括功率MOSFET Q1、Q2、二极管D1、电阻R4、电容C3,二极管D1、电阻R4、电容C3构成上桥臂功率MOSFET Q1的吸收电路,二极管D2、电阻R5、电容C4构成下桥臂功率MOSFET Q2的吸收电路; Among them, the power MOSFET circuit includes power MOSFET Q1, Q2, diode D1, resistor R4, and capacitor C3. Diode D1, resistor R4, and capacitor C3 form the absorption circuit of the power MOSFET Q1 on the upper bridge arm, and diode D2, resistor R5, and capacitor C4 form the lower circuit. Snubber circuit of bridge arm power MOSFET Q2;
D1的正极与R4的一端、Q1的漏极连接;D1的负极与R4的另一端、C3的一端连接; The positive pole of D1 is connected to one end of R4 and the drain of Q1; the negative pole of D1 is connected to the other end of R4 and one end of C3;
C3另一端与Q1的源极、Q3的源极、Q2的漏极、D2的正极、R5的一端、PWM驱动电路第三个输出端连接; The other end of C3 is connected to the source of Q1, the source of Q3, the drain of Q2, the positive electrode of D2, one end of R5, and the third output end of the PWM drive circuit;
Q1的栅极与PWM驱动电路第一个输出端连接; The gate of Q1 is connected to the first output end of the PWM drive circuit;
D2的负极与R5的另一端、C4的一端连接; The negative pole of D2 is connected to the other end of R5 and one end of C4;
C4的另一端与Q2的源极接地; The other end of C4 is grounded to the source of Q2;
Q2的栅极与PWM驱动电路第二个输出端连接。 The gate of Q2 is connected to the second output end of the PWM drive circuit.
其中,还包括电感L1、电阻R1、R2、R3、R6、R7、R8、R9、R11、R12,电容C1、C2、C5、C6、C7,二极管ZD1、ZD2,瞬态电压抑制二极管TVS1、保险管F1; Among them, it also includes inductor L1, resistors R1, R2, R3, R6, R7, R8, R9, R11, R12, capacitors C1, C2, C5, C6, C7, diodes ZD1, ZD2, transient voltage suppression diode TVS1, insurance pipe F1;
TVS1一端接太阳能电池的正极,TVS1另一端接太阳能电池的负极; One end of TVS1 is connected to the positive pole of the solar cell, and the other end of TVS1 is connected to the negative pole of the solar cell;
R1的一端与太阳能电池的正极连接、L1的一端连接,R1的另一端与R2的一端、C1的一端、中央处理器的第三个信号输入管脚连接; One end of R1 is connected to the positive pole of the solar cell, one end of L1 is connected, the other end of R1 is connected to one end of R2, one end of C1, and the third signal input pin of the central processing unit;
R2的另一端与太阳能电池的负极、C1的另一端、C2的负极、Q2的源极接地; The other end of R2 is grounded to the negative pole of the solar cell, the other end of C1, the negative pole of C2, and the source of Q2;
L1的另一端与R3的一端、中央处理器的第一个信号输入管脚连接; The other end of L1 is connected with one end of R3 and the first signal input pin of the CPU;
R3的另一端与C2的正极、D1的正极、Q1的漏极、中央处理器的第二个信号输入管脚连接; The other end of R3 is connected to the positive pole of C2, the positive pole of D1, the drain of Q1, and the second signal input pin of the central processing unit;
R7的一端与Q1的栅极、R6的一端、ZD1的负极连接; One end of R7 is connected to the gate of Q1, one end of R6, and the negative pole of ZD1;
R7的另一端与ZD1的正极、Q1的源极、Q3的源极、PWM驱动电路第三个输出端连接; The other end of R7 is connected to the anode of ZD1, the source of Q1, the source of Q3, and the third output terminal of the PWM drive circuit;
R6的另一端与PWM驱动电路第一个输出端连接; The other end of R6 is connected to the first output end of the PWM drive circuit;
R9的一端与Q2的栅极、R8的一端、ZD2的负极连接; One end of R9 is connected to the gate of Q2, one end of R8, and the negative pole of ZD2;
R9的另一端与ZD2的正极、Q2的源极、C5的负极、C6的负极、R12的一端、C7的一端、蓄电池负极接地; The other end of R9 is grounded to the positive pole of ZD2, the source pole of Q2, the negative pole of C5, the negative pole of C6, one end of R12, one end of C7, and the negative pole of the battery;
R8的另一端与PWM驱动电路第二个输出端连接; The other end of R8 is connected to the second output end of the PWM drive circuit;
C5的正极与C6的正极、R11的一端、Q3的漏极、F1的一端连接; The positive pole of C5 is connected to the positive pole of C6, one end of R11, the drain of Q3, and one end of F1;
R11的另一端与R12另一端、C7的另一端与中央处理器第三个信号输入管脚连接; The other end of R11 is connected with the other end of R12, and the other end of C7 is connected with the third signal input pin of the CPU;
F1的另一端与蓄电池正极连接。 The other end of F1 is connected to the positive pole of the battery.
其中,R1、R2、R3、R11、R12为精密电阻。 Among them, R1, R2, R3, R11, R12 are precision resistors.
其中,U1为高速同步驱动器U1,具体型号为:TPS28225。 Among them, U1 is a high-speed synchronous driver U1, the specific model is: TPS28225.
其中,还包括防雷保护电路,防雷保护电路一端与太阳能电池正极连接,防雷保护电路另一端与太阳能电池负极连接。 It also includes a lightning protection circuit, one end of the lightning protection circuit is connected to the positive pole of the solar battery, and the other end of the lightning protection circuit is connected to the negative pole of the solar battery.
其中,中央处理器为PSoC中央处理器,具体型号为:CY8CLED03D02。 Among them, the central processing unit is a PSoC central processing unit, and the specific model is: CY8CLED03D02.
本发明有益效果在于:一种共地结构的太阳能充电控制器的充电电路,包括太阳能电池、蓄电池、中央处理器、PWM驱动电路、电流采样电路、电压采样电路,PWM驱动电路、电流采样电路、电压采样电路与中央处理器连接,还包括防倒流电路与PWM驱动电路连接,太阳能电池的负极与蓄电池的负极接公共地GND。本发明采用公地结构,利用电阻直接分压的方法对太阳能电池采样,太阳能电池电压采样方便,防倒流电路采用接成同步整流方式的MOSFET电路,PWM信号开通时,其栅极驱动采用正电压驱动,有效降低了MOSFET内部寄生的体二极管的正向导通压降,相对于二极管构成的防倒流电路,极大地减小了充电回路的电压降损失,降低了散热管理的困难,有效地提高了系统的整体效率,结构简洁、实现方便、低成本。 The beneficial effect of the present invention is that: a charging circuit of a solar charging controller with a shared ground structure, including a solar battery, a storage battery, a central processing unit, a PWM driving circuit, a current sampling circuit, a voltage sampling circuit, a PWM driving circuit, a current sampling circuit, The voltage sampling circuit is connected with the central processing unit, and an anti-backflow circuit is connected with the PWM drive circuit, and the negative pole of the solar cell and the negative pole of the storage battery are connected to the common ground GND. The present invention adopts a public ground structure and uses the method of directly dividing the voltage of the resistance to sample the solar cell, the voltage sampling of the solar cell is convenient, the anti-backflow circuit adopts a MOSFET circuit connected into a synchronous rectification mode, and when the PWM signal is turned on, the gate drive adopts a positive voltage Drive, effectively reducing the forward conduction voltage drop of the parasitic body diode inside the MOSFET. Compared with the anti-backflow circuit composed of diodes, it greatly reduces the voltage drop loss of the charging circuit, reduces the difficulty of heat dissipation management, and effectively improves The overall efficiency of the system, the structure is simple, the implementation is convenient, and the cost is low.
附图说明 Description of drawings
图1是本发明的系统结构框图; Fig. 1 is a system structure block diagram of the present invention;
图2是本发明的充电电路图; Fig. 2 is a charging circuit diagram of the present invention;
图3是充电电路的PWM驱动电路图。 Fig. 3 is a PWM driving circuit diagram of the charging circuit.
附图标记: Reference signs:
100——中央处理器 100 - CPU
101——蓄电池 101 - storage battery
102——太阳能电池电压采样电路 102——Solar battery voltage sampling circuit
103——太阳能电池 103 - solar cells
104——蓄电池电压采样电路 104——Battery voltage sampling circuit
105—— PWM驱动电路 105—— PWM drive circuit
106——防倒流电路 106——Anti-backflow circuit
107——防雷保护电路 107——Lightning protection circuit
108——平流电路 108—Advection circuit
109——电流采样电路 109——Current sampling circuit
110——功率MOSFET电路。 110—power MOSFET circuit.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步的说明,如图1~图3所示。 Below in conjunction with accompanying drawing, the present invention is described further, as shown in Figure 1~Figure 3.
实施例1 Example 1
本实施例提供一种共地结构的太阳能充电控制器的充电电路,包括太阳能电池103、蓄电池101、中央处理器100、PWM驱动电路105、电流采样电路109、电压采样电路,PWM驱动电路105、电流采样电路109、电压采样电路与中央处理器100连接,还包括防倒流电路106,防倒流电路106与PWM驱动电路105连接,太阳能电池103的负极与蓄电池101的负极接公共地GND。本发明采用公共地结构,利用电阻直接分压的方法对太阳能电池103采样,太阳能电池103电压采样方便,防倒流电路106采用接成同步整流方式的MOSFET电路,PWM信号开通时,其栅极驱动采用正电压驱动,有效降低了MOSFET内部寄生的体二极管的正向导通压降,相对于现有技术二极管构成的防倒流电路,极大地减小了充电回路的电压降损失,降低了散热管理的困难,有效地提高了系统的整体效率,结构简洁、实现方便、低成本。
This embodiment provides a charging circuit of a solar charging controller with a common ground structure, including a
本实施例还包括功率MOSFET电路110、平流电路108,电压采样电路包括太阳能电池电压采样电路102和蓄电池电压采样电路104,功率MOSFET电路110与电流采样电路109、防倒流电路106、PWM驱动电路105连接,平流电路108与太阳能电池103正极连接,太阳能电池电压采样电路102的第一个端口与太阳能电池103正极连接,太阳能电池电压采样电路102的第二个端口与太阳能电池103负极连接,太阳能电池电压采样电路102的控制端口与中央处理器100连接,蓄电池电压采样电路104的第一个端口与太阳能电池103正极连接,电池电压采样电路的第二个端口与太阳能电池103负极连接,蓄电池电压采样电路104的控制端口与中央处理器100连接。
This embodiment also includes a
本实施例的PWM驱动电路105包括驱动器U1、电容C8、C9,电阻R13,U1的管脚3与中央处理器的信号输出管脚连接;
The
U1的管脚1为PWM驱动电路105的第一输出端;
The
U1的管脚5为PWM驱动电路105的第二输出端;
The
U1的管脚8为PWM驱动电路105的第三输出端;
The
C9一端与U1的管脚2连接,C9的另一端与U1的管脚8连接; One end of C9 is connected to pin 2 of U1, and the other end of C9 is connected to pin 8 of U1;
C8的一端与U1的管脚6、U1的管脚7接直流电,C8的另一端接地;
One end of C8 is connected to direct current with
R13的一端与U1的管脚3连接,R13的另一端与U1的管脚4连接。 One end of R13 is connected to pin 3 of U1, and the other end of R13 is connected to pin 4 of U1.
本实施例的防倒流电路106包括功率MOSFET Q3、电阻R10,电阻R10一端与PWM驱动电路的第一输出端连接, R10另一端和功率MOSFET Q3的栅极连接;
The
Q3的源极和功率MOSFET电路110连接,Q3的漏极与蓄电池101的正极连接。
The source of Q3 is connected to the
本实施例的功率MOSFET电路110的电路采用MOSFET半桥结构,功率MOSFET Q1、Q2构成功率MOSFET电路110的主电路,二极管D1、电阻R4、电容C3构成上桥臂功率MOSFET Q1的吸收电路,二极管D2、电阻R5、电容C4构成下桥臂功率MOSFET Q2的吸收电路;
The circuit of the
D1的正极与R4的一端Q1的漏极连接;D1的负极与R4的另一端、C3的一端连接; The positive pole of D1 is connected to the drain of Q1 at one end of R4; the negative pole of D1 is connected to the other end of R4 and one end of C3;
C3另一端与Q1的源极、Q3的源极、Q2的漏极、D2的正极、R5的一端、PWM驱动电路105第三个输出端连接;
The other end of C3 is connected to the source of Q1, the source of Q3, the drain of Q2, the anode of D2, one end of R5, and the third output end of the
Q1的栅极与PWM驱动电路105第一个输出端连接;
The gate of Q1 is connected to the first output end of the
D2的负极与R5的另一端、C4的一端连接; The negative pole of D2 is connected to the other end of R5 and one end of C4;
C4的另一端与Q2的源极接地; The other end of C4 is grounded to the source of Q2;
Q2的栅极与PWM驱动电路105第二个输出端连接。
The gate of Q2 is connected to the second output end of the
本实施例还包括电感L1、电阻R3、R1、R2、R3、R6、R7、R8、R9、R11、R12,电容C1、C2、C5、C6、C7,二极管ZD1、ZD2,瞬态电压抑制二极管TVS1、保险管F1; This embodiment also includes inductor L1, resistors R3, R1, R2, R3, R6, R7, R8, R9, R11, R12, capacitors C1, C2, C5, C6, C7, diodes ZD1, ZD2, transient voltage suppression diodes TVS1, fuse F1;
TVS1一端接太阳能电池103的正极、TVS1另一端接太阳能电池103的负极;
One end of TVS1 is connected to the positive electrode of the
R1的一端与太阳能电池103的正极、L1的一端连接,R1的另一端与R2的一端、C1的一端、中央处理器100的第三个信号输入管脚连接;
One end of R1 is connected to the positive pole of the
R2的另一端与太阳能电池103的负极、C1的另一端、C2的负极、Q2的源极接地;
The other end of R2 is grounded to the negative pole of the
L1的另一端与R3的一端、中央处理器100的第一个信号输入管脚连接;
The other end of L1 is connected with one end of R3 and the first signal input pin of the
R3的另一端与C2的正极、D1的正极、Q1的漏极、中央处理器100的第二个信号输入管脚连接;
The other end of R3 is connected to the positive pole of C2, the positive pole of D1, the drain of Q1, and the second signal input pin of the
R7的一端与Q1的栅极、R6的一端、ZD1的负极连接; One end of R7 is connected to the gate of Q1, one end of R6, and the negative pole of ZD1;
R7的另一端与ZD1的正极、Q1的源极、Q3的源极、PWM驱动电路105第三个输出端连接;
The other end of R7 is connected to the positive pole of ZD1, the source pole of Q1, the source pole of Q3, and the third output terminal of the
R6的另一端与PWM驱动电路105第一个输出端连接;
The other end of R6 is connected to the first output end of the
R9的一端与Q2的栅极、R8的一端、ZD2的负极连接; One end of R9 is connected to the gate of Q2, one end of R8, and the negative pole of ZD2;
R9的另一端与ZD2的正极、Q2的源极、C5的负极、C6的负极、R12的一端、C7的一端、蓄电池101负极接地;
The other end of R9 is grounded to the positive pole of ZD2, the source pole of Q2, the negative pole of C5, the negative pole of C6, one end of R12, one end of C7, and the negative pole of
R8的另一端与PWM驱动电路105第二个输出端连接;
The other end of R8 is connected to the second output end of the
C5的正极与C6的正极、R11的一端、Q3的漏极、F1的一端连接; The positive pole of C5 is connected to the positive pole of C6, one end of R11, the drain of Q3, and one end of F1;
R11的另一端与R12另一端、C7的另一端与中央处理器100第三个信号输入管脚连接;
The other end of R11 is connected with the other end of R12, the other end of C7 is connected with the third signal input pin of
F1的另一端与蓄电池101正极连接。
The other end of F1 is connected to the positive pole of the
本实施例的R1、R2、R3、R11、R12为精密电阻。 R1, R2, R3, R11 and R12 in this embodiment are precision resistors.
本实施例的功率MOSFET Q1、Q2和Q3的具体型号为IPB025N10N3。 The specific models of the power MOSFETs Q1, Q2 and Q3 in this embodiment are IPB025N10N3.
本实施例的U1为高速同步驱动器U1,具体型号为:TPS28225。 U1 in this embodiment is a high-speed synchronous driver U1, and the specific model is: TPS28225.
本实施例的中央处理器100为PSoC中央处理器,具体型号为:CY8CLED03D02。
The
本实施例的原理为: The principle of this embodiment is:
如图2所示,瞬态电压抑制二极管TVS1接在太阳能电池103输入端的正、负极之间;
As shown in FIG. 2, the transient voltage suppression diode TVS1 is connected between the positive and negative poles of the input terminal of the
太阳能电池103电压信号的采样采用精密电阻分压采样方式。太阳能电池103电压分压采样电路由精密电阻R1、R2和电容C1构成,分压信号PV_sense送PSoC中央处理器进行A/D转换,得到太阳能电池103电压信号。
The sampling of the voltage signal of the
蓄电池101电压信号的采样采用精密电阻分压采样方式。蓄电池101电压分压采样电路由精密电阻R11、R12和电容C7构成,分压信号Batt_sense送PSoC中央处理器进行A/D转换,得到蓄电池101电压信号。
The voltage signal of the
太阳能电池103输出电流的采样采用串联精密电阻的方式,太阳能电池103输出电流在精密采样电阻R3两端形成电压差信号PVCurV+和PVCurV-,送往PSoC的内部差分运算放大器进行差分放大,然后由PSoC的A/D转换单元进行模/数转换,得到太阳能电池103输出电流信号。
The sampling of the output current of the
在测量太阳能电池103输出电流时,采用串联精密电阻的方式,但太阳能电池103输出电流在串联精密电阻两端形成的高共模电压差分信号,采用分立的差分运算放大器难以承受如此高的共模差分输入电压,因此,测量太阳能电池103输出电流就成了一个难题。本发明利用PSoC片上的高共模电压差分运算放大器,有效地解决了太阳能电池103输出电流采样存在的高共模电压进行差分放大的技术难题,同时,减少了外围硬件电路的元器件数量和PCB板尺寸,提高了系统的集成度和保密性。
When measuring the output current of the
PWM驱动电路105采用N 通道互补驱动功率MOSFET 的高速同步驱动器U1,PSoC中央处理器发出的PWM脉冲信号经过同步驱动器U1后,产生互补的高端和低端驱动信号,分别加在充电回路MOSFET半桥的上桥臂和下桥臂MOSFET的栅极,高、低端驱动信号具有自适应的死区时间控制。
The
电感L1构成平流电路108,作用是对太阳能电池103输出电流进行平滑;
The inductance L1 constitutes the smoothing
由U1的管脚1发出的驱动信号DRVH是上桥臂功率MOSFET Q1的驱动信号,由U1的管脚5发出的驱动信号DRVL是下桥臂功率MOSFET Q2的驱动信号;
The driving signal DRVH sent by
如图3所示,U1是N 通道互补驱动功率MOSFET 的 高速同步驱动器U1,U1的供电电源端管脚6、U1管脚7与直流电源VDD2连接,U1的管脚4与公共地GND连接,直流电源VDD2通过解耦电容C8与公共地GND连接。PSoC中央处理器发出的PWM控制信号PWM1送到U1的管脚3,同时,U1的管脚3经过下拉电阻R13与公共地GND连接。U1的管脚2通过电容C9和U1的管脚8相连,U1的管脚8和功率MOSFET Q1的源极连接。U1的管脚1产生功率MOSFET半桥上桥臂MOSFET的驱动信号DRVH,U1的管脚5产生功率MOSFET半桥下桥臂MOSFET的驱动信号DRVL。
As shown in Figure 3, U1 is a high-speed synchronous driver U1 for N-channel complementary drive power MOSFETs. U1's power
实施例2 Example 2
本实施例在实施例1的基础上还增加了防雷保护电路107,一端与太阳能电池103正极连接,防雷保护电路107另一端与太阳能电池103负极连接。
In this embodiment, on the basis of
由于太阳能电池103都是裸露于外界,所以设置防雷保护电路107,可以进一步保护太阳能电池103,延长太阳能电池103的使用寿命。
Since the
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting the protection scope of the present invention, although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand , the technical solution of the present invention may be modified or equivalently replaced without departing from the spirit and scope of the technical solution of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010613468.XA CN102005801B (en) | 2010-12-30 | 2010-12-30 | Charging circuit of solar charging controller with common ground structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010613468.XA CN102005801B (en) | 2010-12-30 | 2010-12-30 | Charging circuit of solar charging controller with common ground structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102005801A CN102005801A (en) | 2011-04-06 |
CN102005801B true CN102005801B (en) | 2014-04-16 |
Family
ID=43812945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010613468.XA Active CN102005801B (en) | 2010-12-30 | 2010-12-30 | Charging circuit of solar charging controller with common ground structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102005801B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102157970B (en) * | 2011-04-19 | 2013-04-24 | 广东易事特电源股份有限公司 | High-transformation-ratio isolated solar charging controller with MPPT function |
CN102255363B (en) * | 2011-07-27 | 2013-07-31 | 广东易事特电源股份有限公司 | Charging circuit topology with fully-protected solar controller and control method |
CN102270870A (en) * | 2011-07-27 | 2011-12-07 | 广东易事特电源股份有限公司 | A charging circuit topology of a solar controller |
CN105186599A (en) * | 2015-08-04 | 2015-12-23 | 广东瑞德智能科技股份有限公司 | Circuit preventing reverse connection and reverse charging of solar controller |
CN111207864A (en) * | 2020-03-15 | 2020-05-29 | 成都智创利源科技有限公司 | Integrated solar wireless power indicator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2706939Y (en) * | 2004-01-14 | 2005-06-29 | 南开大学 | Intelligent solar charging controller |
CN1697282A (en) * | 2004-05-14 | 2005-11-16 | Nec东金株式会社 | Power supply device and control method used in the power supply device |
CN201663458U (en) * | 2009-12-31 | 2010-12-01 | 中兴通讯股份有限公司 | Solar charger circuit |
CN201918757U (en) * | 2010-12-30 | 2011-08-03 | 广东易事特电源股份有限公司 | A charging circuit of solar charge controller with common ground structure |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1821386A2 (en) * | 2006-02-17 | 2007-08-22 | Power Systems Co., Ltd. | Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source |
CN201623895U (en) * | 2010-02-09 | 2010-11-03 | 惠州市绿晨太阳能科技有限公司 | Solar road lighting controller |
-
2010
- 2010-12-30 CN CN201010613468.XA patent/CN102005801B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2706939Y (en) * | 2004-01-14 | 2005-06-29 | 南开大学 | Intelligent solar charging controller |
CN1697282A (en) * | 2004-05-14 | 2005-11-16 | Nec东金株式会社 | Power supply device and control method used in the power supply device |
CN201663458U (en) * | 2009-12-31 | 2010-12-01 | 中兴通讯股份有限公司 | Solar charger circuit |
CN201918757U (en) * | 2010-12-30 | 2011-08-03 | 广东易事特电源股份有限公司 | A charging circuit of solar charge controller with common ground structure |
Non-Patent Citations (2)
Title |
---|
太阳能LED路灯照明系统的研制;杨晓光等;《电工技术学报》;20100630;第25卷(第6期);第131-132页、图1和图2 * |
杨晓光等.太阳能LED路灯照明系统的研制.《电工技术学报》.2010,第25卷(第6期), |
Also Published As
Publication number | Publication date |
---|---|
CN102005801A (en) | 2011-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201682429U (en) | Bridgeless PFC boost rectifier | |
CN102005801B (en) | Charging circuit of solar charging controller with common ground structure | |
CN103023004B (en) | A kind of surge restraint circuit | |
CN205753592U (en) | Charging and discharging circuit of solar LED street light | |
CN204408212U (en) | Flyback transformer leakage inductance energy absorption feedback circuit | |
CN201854184U (en) | A BUCK circuit | |
CN101170278B (en) | A bridge type soft shutdown circuit | |
CN201234142Y (en) | Bus control apparatus for solar photovoltaic grid connection DC-to-AC converter | |
CN206472048U (en) | A half-bridge driving circuit composed of discrete MOSFETs | |
CN201230281Y (en) | Solar panel simulator | |
CN103532533B (en) | A power supply sequence management circuit | |
CN106685223A (en) | A high-efficiency and low-ripple bidirectional Cuk conversion circuit | |
CN201918757U (en) | A charging circuit of solar charge controller with common ground structure | |
CN205377701U (en) | Push -pull type dc -to -ac converter | |
CN218569902U (en) | Intelligent switching circuit of power consumption-saving power supply | |
CN204230890U (en) | A kind of modularization inverter cell anti-reverse connection circuit | |
CN103762872B (en) | A kind of three storage capacitor dual output Z source half-bridge converters | |
CN207926431U (en) | A kind of highly efficient driver circuit suitable for wide-bandgap power devices | |
CN106329925B (en) | A kind of bidirectional, dc power inverter | |
CN102593911B (en) | Photovoltaic charging circuit having synchronized reverse isolation function | |
CN103616923A (en) | Solar energy maximum power point tracking control circuit | |
CN105245091B (en) | The gate driving circuit of power MOS pipe in a kind of power inverter | |
CN203827211U (en) | Z source half-bridge converter equipped with three energy-storage capacitors and having dual output function | |
CN203368325U (en) | Pfc converter circuit | |
CN106941316A (en) | A kind of non-bridge PFC circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Han Junliang Inventor after: Xu Haibo Inventor after: He Simo Inventor after: Song Qinghua Inventor before: Song Qinghua Inventor before: Xu Haibo Inventor before: Han Liangjun Inventor before: He Simo |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: SONG QINGHUA XU HAIBO HAN LIANGJUN HE SIMO TO: HAN JUNLIANG XU HAIBO HE SIMO SONG QINGHUA |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |