CN101997412A - Control method - Google Patents

Control method Download PDF

Info

Publication number
CN101997412A
CN101997412A CN2009101634431A CN200910163443A CN101997412A CN 101997412 A CN101997412 A CN 101997412A CN 2009101634431 A CN2009101634431 A CN 2009101634431A CN 200910163443 A CN200910163443 A CN 200910163443A CN 101997412 A CN101997412 A CN 101997412A
Authority
CN
China
Prior art keywords
voltage
current
electric charge
actual
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009101634431A
Other languages
Chinese (zh)
Other versions
CN101997412B (en
Inventor
叶文中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leadtrend Technology Corp
Original Assignee
Leadtrend Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leadtrend Technology Corp filed Critical Leadtrend Technology Corp
Priority to CN 200910163443 priority Critical patent/CN101997412B/en
Publication of CN101997412A publication Critical patent/CN101997412A/en
Application granted granted Critical
Publication of CN101997412B publication Critical patent/CN101997412B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A control method is suitable for controlling an output power supply of a switch type power supply to provide constant current. The switch-mode power supply includes a winding coupled to an input power source. The winding is controlled by a switch to store or release energy. The control method comprises the following steps: making the peak value of the maximum current flowing through the winding be a preset value; detecting a discharge time of the winding in a switching period; and controlling the switching period of the switch such that the ratio of the discharge time to the switching period of the switch is approximately equal to a fixed value.

Description

控制方法 Control Method

技术领域technical field

本发明涉及开关式电源供应器(switching-mode power supply,SMPS)以及相关的操作方法。The present invention relates to a switching-mode power supply (SMPS) and related operating methods.

背景技术Background technique

SMPS已经是大多数消费性电子装置所采用的电源供应器,其通过一功率开关的切换,控制绕组中的储能与释能,来提供符合规格要求的输出电源。譬如说,在轻载(light load)或是无载(no load)时,SMPS可能需要操作于恒定电压模式(constant voltage mode),提供大致跟输出电流大小无关的恒定电压源;而在重载(heavy load)时,则操作于恒定电流模式,提供大致跟输出电压高低无关的恒定电流源。SMPS is already a power supply used by most consumer electronic devices. It controls the energy storage and release in the winding through the switching of a power switch to provide output power that meets the specification requirements. For example, under light load or no load, SMPS may need to operate in constant voltage mode, providing a constant voltage source that is roughly independent of the output current; while under heavy load (heavy load), it operates in constant current mode, providing a constant current source that is roughly independent of the output voltage.

图1为一已知的SMPS 10,可以用初级侧控制(primary side control)的方式,提供恒定电压模式与恒定电流模式。SMPS 10为一返驰式(flyback)架构。桥式整流器(bridge rectifier)12大约地将交流电源VAC整流为一输入电源VIN,变压器20的初级侧绕组(primary winding)24、功率开关15、以及电流检测电阻36串联于输入电源VIN与一接地线之间。开关控制器18使功率开关15开启(ON)时,初级侧绕组24开始增加其中的储能;当开关控制器18使功率开关15关闭(OFF)时,变压器20通过其次级侧绕组(secondarywinding)22以及辅助绕组(auxiliary winding)25释能。整流器16与电容13大略地把次级侧绕组22所释放的电能整流后,提供一输出电源VOUT至输出负载38。整流器28与电容34大略地把辅助绕组25所释放的电能整流后,提供一操作电源VCC至开关控制器18。启动电阻(startup resistor)26提供开关控制器18刚开始时所需要的电流;分压电阻30与32则将辅助绕组25上的反射电压(reflective voltage)经过分压后,提供给开关控制器18。辅助绕组25上的反射电压大约对应次级侧绕组22的跨压,所以通过分压电阻30与32,开关控制器18可以得知次级侧绕组22的跨压,并据以控制功率开关15。FIG. 1 shows a known SMPS 10, which can provide constant voltage mode and constant current mode by means of primary side control. The SMPS 10 is a flyback architecture. A bridge rectifier (bridge rectifier) 12 roughly rectifies the AC power V AC into an input power V IN , and the primary winding 24 of the transformer 20, the power switch 15, and the current detection resistor 36 are connected in series to the input power V IN and a ground wire. When the switch controller 18 turns on (ON) the power switch 15, the primary side winding 24 starts to increase the energy storage therein; when the switch controller 18 turns off (OFF) the power switch 15, the transformer 20 passes through its secondary winding (secondary winding) 22 and the auxiliary winding (auxiliary winding) 25 are released. The rectifier 16 and the capacitor 13 roughly rectify the electric energy released by the secondary winding 22 to provide an output power V OUT to the output load 38 . The rectifier 28 and the capacitor 34 roughly rectify the electric energy released by the auxiliary winding 25 to provide an operating power V CC to the switch controller 18 . The startup resistor 26 provides the current required by the switch controller 18 at the beginning; the voltage divider resistors 30 and 32 provide the switch controller 18 with the reflected voltage on the auxiliary winding 25 after being divided. . The reflected voltage on the auxiliary winding 25 approximately corresponds to the voltage across the secondary winding 22, so through the voltage dividing resistors 30 and 32, the switch controller 18 can know the voltage across the secondary winding 22 and control the power switch 15 accordingly. .

图2显示一种已知的开关控制器18a中关于恒定电压模式的部分电路。取样电路(sample/hold circuit)42于功率开关15关闭时取样了从FB引脚来的电压,产生了回馈电压VFB。误差放大器(error amplifier)44比较回馈电压VFB与参考电压VREF1后,产生补偿电压VCOM。比较器50比较补偿电压VCOM以及检测电压VCS,比较器52比较电流限制电压VCS-LIMIT以及检测电压VCS。比较器50与52的结果输出以及振荡器46的时钟输出,则都耦接到门逻辑控制电路(gate logic controller)48,藉以通过GATE引脚,控制功率开关15。通过负反馈回路,图2的回馈电压VFB大约会被控制于等于参考电压VREF1FIG. 2 shows part of a known switch controller 18a for constant voltage mode. A sampling circuit (sample/hold circuit) 42 samples the voltage from the FB pin when the power switch 15 is turned off, and generates a feedback voltage V FB . An error amplifier (error amplifier) 44 compares the feedback voltage V FB with the reference voltage V REF1 to generate a compensation voltage V COM . The comparator 50 compares the compensation voltage V COM and the detection voltage V CS , and the comparator 52 compares the current limit voltage V CS-LIMIT and the detection voltage V CS . The result outputs of the comparators 50 and 52 and the clock output of the oscillator 46 are coupled to a gate logic controller 48 for controlling the power switch 15 through the GATE pin. Through the negative feedback loop, the feedback voltage V FB of FIG. 2 is controlled to be approximately equal to the reference voltage V REF1 .

虽然图2中没有显示关于恒定电流模式的电路,但已知技术中,已经有许多教导恒定电流模式的SMPS以及其控制方法。譬如美国专利编号US 7016204-Close-loop PWM controller for primary-side controlled powerconverters、US7388764-Primary side constant output current controller、US7110270-Method and apparatus for maintaining a constant load current withline voltage in a switch mode power supply、US7505287-On-time control forconstant current mode in a flyback power supply等。Although the circuit related to the constant current mode is not shown in FIG. 2 , in the known art, there are many SMPSs and their control methods that teach the constant current mode.譬如美国专利编号US 7016204-Close-loop PWM controller for primary-side controlled powerconverters、US7388764-Primary side constant output current controller、US7110270-Method and apparatus for maintaining a constant load current withline voltage in a switch mode power supply、US7505287- On-time control for constant current mode in a flyback power supply etc.

发明内容Contents of the invention

本发明的一实施例提供一种控制方法,适用于控制一开关式电源供应器(switching power supply)。该开关式电源供应器包含有一变压器(transformer),耦接至一输入电源。该变压器被一开关控制以储能或是释能,以产生一输出电源。该控制方法包含有:提供一电容;以该电容存放一实际电荷量以及一预估电荷量的差值,其中,该实际电荷量对应于该开关的一开关周期中流经该变压器的总电荷量,该预估电荷量为该实际电荷量于该开关周期中的总预估量;以及,依据该电容的电压,变化一后续开关周期中,该实际电荷量以及该预估电荷量其中之一,因而使该后续开关周期中,该实际电荷量大约等于该预估电荷量。An embodiment of the present invention provides a control method suitable for controlling a switching power supply. The switching power supply includes a transformer coupled to an input power supply. The transformer is controlled by a switch to store or release energy to generate an output power. The control method includes: providing a capacitor; using the capacitor to store a difference between an actual charge amount and an estimated charge amount, wherein the actual charge amount corresponds to the total charge amount flowing through the transformer during a switching cycle of the switch , the estimated amount of charge is the total estimated amount of the actual amount of charge in the switching cycle; and, according to the voltage of the capacitor, one of the actual amount of charge and the estimated amount of charge is changed in a subsequent switching cycle , so that in the subsequent switching period, the actual charge amount is approximately equal to the estimated charge amount.

本发明的一实施例提供一种恒定电流控制方法,适用于一开关式电源供应器。该开关式电源供应器包含有一开关以及一绕组,相串联且连接至一输入电源。该开关式电源供应器提供一输出电源。该恒定电流控制方法包含有:提供一第一负反馈回路,以检测流经该绕组的绕组电流,并产生一预估平均电流,其大约对应流经该绕组的平均电流;以及,提供一第二负反馈回路,依据该预估平均电流,以使该输出电源的平均输出电流大约为一预设平均输出电流值。An embodiment of the present invention provides a constant current control method suitable for a switching power supply. The switching power supply includes a switch and a winding, which are connected in series and connected to an input power supply. The switching power supply provides an output power. The constant current control method includes: providing a first negative feedback loop to detect the winding current flowing through the winding, and generating an estimated average current approximately corresponding to the average current flowing through the winding; and, providing a first Two negative feedback loops, based on the estimated average current, so that the average output current of the output power supply is approximately a preset average output current value.

本发明的一实施例提供一种产生一实际电流源以代表一绕组的平均电流的方法,适用于一开关式电源供应器(switching power supply),其包含有该绕组。该方法包含有:检测流经该绕组的绕组电流,以产生一检测电压;比较该检测电压与一电压平均值;当该检测电压大于该电压平均值时,以一第一电流源对一电容充电或放电;当该检测电压小于该电压平均值时,以一第二电流源对该电容放电或充电;依据该电容的电压,变化该电压平均值;以及,依据该电压平均值,对应产生该实际电流源。An embodiment of the present invention provides a method of generating a real current source representing the average current of a winding, suitable for a switching power supply, which includes the winding. The method includes: detecting the winding current flowing through the winding to generate a detection voltage; comparing the detection voltage with an average voltage; when the detection voltage is greater than the average voltage, using a first current source to a capacitor charging or discharging; when the detected voltage is less than the average voltage, discharge or charge the capacitor with a second current source; change the average voltage according to the voltage of the capacitor; and, according to the average voltage, correspondingly generate the actual current source.

本发明的一实施例提供一种控制方法,适用于控制一开关式电源供应器(switching power supply)提供恒定电流的一输出电源。该开关式电源供应器包含有一绕组耦接至一输入电源。该绕组被一开关控制以储能或是释能。该控制方法包含有:使流经该绕组的最大电流峰值为一预设值;检测该绕组于一开关周期内的一放电时间;以及,控制该开关的开关周期,以使该放电时间与该开关的开关周期的比例大约等于一个定值。An embodiment of the present invention provides a control method suitable for controlling a switching power supply to provide a constant current output power. The switching power supply includes a winding coupled to an input power. The winding is controlled by a switch to store or discharge energy. The control method includes: making the maximum current peak value flowing through the winding a preset value; detecting a discharge time of the winding in a switching cycle; and controlling the switching cycle of the switch so that the discharging time is consistent with the The ratio of the switching period of the switch is approximately equal to a constant value.

本发明的一实施例提供一种恒定电流恒定电压电源转换器,包含有一恒定电流反馈回路以及一恒定电压反馈回路。其中该恒定电流反馈回路与该恒定电压反馈回路共用一补偿电容。An embodiment of the present invention provides a constant current constant voltage power converter, which includes a constant current feedback loop and a constant voltage feedback loop. Wherein the constant current feedback loop and the constant voltage feedback loop share a compensation capacitor.

本发明的一实施例提供一种开关控制器,适用于一开关式电源供应器(switching power supply)。该开关式电源供应器包含有一变压器(transformer),耦接至一输入电源。该变压器被一开关控制以储能或是释能,以产生一输出电源,该开关控制器包含有一电容、一实际电流源、一预估电流源、以及一回馈装置。该实际电流源对应流经该变压器的一实际电流,对该电容充电,在一开关周期中,产生一实际电荷量。该预估电流源,对应一预估电流,对该电容放电,在该开关周期中,产生一预估电荷量。该回馈装置,依据该电容的电压,变化该实际电荷量或该预估电荷量,以使一之后开关周期中,该预估电荷量接近该实际电荷量。An embodiment of the present invention provides a switch controller suitable for a switching power supply. The switching power supply includes a transformer coupled to an input power supply. The transformer is controlled by a switch to store or discharge energy to generate an output power supply. The switch controller includes a capacitor, an actual current source, an estimated current source, and a feedback device. The actual current source charges the capacitor corresponding to an actual current flowing through the transformer, and generates an actual charge in a switching cycle. The estimated current source discharges the capacitor corresponding to an estimated current, and generates an estimated amount of charge during the switching period. The feedback device changes the actual charge amount or the estimated charge amount according to the voltage of the capacitor, so that in a subsequent switching cycle, the estimated charge amount is close to the actual charge amount.

本发明的一实施例提供一开关控制器,适用于一开关式电源供应器。该开关式电源供应器包含有一开关以及一绕组,相串联且连接至一输入电源。该开关式电源供应器提供一输出电源。该开关控制器包含有一第一负反馈回路以及一恒定电流控制器。该第一负反馈回路,检测流经该绕组的绕组电流,并产生一预估平均电流,其大约对应流经该绕组的平均电流。该恒定电流控制器,用以构成一第二负反馈回路,依据该预估平均电流,使该输出电源的平均输出电流大约为一预设平均输出电流值。An embodiment of the present invention provides a switch controller suitable for a switch mode power supply. The switching power supply includes a switch and a winding, which are connected in series and connected to an input power supply. The switching power supply provides an output power. The switch controller includes a first negative feedback loop and a constant current controller. The first negative feedback loop senses the winding current flowing through the winding and generates an estimated average current approximately corresponding to the average current flowing through the winding. The constant current controller is used to form a second negative feedback loop, and according to the estimated average current, the average output current of the output power supply is approximately a preset average output current value.

本发明的一实施例提供一种平均电压检测器,适用于一开关式电源供应器(switching power supply),其包含有一绕组以及一电流检测器。该电流检测器检测流经该绕组的电流,以产生相对应的一检测电压。该平均电压检测器包含有一电容、一充电电流源、一放电电流源、以及一更新装置。该充电电流源对该电容充电。该放电电流源对该电容放电。该更新装置以该电容的电压,调整一电压平均值。当该检测电压高于该电压平均值时,该电容被充电。当该检测电压低于该电压平均值时,该电容被放电。An embodiment of the present invention provides an average voltage detector suitable for a switching power supply, which includes a winding and a current detector. The current detector detects the current flowing through the winding to generate a corresponding detection voltage. The average voltage detector includes a capacitor, a charging current source, a discharging current source, and a refreshing device. The charging current source charges the capacitor. The discharge current source discharges the capacitor. The refreshing device adjusts a voltage average value with the voltage of the capacitor. When the detection voltage is higher than the average voltage, the capacitor is charged. When the detection voltage is lower than the average voltage, the capacitor is discharged.

附图说明Description of drawings

图1为一已知的开关式电源供应器。FIG. 1 is a known switching power supply.

图2显示一种已知的开关控制器中关于恒定电压模式的部分电路。Fig. 2 shows a part of the circuit in constant voltage mode of a known switching controller.

图3为依据本发明实施的一开关控制器。FIG. 3 is a switch controller implemented according to the present invention.

图4显示一种放电时间检测器。Figure 4 shows a discharge time detector.

图5显示一种恒定电流控制器。Figure 5 shows a constant current controller.

图6显示依据图1与图3的实施例的一时序图。FIG. 6 shows a timing diagram of the embodiment according to FIG. 1 and FIG. 3 .

图7与图8显示另两种恒定电流控制器。Figure 7 and Figure 8 show two other constant current controllers.

图9为依据本发明实施的一开关控制器。FIG. 9 is a switch controller implemented according to the present invention.

图10为依据本发明实施的电压峰值检测器。Figure 10 is a voltage peak detector implemented in accordance with the present invention.

图11为依据本发明实施的恒定电流控制器。Fig. 11 is a constant current controller implemented according to the present invention.

图12为一电压电流转换器。Figure 12 is a voltage-to-current converter.

图13与图14为依据本发明实施的二开关控制器。13 and 14 are two-switch controllers implemented according to the present invention.

图15为依据本发明实施的一开关控制器。Fig. 15 is a switch controller implemented according to the present invention.

图16为依据本发明实施的恒定电流控制器。Figure 16 is a constant current controller implemented in accordance with the present invention.

图17与图18显示了二平均电压检测器。Figure 17 and Figure 18 show two average voltage detectors.

图19为依据本发明实施的另一峰值控制器。Figure 19 is another peak controller implemented in accordance with the present invention.

图20为依据本发明实施的另一开关控制器。Fig. 20 is another switch controller implemented in accordance with the present invention.

【主要元件符号说明】[Description of main component symbols]

10                                   开关式电源供应器10 Switching Mode Power Supply

12                                   桥式整流器12 Bridge Rectifier

13、34                               电容13, 34 Capacitance

15                                   功率开关15 Power switch

16、28                               整流器16, 28 rectifier

18、18a、18b、18c、18d、18e、        开关控制器18, 18a, 18b, 18c, 18d, 18e, switch controller

18f18f

20                                   变压器20 Transformer

22                                   次级侧绕组22 Secondary side winding

24                                   初级侧绕组24 Primary side winding

25                                   辅助绕组25 Auxiliary winding

26                                   启动电阻26 Starting resistor

30、32                               分压电阻30, 32 Voltage divider resistor

36                                   电流检测电阻36 Current Sense Resistor

38                                   输出负载38 Output load

42                                   取样电路42 Sampling circuit

44                                   误差放大器44 Error Amplifier

46                                   振荡器46 Oscillator

48                                   门逻辑控制电路48 Gate logic control circuit

50、52                               比较器50, 52 Comparator

102、102a                            放电时间检测器102, 102a Discharge time detector

104、104a、104b、104c、310、310a     恒定电流控制器104, 104a, 104b, 104c, 310, 310a constant current controller

106                                  电压控制振荡器106 Voltage Controlled Oscillator

108                                  CS峰值控制器108 CS peak controller

110                                  比较器110 Comparator

112                                  反向器112 Inverter

114                                  与门114 AND gate

116                                  脉冲产生器116 Pulse generator

118                                  实际电流源118 Actual current source

120                                  预估电流源120 Estimated current source

122、124                             电容122, 124 Capacitance

126                 开关126 switch

140、142            比较器140, 142 Comparator

144                 计数器144 counter

146                 数字模拟转换器146 Digital to Analog Converter

202、202a           恒定电流控制器202, 202a Constant current controller

204、204a           电压电流转换器204, 204a Voltage-to-current converter

206、206a           电压峰值检测器206, 206a Voltage peak detector

302                 误差放大器302 Error Amplifier

306、306a、306b     平均电压检测器306, 306a, 306b average voltage detector

364、366            恒定电流源364, 366 Constant current source

366、368、382、384  电容366, 368, 382, 384 capacitors

386、388            电压电流转换器386, 388 Voltage-to-current converters

ISEC                电流 ISEC current

ICON                预设电流值I CON preset current value

VAC                 交流电源V AC AC power supply

VCS-AVG             电压平均值V CS-AVG voltage average

VIN                 输入电源V IN input power supply

VOUT                输出电源V OUT output power supply

VCC                 操作电源V CC operating power

VFB                 馈电压V FB feed voltage

VREF1、VREF-CC      参考电压V REF1 , V REF-CC reference voltage

VCOM                补偿电压V COM compensation voltage

VCS                 检测电压V CS detection voltage

VCS-LIMIT           电流限制电压V CS-LIMIT current limit voltage

VAUX                感应电压V AUX sense voltage

VTH                 临界电压V TH Threshold Voltage

VCC-CAP             电压 VCC-CAP voltage

VGATE               门电压V GATE gate voltage

SDIS                放电信号S DIS discharge signal

SSMP                脉冲信号S SMP pulse signal

TDIS                放电时间T DIS discharge time

VCTL    控制电压V CTL control voltage

T       开关周期T switching period

具体实施方式Detailed ways

为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举出优选实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, preferred embodiments are listed below and described in detail with accompanying drawings.

为了说明上的方便,具有等同的或是类似的功能将会以相同的元件符号表示。所以,不同实施例中相同的符号的元件不表示两元件必然相同。本发明的范围应以依据权利要求书要求保护的范围来决定。For the convenience of description, equivalent or similar functions will be denoted by the same symbol. Therefore, elements with the same symbol in different embodiments do not mean that the two elements are necessarily the same. The scope of the present invention should be determined based on the scope of protection required by the claims.

图3为依据本发明实施的一开关控制器18b,可以取代于图1中的开关控制器18,来实现恒定电流与恒定电压控制。以下解说是假定图3的开关控制器18b使用于图1中,且图1的SMPS 10是操作于非连续导通模式(dis-continuous conduction mode,DCM),也就是每个开关周期内,变压器20的电能都会完全放电完毕。FIG. 3 shows a switch controller 18b implemented according to the present invention, which can replace the switch controller 18 in FIG. 1 to realize constant current and constant voltage control. The following explanation assumes that the switch controller 18b of FIG. 3 is used in FIG. 1, and that the SMPS 10 of FIG. 20% of the electric energy will be completely discharged.

开关控制器18b中的恒定电压控制操作,跟图2中的开关控制器18a类似,可由本领域技术人员可以由图2类推得知,在此不再重述。The constant voltage control operation in the switch controller 18b is similar to the switch controller 18a in FIG. 2 , which can be deduced by those skilled in the art from FIG. 2 , and will not be repeated here.

图3跟图2所不同的地方有,图3具有CS峰值控制器108、放电时间检测器102、恒定电流控制器104、以及电压控制振荡器(voltage-controlledoscillator,VCO)106,而这些装置可以适用于恒定电流控制操作,使输出负载38所获得的电流大约为预定的恒定电流IOUT-SETThe difference between Fig. 3 and Fig. 2 is that Fig. 3 has a CS peak controller 108, a discharge time detector 102, a constant current controller 104, and a voltage-controlled oscillator (VCO) 106, and these devices can It is suitable for constant current control operation, so that the current obtained by the output load 38 is approximately the predetermined constant current I OUT-SET .

CS峰值控制器108有效地使流经次级侧绕组22的最高峰值电流为一预设值ISEC-SET。放电时间检测器102通过FB引脚以及辅助绕组25的感应电压VAUX,以产生放电信号SDIS,作为检测次级侧绕组22的放电时间TDIS的结果。恒定电流控制器104依据放电信号SDIS所提供的放电时间TDIS,以及Gate引脚所提供的开关周期T,就可以得知当下此开关周期T中由次级侧绕组22输出的次级侧电荷量,是否等于此开关周期T中所预定的恒定电流IOUT-SET所产生的总预估电荷量。如果有差异,控制电压VCTL就会被改变,进而改变电压控制振荡器106所输出的时钟频率。被改变的时钟频率影响了下次的开关周期T,进而影响了下一开关周期中的总预估电荷量,形成一负反馈回路,目的是使之后的总预估电荷量收敛到等于次级侧电荷量。这样的负反馈回路可以使次级侧绕组22的平均输出电流收敛至大约等于所预定的恒定电流IOUT-SET,达到恒定电流控制的目的。The CS peak controller 108 effectively sets the highest peak current flowing through the secondary winding 22 to a predetermined value I SEC-SET . The discharge time detector 102 generates a discharge signal S DIS through the FB pin and the induced voltage V AUX of the auxiliary winding 25 as a result of detecting the discharge time T DIS of the secondary winding 22 . According to the discharge time T DIS provided by the discharge signal S DIS and the switching period T provided by the Gate pin, the constant current controller 104 can know the secondary-side voltage output by the secondary-side winding 22 in the current switching period T. Whether the amount of charge is equal to the total estimated amount of charge generated by the predetermined constant current I OUT-SET in the switching period T. If there is a difference, the control voltage V CTL will be changed, thereby changing the clock frequency output by the voltage controlled oscillator 106 . The changed clock frequency affects the next switching cycle T, which in turn affects the total estimated charge in the next switching cycle, forming a negative feedback loop, the purpose of which is to make the subsequent total estimated charge converge to equal to the secondary side charge. Such a negative feedback loop can make the average output current of the secondary winding 22 converge to approximately equal to the predetermined constant current I OUT-SET , thereby achieving the purpose of constant current control.

CS峰值控制器108可以使流经图1中的电流检测电阻36的最高峰值电流为预设值IPRI-SET,也等同地使流经初级侧绕组24的最高峰值电流为预设值IPRI-SET。因为初级侧绕组24的最高峰值电流对次级侧绕组22的最高峰值电流的比例,会等于次级侧绕组22对初级侧绕组24的圈数比,所以CS峰值控制器108等同地使流经次级侧绕组22的最高峰值电流为预设值ISEC-SET。举例来说,CS峰值控制器108可以使检测电压VCS的峰值不大于电流限制电压VCS-LIMIT,譬如0.85伏特。一种CS峰值控制器108的实施方式已经揭示于相同发明人的美国专利申请编号12/275,201、台湾专利申请案编号097129355、以及中国专利申请编号200810131240。在以上的申请案中,CS峰值控制器108以一当下检测电压VCS的峰值电压与电流限制电压VCS-LIMIT的差异,然后把此差异用来调整跟检测电压VCS比较的比较电压VCS-USE,让之后开关周期中的检测电压VCS峰值越来越接近电流限制电压VCS-LIMIT。在重载时,经过几个开关周期后,检测电压VCS峰值会收敛至大约等于电流限制电压VCS-LIMIT。也因此,次级侧绕组22的最高峰值电流也会相对应地大约等于预设值ISEC-SETThe CS peak controller 108 can make the highest peak current flowing through the current detection resistor 36 in FIG. 1 be the preset value I PRI-SET , and equivalently make the highest peak current flowing through the primary side winding 24 be the preset value I PRI -SET . Since the ratio of the highest peak current of the primary side winding 24 to the highest peak current of the secondary side winding 22 will be equal to the turns ratio of the secondary side winding 22 to the primary side winding 24, the CS peak controller 108 equivalently causes the current flowing through The highest peak current of the secondary winding 22 is a preset value I SEC-SET . For example, the CS peak controller 108 can make the peak value of the detection voltage V CS not greater than the current limit voltage V CS-LIMIT , such as 0.85 volts. An implementation of the CS peak controller 108 has been disclosed in US Patent Application No. 12/275,201, Taiwan Patent Application No. 097129355, and Chinese Patent Application No. 200810131240 by the same inventor. In the above application, the CS peak controller 108 uses a difference between the peak voltage of the current detection voltage V CS and the current limit voltage V CS-LIMIT , and then uses this difference to adjust the comparison voltage V compared with the detection voltage V CS CS-USE , so that the detection voltage V CS peak value in subsequent switching cycles is getting closer to the current limit voltage V CS-LIMIT . At heavy load, after several switching cycles, the peak value of the detection voltage V CS will converge to approximately equal to the current limit voltage V CS-LIMIT . Therefore, the highest peak current of the secondary side winding 22 is correspondingly approximately equal to the preset value I SEC-SET .

图19为另一个CS峰值控制器500,可以使检测电压VCS的峰值大约等于峰值限定电压VREF-LIMIT。当运用图19的CS峰值控制器500于图3的CS峰值控制器108时,峰值限定电压VREF-LIMIT就是电流限制电压VCS-LIMIT。在一个开关周期中,如果图19中检测电压VCS的峰值大于峰值限定电压VREF-LIMIT,电容508会被电流源510充电而拉高电压VBIAS,较高的VBIAS会有较高的电流IBIAS流经电阻RBIAS。因此,下次开关周期中,检测电压VCS的峰值就会较低。如果在一开关周期中,图19中检测电压VCS的一直小于峰值限定电压VREF-LIMIT,电容508会通过BJT以及电阻RLEAKAGE,以非常小的电流放电,而些微地降低电压VBIAS,所以些微地拉高下次开关周期的检测电压VCS峰值。设计上,电流源510的电流IR要远大于BJT对电容508所造成的漏电电流。在几个开关周期之后,检测电压VCS的峰值就会大约等于峰值限定电压VREF-LIMIT了。FIG. 19 is another CS peak controller 500, which can make the peak value of the detection voltage V CS approximately equal to the peak limit voltage V REF-LIMIT . When using the CS peak controller 500 of FIG. 19 with the CS peak controller 108 of FIG. 3 , the peak limit voltage V REF-LIMIT is the current limit voltage V CS-LIMIT . In one switching cycle, if the peak value of the detection voltage V CS in Figure 19 is greater than the peak limit voltage V REF-LIMIT , the capacitor 508 will be charged by the current source 510 to pull up the voltage V BIAS , a higher V BIAS will have a higher Current I BIAS flows through resistor R BIAS . Therefore, in the next switching cycle, the peak value of the detection voltage V CS will be lower. If the detection voltage V CS in Figure 19 is always lower than the peak limit voltage V REF-LIMIT in a switching cycle, the capacitor 508 will discharge with a very small current through the BJT and the resistor R LEAKAGE , and slightly reduce the voltage V BIAS , Therefore, the detection voltage V CS peak value of the next switching cycle is slightly raised. In design, the current I R of the current source 510 is much larger than the leakage current caused by the BJT to the capacitor 508 . After several switching cycles, the peak value of the detection voltage V CS will be approximately equal to the peak limit voltage V REF-LIMIT .

图4显示一种放电时间检测器102a。放电信号SDIS为逻辑上的高电平时,表示图1中的变压器20还在通过整流器16,对输出负载38放电。当变压器20放电结束时,FB引脚上的感应电压会突然的下降,所以,可以以此突然的下降来检测放电结束,以决定放电时间TDIS。因此,图4中,比较器110比较FB引脚上的电压和一临界电压VTH。而放电时间TDIS也仅仅会出现于功率开关15关闭时,所以图4中,与门114的两个输入端分别连接到比较器110的输出端,以及反向器112的输出端。反向器112的输入端连接至GATE引脚。FIG. 4 shows a discharge time detector 102a. When the discharge signal S DIS is at a logic high level, it indicates that the transformer 20 in FIG. 1 is still passing through the rectifier 16 to discharge the output load 38 . When the discharge of the transformer 20 ends, the induced voltage on the FB pin will drop suddenly. Therefore, the sudden drop can be used to detect the end of discharge to determine the discharge time T DIS . Therefore, in FIG. 4 , the comparator 110 compares the voltage on the FB pin with a threshold voltage V TH . The discharge time T DIS only occurs when the power switch 15 is turned off, so in FIG. 4 , the two input terminals of the AND gate 114 are respectively connected to the output terminal of the comparator 110 and the output terminal of the inverter 112 . The input terminal of the inverter 112 is connected to the GATE pin.

图5显示一种恒定电流控制器104a。实际电流源118与预估电流源120的电流值比例(IREAL/IEXP)为一预设比例值NRATIO。实际电流源118在放电信号SDIS为逻辑上高电平时,也就是放电时间TDIS中,对电容122充电。在放电时间TDIS内,实际电流源118对电容122的充电电荷,称为实际电荷量QRFAL。在开关周期T内,预估电流源120持续对电容122放电,其放电电荷,称为预估电荷量QEST。脉冲产生器116在GATE引脚的电压上升沿时,触发送出一脉冲信号SSMP,使电容124通过开关126,来取样电容122的电压VCC-CAP,以产生控制电压VCTLFigure 5 shows a constant current controller 104a. The current value ratio (I REAL /I EXP ) of the actual current source 118 and the estimated current source 120 is a preset ratio value N RATIO . The actual current source 118 charges the capacitor 122 when the discharge signal S DIS is at a logic high level, that is, during the discharge time T DIS . During the discharge time T DIS , the charge charged by the actual current source 118 to the capacitor 122 is referred to as the actual charge Q RFAL . During the switching period T, the estimated current source 120 continues to discharge the capacitor 122 , and the discharged charge is referred to as an estimated amount of charge Q EST . The pulse generator 116 triggers and sends out a pulse signal S SMP when the voltage of the GATE pin rises, so that the capacitor 124 passes through the switch 126 to sample the voltage V CC-CAP of the capacitor 122 to generate the control voltage V CTL .

图3中的电压控制振荡器(voltage-controlled oscillator,VCO)106,譬如说,可以设计的随着控制电压VCTL升高而降低其振荡频率,同时也增加了开关周期T。The voltage-controlled oscillator (VCO) 106 in FIG. 3 , for example, can be designed to reduce its oscillation frequency as the control voltage V CTL increases, and also increase the switching period T at the same time.

因为图3中的CS峰值控制器108已经使流经次级侧绕组22的最高峰值电流为预设值ISEC-SET,所以,可以假定当恒定电流控制需要作用时,次级侧绕组22的最高峰电流值就是预设值ISEC-SET。在开关周期T中,次级侧绕组22所输出的次级侧电荷量QSEC,可以以下列公式(1)计算Since the CS peak controller 108 in FIG. 3 has made the highest peak current flowing through the secondary side winding 22 the preset value I SEC-SET , it can be assumed that when the constant current control needs to be active, the secondary side winding 22 The highest peak current value is the preset value I SEC-SET . In the switching period T, the secondary-side electric charge Q SEC output by the secondary-side winding 22 can be calculated according to the following formula (1):

QSEC=0.5*ISEC-SET*TDIS..........(1)Q SEC =0.5*I SEC-SET *T DIS ..........(1)

而所希望达成的恒定电流IOUT-SET,在开关周期T中,所输出的总预估电荷量QOUT,可以以下列公式(2)计算For the desired constant current I OUT-SET , in the switching period T, the total estimated charge output Q OUT can be calculated by the following formula (2):

QOUT=IOUT-SET*T..........(2)Q OUT =I OUT-SET *T......(2)

而恒定电流控制操作的结果,就是希望达到次级侧电荷量QSEC等于总预估电荷量QOUT,也就是0.5*ISEC-SET*TDIS等于IOUT-SET*T。As a result of the constant current control operation, it is hoped that the secondary side charge quantity Q SEC is equal to the total estimated charge quantity Q OUT , that is, 0.5*I SEC-SET *T DIS is equal to I OUT-SET *T.

图5中,实际电流源118与预估电流源120的电流值比例NRATIO(=IREAL/IEXP)设计为等于(0.5*ISEC-SET/IOUT-SET),那电压VCC-CAP在开关周期T后的变化(定义为ΔVCC-CAP)可由以下公式推导得知:In FIG. 5 , the current value ratio N RATIO (=I REAL /I EXP ) of the actual current source 118 and the estimated current source 120 is designed to be equal to (0.5*I SEC-SET /I OUT-SET ), and the voltage V CC- The variation of CAP after switching period T (defined as ΔV CC-CAP ) can be derived from the following formula:

ΔVCC-CAP ΔV CC-CAP

=(QREAL-QEST)/CCC-CAP =(Q REAL -Q EST )/C CC-CAP

=(IREAL*TDIS-IEXP*T)*K1 =(I REAL *T DIS -I EXP *T)*K 1

=(0.5*ISEC-SET*TDIS-IOUT-SET*T)*K2------(3)=(0.5*I SEC-SET *T DIS -I OUT-SET *T)*K 2 ------(3)

=(QSEC-QOUT)*K2                   ------(4)=(Q SEC -Q OUT )*K 2 ------(4)

其中,K1与K-2为二常数(constant),CCC-CAP为电容122的电容值。Wherein, K 1 and K− 2 are two constants, and C CC-CAP is the capacitance value of the capacitor 122 .

假定在当下开关周期T后,电压VCC-CAP上升,也就是ΔVCC-CAP大于零,那依据公式(4)可推论,当下这开关周期T中,所产生的次级侧电荷量QSEC超过总预估电荷量QOUT,也就是实际的输出电流是大于所希望达成的恒定电流IOUT-SET。当下的开关周期T后,电压VCC-CAP的上升将会导致控制电压VCTL的上升,并导致下一次开关周期T的增加。如此,形成了一个负反馈回路。只要适当地设计此负反馈回路,就可以使公式(4)与(5)的结果,随着时间过去,而逼近零。换句话说,这负反馈回路借由调整开关周期T,使T/TDIS大约维持等于NRATIO(=IREAL/IEXP),以使QSEC-QOUT=0,进而达到恒定电流输出的目的。Assuming that after the current switching period T, the voltage V CC-CAP rises, that is, ΔV CC-CAP is greater than zero, then according to formula (4), it can be deduced that in the current switching period T, the generated secondary side charge Q SEC Exceeding the total estimated charge Q OUT , that is, the actual output current is greater than the desired constant current I OUT-SET . After the current switching period T, the rise of the voltage V CC-CAP will lead to the rise of the control voltage V CTL and cause the increase of the next switching period T. In this way, a negative feedback loop is formed. As long as the negative feedback loop is properly designed, the results of formulas (4) and (5) can approach zero as time goes by. In other words, the negative feedback loop adjusts the switching period T so that T/T DIS is approximately equal to N RATIO (=I REAL /I EXP ), so that Q SEC -Q OUT =0, and then achieves a constant current output Purpose.

图6显示依据图1与图3的实施例的一时序图,其中,由上到下,分别是GATE引脚上的门电压VGATE、CS引脚上的检测电压VCS、感应电压VAUX、流过次级侧绕组22的电流ISEC、放电信号SDIS、脉冲信号SSMP、控制电压VCTL、以及电容122的电压VCC-CAP。在时间t1时,门电压VGATE上升,开启了功率开关15,变压器20开始充电,所以检测电压VCS开始上升。门电压VGATE的上升沿也触发了脉冲信号SSMP的脉冲,产生由取样电压VCC-CAP而产生的控制电压VCTL。此时,电容122被慢慢地放电所以电压VCC-CAP逐渐下降。在时间t2时,门电压VGATE的下降,会使得检测电压VCS等于电流限制电压VCS-LIMIT,对应的使得流经初级侧绕组24的最高峰值电流为预设值IPRI-SET。此时,对应初级侧绕组24的最高峰值电流IPRI-SET,流经次级侧绕组22的电流ISEC为预设值ISEC-SET。在时间t2到时间t3之间的放电时间TDIS,变压器20放电,所以放电信号SDIS为高逻辑电平。在放电时间TDIS中,因电容122的充电电流大于放电电流,所以电压VCC-CAP逐渐上升。在时间t3时,电流ISEC的放电完毕导致感应电压VAUX的突然下降,所以定义出放电时间TDIS,且电容122停止被电流充电。在时间t3开始到下次放电时间之前,电容122被慢慢地放电所以电压VCC-CAP逐渐下降。在时间t4时,进入下一开关循环,门电压VGATE上升,进行与时间t1一样的动作。由图6以及先前的解说可知,控制电压VCTL的上升,会增加下一次的开关周期T,让下一开关循环后的控制电压VCTL上升的比较少或是减少。这样的负反馈回路最后会使控制电压VCTL大致稳定于一稳定值。Fig. 6 shows a timing diagram of the embodiment according to Fig. 1 and Fig. 3, wherein, from top to bottom, respectively, the gate voltage V GATE on the GATE pin, the detection voltage V CS on the CS pin, and the induced voltage V AUX , the current I SEC flowing through the secondary winding 22 , the discharge signal S DIS , the pulse signal S SMP , the control voltage V CTL , and the voltage V CC-CAP of the capacitor 122 . At time t1 , the gate voltage V GATE rises, the power switch 15 is turned on, and the transformer 20 starts charging, so the detection voltage V CS starts to rise. The rising edge of the gate voltage V GATE also triggers the pulse of the pulse signal S SMP to generate the control voltage V CTL generated by the sampling voltage V CC-CAP . At this time, the capacitor 122 is slowly discharged so that the voltage V CC-CAP gradually decreases. At time t 2 , the drop of the gate voltage V GATE will make the detection voltage V CS equal to the current limit voltage V CS-LIMIT , and correspondingly make the highest peak current flowing through the primary winding 24 be the preset value I PRI-SET . At this time, corresponding to the highest peak current I PRI-SET of the primary winding 24 , the current I SEC flowing through the secondary winding 22 is a preset value I SEC-SET . During the discharge time T DIS between time t 2 and time t 3 , the transformer 20 is discharged, so the discharge signal S DIS is at a high logic level. During the discharge time T DIS , since the charging current of the capacitor 122 is greater than the discharging current, the voltage V CC-CAP gradually rises. At time t 3 , the discharge of the current I SEC is completed, resulting in a sudden drop of the induced voltage V AUX , so the discharge time T DIS is defined, and the capacitor 122 stops being charged by the current. From time t3 to the next discharge time, the capacitor 122 is slowly discharged so that the voltage V CC-CAP gradually decreases. At time t4 , enter the next switching cycle, the gate voltage V GATE rises, and perform the same action as time t1 . It can be known from FIG. 6 and the previous explanation that the rise of the control voltage V CTL will increase the next switching cycle T, so that the rise of the control voltage V CTL after the next switching cycle is less or reduced. Such a negative feedback loop will eventually stabilize the control voltage V CTL at a stable value.

图7显示另一种恒定电流控制器104b,其与图5类似,可以达到与图5类似的目的。与图5不同的,图7具有比较器140,其主要目的是在由脉冲信号SSMP所定义的脉冲时间内,比较电容122的电压VCC-CAP与参考电压VREF-CC,并具以产生充电或是放电电流,而调整控制电压VCTL。譬如说,如果在脉冲信号SSMP所定义的脉冲时间时,发现了电压VCC-CAP高于参考电压VREF-CC,那比较器140就在脉冲时间内对电容124充电,使控制电压VCTL些许的升高,进而些许地增加下一次的开关周期T。FIG. 7 shows another constant current controller 104b, which is similar to that of FIG. 5 and can achieve a similar purpose to that of FIG. 5 . Different from FIG. 5 , FIG. 7 has a comparator 140 whose main purpose is to compare the voltage V CC-CAP of the capacitor 122 with the reference voltage V REF-CC within the pulse time defined by the pulse signal S SMP , and has a Generate charging or discharging current to adjust the control voltage V CTL . For example, if it is found that the voltage V CC-CAP is higher than the reference voltage V REF-CC during the pulse time defined by the pulse signal S SMP , then the comparator 140 charges the capacitor 124 during the pulse time to make the control voltage V The CTL rises a little, and then the next switching period T is slightly increased.

图8显示另一种恒定电流控制器104c,其与图7类似,可以达到与图7类似的目的。与图7不同的,图8具有比较器142、计数器144、以及数字模拟转换器146。计数器144由门电压VGATE的上升沿所触发,且依照当时比较器142的输出上数或是下数。数字模拟转换器146则将计数器144的数字输出转成模拟输出,作为控制电压VCTL。譬如说,如果在门电压VGATE的上升沿时,发现了电压VCC-CAP高于参考电压VREF-CC,那计数器144就上数1,所以使控制电压VCTL些许的升高,进而些许地增加下一次的开关周期T。FIG. 8 shows another constant current controller 104c, which is similar to that of FIG. 7 and can achieve a similar purpose to that of FIG. 7 . Different from FIG. 7 , FIG. 8 has a comparator 142 , a counter 144 , and a digital-to-analog converter 146 . The counter 144 is triggered by the rising edge of the gate voltage V GATE , and counts up or down according to the output of the comparator 142 at that time. The digital-to-analog converter 146 converts the digital output of the counter 144 into an analog output, which is used as the control voltage V CTL . For example, if it is found that the voltage V CC-CAP is higher than the reference voltage V REF-CC at the rising edge of the gate voltage V GATE , then the counter 144 will count up to 1, so that the control voltage V CTL is slightly increased, and then Slightly increase the next switching cycle T.

以上图5、图7与图8的实施例中,使用单一个电容122来记录实际电荷量QREAL以及预估电荷量QEST的差,至少有一个好处:电容122的电容值变化并不会影响控制电压VCTL上升或是下降趋势。所以,图5、图7与图8的实施例可容许电容122的电容值变化。In the above embodiments of FIG. 5 , FIG. 7 and FIG. 8 , using a single capacitor 122 to record the difference between the actual charge Q REAL and the estimated charge Q EST has at least one advantage: the capacitance value of the capacitor 122 does not change Affects the rising or falling trend of the control voltage V CTL . Therefore, the embodiments of FIG. 5 , FIG. 7 and FIG. 8 can allow the capacitance value of the capacitor 122 to vary.

图9为依据本发明实施的一开关控制器18c,可以取代于图1中的开关控制器18,来实现恒定电流与恒定电压控制操作。以下解说是假定图9的开关控制器18c使用于图1中,且图1的SMPS 10是操作于非连续导通模式(dis-continuous conduction mode,DCM)。FIG. 9 shows a switch controller 18c implemented according to the present invention, which can replace the switch controller 18 in FIG. 1 to implement constant current and constant voltage control operations. The following explanation assumes that the switch controller 18c of FIG. 9 is used in FIG. 1, and the SMPS 10 of FIG. 1 is operated in a dis-continuous conduction mode (DCM).

图9跟图3不同的地方有下列几点。1)图9没有CS峰值控制器108,而是采用跟图2一样的比较器52,来大略的限定检测电压VCS的峰值。因为信号延迟与检测电压VCS变化速率等等的问题,当比较器52作用导致功率开关15被关闭时,无法使检测电压VCS的电压峰值VCS-PEAK刚好等于电流限制电压VCS-LIMIT。2)图9多了一个电压峰值检测器206,用来检测当功率开关15被关闭的瞬间,检测电压VCS的电压峰值VCS-PEAK。以及3)图9的恒定电流控制器202依据放电信号SDIS以及电压峰值VCS-PEAK,来调整控制信号VCTLFigure 9 differs from Figure 3 in the following points. 1) There is no CS peak controller 108 in FIG. 9 , but the same comparator 52 as in FIG. 2 is used to roughly limit the peak value of the detection voltage V CS . Because of problems such as signal delay and the rate of change of the detection voltage V CS , when the comparator 52 acts to cause the power switch 15 to be turned off, it is impossible to make the voltage peak value V CS-PEAK of the detection voltage V CS just equal to the current limit voltage V CS-LIMIT . 2) As shown in FIG. 9, a voltage peak detector 206 is added to detect the voltage peak value V CS-PEAK of the voltage V CS at the moment when the power switch 15 is turned off. And 3) the constant current controller 202 in FIG. 9 adjusts the control signal V CTL according to the discharge signal S DIS and the peak voltage V CS-PEAK .

图10为依据本发明实施的电压峰值检测器206a,可适用于图9的实施例。图10中,脉冲产生器与开关使得电容在门电压VGATE的上升沿时归零。当检测电压VCS随着功率开关15的开启时间增加而增大时,电容的电压会追随着检测电压VCS。图10的电压峰值检测器206a为此技术领域有一般知识者可了解,在此不再多述。FIG. 10 is a voltage peak detector 206a implemented according to the present invention, which is applicable to the embodiment of FIG. 9 . In Fig. 10, the pulse generator and switch make the capacitor return to zero on the rising edge of the gate voltage V GATE . When the detection voltage V CS increases as the on-time of the power switch 15 increases, the voltage of the capacitor will follow the detection voltage V CS . The voltage peak detector 206a in FIG. 10 can be understood by those with ordinary knowledge in the technical field, and will not be further described here.

图11为依据本发明实施的恒定电流控制器202a,可适用于图9中的实施例。图11的恒定电流控制器202a,以电压电流转换器204,取代图5的恒定电流控制器104a中的实际电流源118。电压电流转换器204将电压峰值VCS-PEAK转换成相对应的具有值为ICSS-PEAK的电流。ICSS-PEAK对应电压峰值VCS-PEAK,其对应当下开关周期通过次级侧绕组22的电流峰值ISEC-PEAK。换句话说,ICSS-PEAK会与电流峰值ISEC-PEAK成一定比例关系。图11的时序操作,可以依据图5的解说,让本领域技术人员了解,在此不再多述。FIG. 11 is a constant current controller 202a implemented according to the present invention, which can be applied to the embodiment in FIG. 9 . In the constant current controller 202 a of FIG. 11 , the actual current source 118 in the constant current controller 104 a of FIG. 5 is replaced by a voltage-to-current converter 204 . The voltage-to-current converter 204 converts the peak voltage V CS-PEAK into a corresponding current having a value I CSS-PEAK . I CSS-PEAK corresponds to the peak voltage V CS-PEAK , which corresponds to the peak current I SEC-PEAK passing through the secondary winding 22 in the current switching cycle. In other words, I CSS-PEAK will be proportional to the current peak I SEC-PEAK . The sequence operation in FIG. 11 can be understood by those skilled in the art based on the illustration in FIG. 5 , and will not be repeated here.

图11的设计上,可以使ICSS-PEAK/ISEC-PEAK=IEXP/IOUT-SET。如此,ΔVCC-CAP(为电压VCC-CAP在开关周期T后的变化)可由以下公式推导得知:In the design of FIG. 11 , I CSS-PEAK /I SEC-PEAK =I EXP /I OUT-SET can be set. In this way, ΔV CC-CAP (which is the change of the voltage V CC-CAP after the switching period T) can be derived from the following formula:

ΔVCC-CAP ΔV CC-CAP

=(QREAL-QEST)/CCC-CAP =(Q REAL -Q EST )/C CC-CAP

=(0.5*ICSS-PEAK*TDIS-IEXP*T)*K3 =(0.5*I CSS-PEAK *T DIS -I EXP *T)*K 3

=(0.5*ISEC-PEAK*TDIS-IOUT-SET*T)*K4------(5)=(0.5*I SEC-PEAK *T DIS -I OUT-SET *T)*K 4 ------(5)

=(QSEC-QOUT)*K4                    ------(6)=(Q SEC -Q OUT )*K 4 ------(6)

其中,K3与K4为二常数。由公式(5)与(6)类似于公式(3)与(4)的结果可以发现,只要适当的设计一负反馈回路,在图9中,控制电压VCTL控制电压控制振荡器106,可以使得公式(5)与(6)的结果渐渐逼近0,而达到恒定电流操作的目的。Wherein, K 3 and K 4 are two constants. From the results of formulas (5) and (6) similar to formulas (3) and (4), it can be found that as long as a negative feedback loop is properly designed, in FIG. 9, the control voltage V CTL controls the voltage controlled oscillator 106, which can Make the results of the formulas (5) and (6) gradually approach to 0, so as to achieve the purpose of constant current operation.

图12为一电压电流转换器204a,可由此技术领域有一般知识者可了解,在此不再多述。FIG. 12 is a voltage-to-current converter 204a, which can be understood by those with ordinary knowledge in the technical field, and will not be described here.

如同图5的恒定电流控制器104a可以有图7与图8的变化,图11的恒定电流控制器202a也可以有类似的变化。譬如说,一种适用于图9的恒定电流控制器202的实施例可以跟图7或图8一样,只是图7或图8中的实际电流源118以图11的电压电流转换器204取代。Just as the constant current controller 104a in FIG. 5 can have the changes in FIG. 7 and FIG. 8 , the constant current controller 202a in FIG. 11 can also have similar changes. For example, an embodiment suitable for the constant current controller 202 in FIG. 9 can be the same as that in FIG. 7 or 8 , except that the actual current source 118 in FIG. 7 or 8 is replaced by the voltage-to-current converter 204 in FIG. 11 .

在图9中,恒定电流控制器202是通过调整电压控制振荡器106的振荡频率,也就是变化公式(5)中的开关周期T,希望使下次开关周期后公式(5)的结果逼近0。In FIG. 9, the constant current controller 202 adjusts the oscillation frequency of the voltage-controlled oscillator 106, that is, changes the switching period T in the formula (5), hoping to make the result of the formula (5) close to 0 after the next switching period. .

除了改变振荡频率这种方法之外,也可以大约地固定振荡频率,然后通过改变下一开关周期中的流经初级侧绕组24的电流峰值,也就是改变电压峰值VCS-PEAK的方法,达到恒定电流操作。而改变电压峰值VCS-PEAK的恒定电流控制方法,举例于图13、图14以及图20中的开关控制器18d、18e与18g。In addition to changing the oscillation frequency, it is also possible to roughly fix the oscillation frequency, and then change the peak value of the current flowing through the primary side winding 24 in the next switching cycle, that is, change the peak value of the voltage V CS-PEAK to achieve Constant current operation. The constant current control method of changing the voltage peak value V CS-PEAK is exemplified in the switch controllers 18d, 18e and 18g in FIG. 13, FIG. 14 and FIG.

图13与图9类似。与图9不同的,图13的恒定电流控制器202的控制电压VCTL是送到误差放大器302的一个输入端。控制电压VCTL与回馈电压VFB中比较高的一个,会跟参考电压V-REF1比较。当恒定电流控制器202判断出当下次级侧绕组22的平均输出电流过高时,控制电压VCTL上升,进而降低误差放大器302所输出的补偿电压VCOM。比较低的补偿电压VCOM,会限制或是降低了下一开关周期的电压峰值VCS-PEAK。图13的恒定电流控制器202提供了一负反馈回路,可以达到恒定电流控制操作。恒定电流控制操作的负反馈回路,依据信号的先后顺序,包含有恒定电流控制器202、误差放大器302、比较器50、门逻辑控制电路48、功率开关15、以及电压峰值检测器206。而图13中所提供的恒定电压控制操作的负反馈回路,依据信号的先后顺序,包含有取样电路42、误差放大器302、比较器50、门逻辑控制电路48、功率开关15、以及辅助绕组25。一般而言,图13中的误差放大器302的输出有连接一补偿电容(compensationcapacitor)(如图所示)。在图13的实施例中,恒定电流控制操作的负反馈回路,与恒定电压控制操作的负反馈回路共用这补偿电容。这补偿电容可以是内建于实现开关控制器18d的集成电路之中,或是外接于集成电路之外。恒定电流操作时,回馈电压VFB低于控制电压VCTL,所以控制电压VCTL掌控了补偿电容。换句话说,恒定电流操作时,恒定电流控制操作的负反馈回路控制了补偿电容,而恒定电压控制操作的负反馈回路则没有。在恒定电压操作时,控制电压VCTL低于回馈电压VFB,所以回馈电压VFB掌控了补偿电容。FIG. 13 is similar to FIG. 9 . Different from FIG. 9 , the control voltage V CTL of the constant current controller 202 in FIG. 13 is sent to an input terminal of the error amplifier 302 . The higher one of the control voltage V CTL and the feedback voltage V FB is compared with the reference voltage V- REF1 . When the constant current controller 202 determines that the average output current of the secondary side winding 22 is too high, the control voltage V CTL increases to decrease the compensation voltage V COM output by the error amplifier 302 . A relatively low compensation voltage V COM will limit or reduce the voltage peak value V CS-PEAK of the next switching cycle. The constant current controller 202 in FIG. 13 provides a negative feedback loop to achieve constant current control operation. The negative feedback loop of the constant current control operation includes the constant current controller 202 , the error amplifier 302 , the comparator 50 , the gate logic control circuit 48 , the power switch 15 , and the voltage peak detector 206 according to the signal sequence. The negative feedback loop of the constant voltage control operation provided in FIG. 13 includes a sampling circuit 42, an error amplifier 302, a comparator 50, a gate logic control circuit 48, a power switch 15, and an auxiliary winding 25 according to the sequence of signals. . Generally speaking, the output of the error amplifier 302 in FIG. 13 is connected to a compensation capacitor (as shown in the figure). In the embodiment of FIG. 13 , the negative feedback loop of the constant current control operation and the negative feedback loop of the constant voltage control operation share the compensation capacitor. The compensation capacitor can be built into the integrated circuit implementing the switch controller 18d, or externally connected to the integrated circuit. During constant current operation, the feedback voltage V FB is lower than the control voltage V CTL , so the control voltage V CTL controls the compensation capacitor. In other words, during constant current operation, the negative feedback loop of constant current control operation controls the compensation capacitor, while the negative feedback loop of constant voltage control operation does not. During constant voltage operation, the control voltage V CTL is lower than the feedback voltage V FB , so the feedback voltage V FB controls the compensation capacitor.

图14与图9类似。与图9不同的,图14的恒定电流控制器202的控制电压VCTL送到一加法器。控制电压VCTL跟检测电压VCS相加的结果,作为比较器52的一输入,跟电流限制电压VCS-LIMIT相比较。当恒定电流控制器202判断出当下次级侧绕组22的平均输出电流过高时,控制电压VCTL上升,进而拉高了比较器52的一输入端的起始电压值,也降低了下一开关周期的电压峰值VCS-PEAK。所以,下一周期的次级侧绕组22的平均输出电流就会被降低。FIG. 14 is similar to FIG. 9 . Different from FIG. 9, the control voltage V CTL of the constant current controller 202 in FIG. 14 is sent to an adder. The result of adding the control voltage V CTL to the detection voltage V CS is used as an input of the comparator 52 to be compared with the current limit voltage V CS-LIMIT . When the constant current controller 202 judges that the average output current of the secondary side winding 22 is too high, the control voltage V CTL rises, thereby raising the initial voltage value of an input terminal of the comparator 52 and lowering the voltage of the next switch. cycle peak voltage V CS-PEAK . Therefore, the average output current of the secondary side winding 22 in the next cycle will be reduced.

图20与图13类似。图20的恒定电流控制器203,可以跟图13的恒定电流控制器202具有一样内部电路,只是恒定电流控制器203的一输入端接收补偿电压VCOM,而恒定电流控制器202的对应输入端接收电压峰值VCS-PEAK。图20中的CS峰值控制器51使检测电压VCS的峰值随着开关周期的增加,而大约等于补偿电压VCOM。CS峰值控制器51可以采用图19的CS峰值控制器500或是图3的CS峰值控制器108实施。图20中的恒定电流控制器203以当下的补偿电压VCOM以及放电信号SDIS来判断当下开关周期中实际的输出电流跟所希望达成的恒定电流IOUT-SET的比较结果,据以调整下一开关周期的补偿电压VCOM。而补偿电压VCOM会影响电压峰值VCS-PEAK,所以影响了实际的输出电流。图20中的恒定电流控制操作的负反馈回路,依据信号的先后顺序,包含有恒定电流控制器203、误差放大器302、以及CS峰值控制器51。FIG. 20 is similar to FIG. 13 . The constant current controller 203 of FIG. 20 can have the same internal circuit as the constant current controller 202 of FIG. Receive voltage peak value V CS-PEAK . The CS peak controller 51 in FIG. 20 makes the peak value of the detection voltage V CS approximately equal to the compensation voltage V COM as the switching period increases. The CS peak controller 51 can be implemented by using the CS peak controller 500 in FIG. 19 or the CS peak controller 108 in FIG. 3 . The constant current controller 203 in FIG. 20 uses the current compensation voltage V COM and the discharge signal S DIS to judge the comparison result between the actual output current in the current switching cycle and the desired constant current I OUT-SET , and adjust the following The compensation voltage V COM for one switching cycle. The compensation voltage V COM will affect the peak voltage V CS-PEAK , thus affecting the actual output current. The negative feedback loop of the constant current control operation in FIG. 20 includes the constant current controller 203 , the error amplifier 302 , and the CS peak controller 51 according to the order of the signals.

以上的实施例是图1的SMPS 10操作于非连续导通模式(dis-continuousconduction mode,DCM)下,达到恒定电流控制的操作。以下的实施例将介绍如何使图1的SMPS 10操作于连续导通模式(continuous conduction mode,CCM)下,也能达到恒定电流控制的操作。In the above embodiment, the SMPS 10 in FIG. 1 is operated in a discontinuous conduction mode (dis-continuous conduction mode, DCM) to achieve constant current control. The following embodiments will introduce how to make the SMPS 10 of FIG. 1 operate in the continuous conduction mode (continuous conduction mode, CCM), and also achieve the operation of constant current control.

图15为依据本发明实施的一开关控制器18f,可以取代于图1中的开关控制器18,来实现CCM下,恒定电流与恒定电压控制操作。FIG. 15 shows a switch controller 18f implemented according to the present invention, which can replace the switch controller 18 in FIG. 1 to realize constant current and constant voltage control operations under CCM.

图15与图13类似。与图13不同的,图15没有图13中的放电时间检测器102;图15中的恒定电流控制器310有些许地改变;以及,图15以平均电压检测器306取代图13中的电压峰值检测器206。FIG. 15 is similar to FIG. 13 . Different from FIG. 13, FIG. 15 does not have the discharge time detector 102 in FIG. 13; the constant current controller 310 in FIG. 15 is slightly changed; and, FIG. 15 replaces the voltage peak value in FIG. detector 206 .

图15并不需要一个放电时间检测器来决定放电时间TDIS,因为在CCM下,功率开关15的关闭时间TOFF就是放电时间TDISFIG. 15 does not require a discharge time detector to determine the discharge time T DIS , because in CCM, the off time T OFF of the power switch 15 is the discharge time T DIS .

在CCM下,通过次级侧绕组22输出的次级侧电荷量QSEC应为0.5(ISEC-PEAK+ISEC-VALLEY)*TDIS=ISEC-AVG*TOFF,其中ISEC-PEAK、ISEC-VALLEY与ISEC-AVG分别是当下开关周期中次级侧绕组22的电流峰值、电流谷值与电流平均值。从公式(5)与(6)的推导中可以发现,电流峰值ISEC-PEAK对应到电压峰值VCS-PEAK,所以电流平均值ISEC-AVG将会对应到电压平均值VCS-AVG。因此,图15中的平均电压检测器306找出电压平均值VCS-AVG,送给恒定电流控制器310来达成恒定电流控制操作。Under CCM, the secondary-side electric charge Q SEC output through the secondary-side winding 22 should be 0.5(I SEC-PEAK +I SEC-VALLEY )*T DIS =I SEC-AVG *T OFF , where I SEC-PEAK , I SEC-VALLEY and I SEC-AVG are respectively the current peak value, current valley value and current average value of the secondary side winding 22 in the current switching cycle. From the derivation of formulas (5) and (6), it can be found that the peak current I SEC-PEAK corresponds to the peak voltage V CS-PEAK , so the average current I SEC-AVG will correspond to the average voltage V CS-AVG . Therefore, the average voltage detector 306 in FIG. 15 finds out the average voltage V CS-AVG and sends it to the constant current controller 310 to achieve the constant current control operation.

图16为依据本发明实施的恒定电流控制器310a,可适用于图15的实施例。在图16中,电压平均值VCS-AVG通过电压电流转换器360转换成具有值为ICSS-AVG的电流。电压电流转换器360可以以类似图12的电压电流转换器204a实施。图16的设计上,应使ICSS-AVG/ISEC-AVG=IEXP/IOUT-SET。类似图13的恒定电流控制操作,只要可以找到电压平均值VCS-AVG,图15提供了一负反馈回路,达到恒定电流控制操作。FIG. 16 is a constant current controller 310a implemented according to the present invention, which can be applied to the embodiment of FIG. 15 . In FIG. 16, the voltage average value V CS-AVG is converted by the voltage-to-current converter 360 into a current having a value I CSS-AVG . The voltage-to-current converter 360 may be implemented similarly to the voltage-to-current converter 204a of FIG. 12 . In the design of Fig. 16, I CSS-AVG /I SEC-AVG = I EXP /I OUT-SET should be satisfied. Similar to the constant current control operation in Fig. 13, as long as the voltage average value V CS-AVG can be found, Fig. 15 provides a negative feedback loop to achieve constant current control operation.

如同图5中的恒定电流控制器104a有图7与图8的变化,图16中的恒定电流控制器310a可以类似的变化。虽然没有以图示显示,但此变化可由先前的解说类推而得知,不再重述。As the constant current controller 104a in FIG. 5 has the changes in FIGS. 7 and 8, the constant current controller 310a in FIG. 16 can be changed similarly. Although not illustrated, this change can be inferred from the previous explanation and will not be repeated.

图17显示了一平均电压检测器306a,可适用于图15中的开关控制器18f中。平均电压检测器306a自己提供了一负反馈回路,使电压平均值VCS-AVG大约等于初级侧绕组24于功率开关15开启时的平均电压。电容368记忆了电压平均值VCS-AVG,也是电容366在功率开关15开启时的电压起始值。当功率开关15开启,也就是门电压VGATE为逻辑上的高电平时,如果检测电压VCS低于电压平均值VCS-AVG,则恒定电流源364以预设电流值ICON对电容366放电;如果检测电压VCS高于电压平均值VCS-AVG,则恒定电流源362以预设电流值ICON对电容366充电。换句话说,在功率开关15开启时间内,如果检测电压VCS(对应流经初级侧绕组24的电流)高于电压平均值VCS-AVG(对应目前猜测的初级侧绕组24平均电流)的时间,大于低于电压平均值VCS-AVG的时间,那电容366的电压就会升高。所以,当功率开关15一关闭时,因为电荷分享的效应,电容368的电压平均值VCS-AVG会被些许的拉高。电压平均值VCS-AVG的变化会使得下一周期中,检测电压VCS高于电压平均值VCS-AVG的时间接近低于电压平均值VCS-AVG的时间。电容368所记忆的电压平均值VCS-AVG如果不再改变,便意味着检测电压VCS高于电压平均值VCS-AVG的时间跟低于电压平均值VCS-AVG的时间一样。此时,电压平均值VCS-AVG便真的代表了检测电压VCS的平均值。FIG. 17 shows an average voltage detector 306a that may be used in the switch controller 18f of FIG. 15 . The average voltage detector 306a itself provides a negative feedback loop, so that the average voltage V CS-AVG is approximately equal to the average voltage of the primary winding 24 when the power switch 15 is turned on. The capacitor 368 stores the average voltage V CS-AVG , which is also the initial voltage value of the capacitor 366 when the power switch 15 is turned on. When the power switch 15 is turned on, that is, when the gate voltage V GATE is at a logic high level, if the detection voltage V CS is lower than the voltage average value V CS-AVG , the constant current source 364 supplies the capacitor 366 with a preset current value I CON Discharging; if the detection voltage V CS is higher than the average voltage V CS-AVG , the constant current source 362 charges the capacitor 366 with a preset current value I CON . In other words, during the turn-on time of the power switch 15, if the detection voltage V CS (corresponding to the current flowing through the primary side winding 24) is higher than the average voltage V CS-AVG (corresponding to the currently guessed average current of the primary side winding 24) The time is longer than the time when the voltage is lower than the average value V CS-AVG , then the voltage of the capacitor 366 will increase. Therefore, when the power switch 15 is turned off, the average voltage V CS-AVG of the capacitor 368 will be slightly pulled up due to the effect of charge sharing. The variation of the average voltage V CS-AVG will make the detection voltage V CS higher than the average voltage V CS-AVG close to the time lower than the average voltage V CS-AVG in the next cycle. If the average voltage V CS-AVG memorized by the capacitor 368 does not change, it means that the detection voltage V CS is higher than the average voltage V CS-AVG for the same time as it is lower than the average voltage V CS-AVG . At this time, the average voltage value V CS-AVG really represents the average value of the detection voltage V CS .

图18显示了另一平均电压检测器306b,可适用于图15中的开关控制器18f中。平均电压检测器306b也提供了一负反馈回路,使电压平均值VCS-AVG大约等于初级侧绕组24于功率开关15开启时的平均电压。类似的,电容382记忆了电压平均值VCS-AVG。电压电流转换器386与电容384的作用,是计算出检测电压VCS在功率开关15开启时的积分值SVCS。此积分值SVCS可以对应到在一开关周期中,流经初级侧绕组24的实际电荷量。电压电流转换器388与电容384的作用,是计算出电压平均值VCS-AVG在功率开关15开启时的积分值SVCSAVG。此积分值SVCSAVG可以视为实际电荷量的预估电荷量。如果积分值SVCS大于积分值SVCSAVG,电容384的电压将会被升高,同时也表示电压平均值VCS-AVG偏低。如此,当功率开关15关闭时,因为电荷分享(charge sharing)的原理,电压平均值VCS-AVG被些许的增加。所以,使下一周期内,积分值SVCSAVG向积分值SVCS接近。电压平均值VCS-AVG大略地被锁某个值,使得积分值SVCS大约等于积分值SVCSAVG,也意味着电压平均值VCS-AVG大约等于检测电压VCS的平均值。FIG. 18 shows another average voltage detector 306b that may be adapted for use in switch controller 18f of FIG. 15 . The average voltage detector 306b also provides a negative feedback loop, so that the average voltage V CS-AVG is approximately equal to the average voltage of the primary winding 24 when the power switch 15 is turned on. Similarly, the capacitor 382 stores the average voltage V CS-AVG . The function of the voltage-to-current converter 386 and the capacitor 384 is to calculate the integral value S VCS of the detection voltage V CS when the power switch 15 is turned on. The integral value S VCS may correspond to the actual amount of charge flowing through the primary winding 24 during a switching cycle. The function of the voltage-to-current converter 388 and the capacitor 384 is to calculate the integral value S VCSAVG of the average voltage V CS-AVG when the power switch 15 is turned on. This integral value S VCSAVG can be regarded as an estimated charge amount of the actual charge amount. If the integral value S VCS is greater than the integral value S VCSAVG , the voltage of the capacitor 384 will be increased, which also means that the average voltage V CS-AVG is low. Thus, when the power switch 15 is turned off, the average voltage V CS-AVG is slightly increased due to the principle of charge sharing. Therefore, the integrated value S VCSAVG approaches the integrated value S VCS in the next cycle. The average voltage V CS-AVG is roughly locked to a certain value, so that the integral value S VCS is approximately equal to the integral value S VCSAVG , which also means that the average voltage V CS-AVG is approximately equal to the average value of the detection voltage V CS .

图17与图18中调整电压平均值VCS-AVG的方式,类似图5中调整控制电压VCTL的方式。模拟图7中调整控制电压VCTL的方式,图17与图18也可以将电容366或384的电压,跟一参考电压VREF-AVG比较,然后用其比较结果,以电流对电容368或382充放电来微调电压平均值VCS-AVG。这样的负反馈回路也可以一样地达到找到大约的电压平均值VCS-AVG的效果。The way of adjusting the average voltage V CS-AVG in FIG. 17 and FIG. 18 is similar to the way of adjusting the control voltage V CTL in FIG. 5 . To simulate the method of adjusting the control voltage V CTL in Figure 7, Figure 17 and Figure 18 can also compare the voltage of the capacitor 366 or 384 with a reference voltage V REF-AVG , and then use the comparison result to compare the current to the capacitor 368 or 382 Charge and discharge to fine-tune the voltage average value V CS-AVG . Such a negative feedback loop can also achieve the same effect of finding the approximate average voltage V CS-AVG .

模拟于图8中调整控制电压VCTL的方式,图17与图18也可以将电容366或384的电压,跟一参考电压VREF-AVG比较,然后用其比较结果,使一计数器上数或下数,来微调一数字模拟转换器所输出的电压平均值VCS-AVG。如此,电容368或382便可以省略。这样的负反馈回路也可以一样地达到找到大约的电压平均值VCS-AVG的效果。To simulate the method of adjusting the control voltage V CTL in Fig. 8, Fig. 17 and Fig. 18 can also compare the voltage of the capacitor 366 or 384 with a reference voltage V REF-AVG , and then use the comparison result to make a counter count or Count down to fine-tune the average voltage V CS-AVG output by a digital-to-analog converter. In this way, the capacitor 368 or 382 can be omitted. Such a negative feedback loop can also achieve the same effect of finding the approximate average voltage V CS-AVG .

以上的实施例虽然都以返驰式架构实施,但是本发明并非限定于适用返驰式架构,也可以适用于booster或是buck等其他类型的电源转换器架构。Although the above embodiments are all implemented with the flyback architecture, the present invention is not limited to the flyback architecture, and can also be applied to other types of power converter architectures such as booster or buck.

虽然本发明已以优选实施例公开如上,然其并非用以限定本发明,本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视所附权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined by the appended claims.

Claims (10)

1. a control method is applicable to control one switch type power supplying device, and this switch type power supplying device includes a transformer, be coupled to an input power supply, this transformer is controlled with energy storage by a switch or is released energy, and to produce an out-put supply, this control method includes:
One electric capacity is provided;
Deposit the difference that an actual quantity of electric charge and is estimated the quantity of electric charge with this electric capacity, wherein, flow through in the switch periods of this actual quantity of electric charge corresponding to this switch total charge dosage of this transformer, this is estimated the quantity of electric charge and estimates for this actual quantity of electric charge total pre-in this switch periods; And
According to the voltage of this electric capacity, change in the follow-up switch periods, this actual quantity of electric charge and this estimate the quantity of electric charge one of them, thereby make in this follow-up switch periods, this actual quantity of electric charge approximates this greatly and estimates the quantity of electric charge.
2. control method as claimed in claim 1, wherein, this transformer has a primary side winding and a primary side winding, and this actual quantity of electric charge is corresponding to the primary side quantity of electric charge of this primary side winding of flowing through in this switch periods.
3. control method as claimed in claim 2, wherein, this control method also includes:
One preset value is provided;
Make the peak-peak electric current of this primary side winding of flowing through be approximately this preset value;
Provide an actual current source and to estimate current source, wherein this actual current source ratio is in this preset value;
Detect the discharge time of this primary side winding in a switch periods;
Come from first electric charge of in this discharge time this electric capacity charging being accumulated generation with this actual current, as this actual quantity of electric charge; And
Estimate electric current with this and come from second electric charge of in this switch periods this capacitor discharge being accumulated, estimate the quantity of electric charge as this; And
According to the voltage of this electric capacity, change this preset value.
4. control method as claimed in claim 2, wherein, this control method also includes:
The peak-peak electric current that makes this primary side winding of flowing through is a preset value;
Provide an actual current source and to estimate current source, wherein this actual current source and this current value of estimating current source are a preset ratio value;
Detect the discharge time of this primary side winding in a switch periods;
Come from first electric charge of in this discharge time this electric capacity charging being accumulated generation with this actual current, as this actual quantity of electric charge; And
Estimate electric current with this and come from second electric charge of in this switch periods this capacitor discharge being accumulated, estimate the quantity of electric charge as this.
5. control method as claimed in claim 2, wherein, this control method also includes:
Provide an actual current source and to estimate current source, wherein the about correspondence of the current value in this actual current source current peak or the current average of this primary side winding of flowing through;
Accumulate this actual current with this electric capacity and come from first electric charge that is produced in the discharge time, as this actual quantity of electric charge; And
Accumulate this with this electric capacity and estimate electric current and come from second electric charge that is produced in the switch periods, estimate the quantity of electric charge as this.
6. control method as claimed in claim 5, wherein, this conversion step includes;
This voltage according to this electric capacity changes a control signal;
Relatively this control signal and a reference signal are to produce a compensating signal; And
With this compensating signal, limit this primary side current peak of this primary side winding of flowing through.
7. control method as claimed in claim 5 also includes:
This voltage according to this electric capacity changes a control signal; And
According to this control signal, limit this primary side current peak of this primary side winding of flowing through.
8. control method as claimed in claim 5 also includes:
Detect this primary side winding this discharge time in a switch periods.
9. control method as claimed in claim 1, wherein, this actual quantity of electric charge is corresponding to the primary side quantity of electric charge of this primary side winding of flowing through in this switch periods.
10. control method as claimed in claim 9, wherein, this control method also includes:
Provide an actual current source and to estimate current source, wherein the electric current correspondence in this actual current source electric current of this primary side winding of flowing through;
Accumulate this actual current with this electric capacity and come from first electric charge that is produced when this switch opens, as this actual quantity of electric charge; And
Accumulate this with this electric capacity and estimate electric current and come from second electric charge that is produced when this switch opens, estimate the quantity of electric charge as this;
Wherein, this conversion step includes:
This voltage according to this electric capacity changes this and estimates current source, estimates the quantity of electric charge to change in this follow-up switch periods this.
CN 200910163443 2009-08-19 2009-08-19 Control Method Active CN101997412B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910163443 CN101997412B (en) 2009-08-19 2009-08-19 Control Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910163443 CN101997412B (en) 2009-08-19 2009-08-19 Control Method

Publications (2)

Publication Number Publication Date
CN101997412A true CN101997412A (en) 2011-03-30
CN101997412B CN101997412B (en) 2013-06-26

Family

ID=43787149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910163443 Active CN101997412B (en) 2009-08-19 2009-08-19 Control Method

Country Status (1)

Country Link
CN (1) CN101997412B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545624A (en) * 2011-12-22 2012-07-04 成都成电硅海科技股份有限公司 Power supply circuit
CN102739057A (en) * 2011-04-12 2012-10-17 新能微电子股份有限公司 Flyback Power Converter with Primary and Secondary Dual Feedback Control
CN103023323A (en) * 2011-09-20 2013-04-03 万国半导体(开曼)股份有限公司 Average inductive current type voltage control method and variable reference voltage generating device used by method
CN103427642A (en) * 2012-05-17 2013-12-04 艾沃特有限公司 Constant current control buck converter without current sense
CN103856038A (en) * 2012-11-29 2014-06-11 通嘉科技股份有限公司 Controller and method for generating jitter in constant current mode of power converter
CN103916014A (en) * 2013-01-04 2014-07-09 凌力尔特公司 Power supply system and method for supplying power from input node to output node
CN103986333A (en) * 2013-07-19 2014-08-13 昂宝电子(上海)有限公司 System and method for adjusting output current of power supply conversion system
CN105305825A (en) * 2014-07-18 2016-02-03 绿达光电股份有限公司 power supply controller and related control method
US9548652B2 (en) 2010-12-08 2017-01-17 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US9553501B2 (en) 2010-12-08 2017-01-24 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US9564811B2 (en) 2014-04-18 2017-02-07 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
US9577536B2 (en) 2015-02-02 2017-02-21 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing reliable over current protection for power converter
US9584005B2 (en) 2014-04-18 2017-02-28 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
US9614445B2 (en) 2013-07-19 2017-04-04 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for high precision and/or low loss regulation of output currents of power conversion systems
US9647448B2 (en) 2005-08-18 2017-05-09 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current and over power protection for power converter
CN107742983A (en) * 2017-11-29 2018-02-27 上海南麟电子股份有限公司 Share constant current constant voltage control module, reduction voltage circuit and the compensation method of compensation
US9960674B2 (en) 2015-05-15 2018-05-01 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US10003268B2 (en) 2015-05-15 2018-06-19 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085813A2 (en) * 2002-04-04 2003-10-16 Thomson Licensing S.A. Line frequency switching regulator
CN1476156A (en) * 2002-08-12 2004-02-18 噔国际股份有限公司 One by one period switch control used on low ready machine power
CN101071983A (en) * 2006-05-01 2007-11-14 国际整流器公司 Method to reduce inrush voltage and current in a switching power converter
US20090073728A1 (en) * 2006-03-09 2009-03-19 Shindengen Electric Manufacturing Co., Ltd. Power converter and method, and triangle wave generating circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085813A2 (en) * 2002-04-04 2003-10-16 Thomson Licensing S.A. Line frequency switching regulator
CN1476156A (en) * 2002-08-12 2004-02-18 噔国际股份有限公司 One by one period switch control used on low ready machine power
US20090073728A1 (en) * 2006-03-09 2009-03-19 Shindengen Electric Manufacturing Co., Ltd. Power converter and method, and triangle wave generating circuit
CN101071983A (en) * 2006-05-01 2007-11-14 国际整流器公司 Method to reduce inrush voltage and current in a switching power converter

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647448B2 (en) 2005-08-18 2017-05-09 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current and over power protection for power converter
US10277110B2 (en) 2010-12-08 2019-04-30 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US10811955B2 (en) 2010-12-08 2020-10-20 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US10483838B2 (en) 2010-12-08 2019-11-19 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US10581315B2 (en) 2010-12-08 2020-03-03 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US10615684B2 (en) 2010-12-08 2020-04-07 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US11264888B2 (en) 2010-12-08 2022-03-01 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US9548652B2 (en) 2010-12-08 2017-01-17 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US9553501B2 (en) 2010-12-08 2017-01-24 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
US11114933B2 (en) 2010-12-08 2021-09-07 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
CN102739057A (en) * 2011-04-12 2012-10-17 新能微电子股份有限公司 Flyback Power Converter with Primary and Secondary Dual Feedback Control
CN103023323A (en) * 2011-09-20 2013-04-03 万国半导体(开曼)股份有限公司 Average inductive current type voltage control method and variable reference voltage generating device used by method
CN103023323B (en) * 2011-09-20 2015-01-21 万国半导体(开曼)股份有限公司 Average inductive current type voltage control method and variable reference voltage generating device used by method
CN102545624A (en) * 2011-12-22 2012-07-04 成都成电硅海科技股份有限公司 Power supply circuit
CN103427642B (en) * 2012-05-17 2017-04-12 戴乐格半导体公司 Constant current control buck converter without current sense
US9420645B2 (en) 2012-05-17 2016-08-16 Dialog Semiconductor Inc. Constant current control buck converter without current sense
CN103427642A (en) * 2012-05-17 2013-12-04 艾沃特有限公司 Constant current control buck converter without current sense
CN103856038B (en) * 2012-11-29 2017-03-01 通嘉科技股份有限公司 Controller and method for generating jitter in constant current mode of power converter
CN103856038A (en) * 2012-11-29 2014-06-11 通嘉科技股份有限公司 Controller and method for generating jitter in constant current mode of power converter
CN103916014A (en) * 2013-01-04 2014-07-09 凌力尔特公司 Power supply system and method for supplying power from input node to output node
CN103916014B (en) * 2013-01-04 2018-03-27 凌力尔特公司 Power-supply system and the method powered from input node to output node
US11108328B2 (en) 2013-07-19 2021-08-31 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for high precision and/or low loss regulation of output currents of power conversion systems
US9614445B2 (en) 2013-07-19 2017-04-04 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for high precision and/or low loss regulation of output currents of power conversion systems
US10177665B2 (en) 2013-07-19 2019-01-08 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for high precision and/or low loss regulation of output currents of power conversion systems
CN103986333B (en) * 2013-07-19 2017-05-24 昂宝电子(上海)有限公司 system and method for adjusting output current of power supply conversion system
CN103986333A (en) * 2013-07-19 2014-08-13 昂宝电子(上海)有限公司 System and method for adjusting output current of power supply conversion system
US10211740B2 (en) 2013-07-19 2019-02-19 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for high precision and/or low loss regulation of output currents of power conversion systems
US9564811B2 (en) 2014-04-18 2017-02-07 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
US10170999B2 (en) 2014-04-18 2019-01-01 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
US10044254B2 (en) 2014-04-18 2018-08-07 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
US9570986B2 (en) 2014-04-18 2017-02-14 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
US9584005B2 (en) 2014-04-18 2017-02-28 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
US10686359B2 (en) 2014-04-18 2020-06-16 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
US9991802B2 (en) 2014-04-18 2018-06-05 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
CN105305825B (en) * 2014-07-18 2018-02-09 绿达光电股份有限公司 power supply controller and related control method
CN105305825A (en) * 2014-07-18 2016-02-03 绿达光电股份有限公司 power supply controller and related control method
US10211626B2 (en) 2015-02-02 2019-02-19 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing reliable over current protection for power converter
US9577536B2 (en) 2015-02-02 2017-02-21 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing reliable over current protection for power converter
US10340795B2 (en) 2015-05-15 2019-07-02 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US10680525B2 (en) 2015-05-15 2020-06-09 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US10686373B2 (en) 2015-05-15 2020-06-16 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US10270334B2 (en) 2015-05-15 2019-04-23 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US10432096B2 (en) 2015-05-15 2019-10-01 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US10811965B2 (en) 2015-05-15 2020-10-20 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US10003268B2 (en) 2015-05-15 2018-06-19 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US9960674B2 (en) 2015-05-15 2018-05-01 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
US11652410B2 (en) 2015-05-15 2023-05-16 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
CN107742983A (en) * 2017-11-29 2018-02-27 上海南麟电子股份有限公司 Share constant current constant voltage control module, reduction voltage circuit and the compensation method of compensation
CN107742983B (en) * 2017-11-29 2023-05-26 上海南麟电子股份有限公司 Constant-current constant-voltage control module, voltage reducing circuit and compensation method for sharing compensation

Also Published As

Publication number Publication date
CN101997412B (en) 2013-06-26

Similar Documents

Publication Publication Date Title
CN101997412B (en) Control Method
TWI431918B (en) Control method, constant current control method, method for generating a real current source to represent average current through a winding, constant current and constant voltage power converter, switch controller, and average voltage detector
TWI460983B (en) A system and method for performing constant flow control using primary side sensing and adjustment
US10873263B2 (en) Systems and methods of overvoltage protection for LED lighting
US11342856B2 (en) Power converter controller with stability compensation
US9490706B2 (en) Power supply controller with input voltage compensation for efficiency and maximum power output
US7940035B2 (en) Control circuit having an impedance modulation controlling power converter for saving power
US7502235B2 (en) Output power limit for a switching mode power converter by a current limit signal having a multi-slope waveform
US20160141961A1 (en) Power converter controller with stability compensation
US9007786B2 (en) Switching controller for flyback power converters without input capacitor
US20110194316A1 (en) Switching power supply device
US7855899B2 (en) Controller with loop impedance modulation for power converter
TWI680637B (en) Analog demagnetization sampling method and system for switching power supply output sampling
US20160056724A1 (en) Switching Power Supplies And Methods Of Operating Switching Power Supplies
CN108288916B (en) Pulse frequency modulated mode for single stage power converter is converted
TWI798785B (en) Primary-side controllers, secondary-side controllers, control methods, and relevant isolated power supplies
Huang et al. Primary-side feedback control IC design for flyback converter with energy saving burst mode
JP4387244B2 (en) Switching power supply
CN113630010A (en) Primary side control AC-DC converter output current and voltage characteristic curve device
JP2002199715A (en) Switching power device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant