CN101982827A - 图像表示和分析方法 - Google Patents
图像表示和分析方法 Download PDFInfo
- Publication number
- CN101982827A CN101982827A CN2010105652465A CN201010565246A CN101982827A CN 101982827 A CN101982827 A CN 101982827A CN 2010105652465 A CN2010105652465 A CN 2010105652465A CN 201010565246 A CN201010565246 A CN 201010565246A CN 101982827 A CN101982827 A CN 101982827A
- Authority
- CN
- China
- Prior art keywords
- image
- descriptors
- scale
- descriptor
- images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 105
- 238000012545 processing Methods 0.000 claims description 29
- 238000012935 Averaging Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims 2
- 230000008569 process Effects 0.000 description 35
- 238000011524 similarity measure Methods 0.000 description 28
- 230000007704 transition Effects 0.000 description 27
- 238000012986 modification Methods 0.000 description 22
- 230000004048 modification Effects 0.000 description 22
- 238000000605 extraction Methods 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 238000012952 Resampling Methods 0.000 description 7
- 230000011218 segmentation Effects 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 241000023320 Luma <angiosperm> Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 235000019580 granularity Nutrition 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/5838—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/5854—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using shape and object relationship
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/5862—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/97—Determining parameters from multiple pictures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Library & Information Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
一种表示和分析图像的方法,其包括以下步骤:在一个或更多个尺度下并针对一个或更多个色彩通道生成多个描述符,该描述符捕获多个区域内的色彩内容和互相关信息;根据这些描述符的特征,如尺度、色彩通道、特征语义以及区域,按多种方式将它们关联起来;以及对这种图像表示进行比较以评估图像的相似性。
Description
本申请是原案申请号为200510105360.9的发明专利申请(申请日:2005年9月23日,发明名称:图像表示和分析方法)的分案申请。
技术领域
本发明涉及用于表示图像的方法和装置,以及用于对图像间的相似性进行评估的方法和装置。
背景技术
在Lienhart,R.,“Comparison of Automatic Shot Boundary Detection Algorithms”,In Proceedings of Image and Video Processing VII 1999,Proc.SPIE 3656-29,pp.290-301,Jan.1999中,提出了一种用于检测视频序列中的拍摄转场(shot transition)的方法。针对序列中的每个帧,创建RGB色空间中的3维直方图。然后将序列中的多个连续帧的差异计算为它们相应的直方图之间的差异、计算为绝对二元(bin-wise)差异的总和。然后通过搜索预定固定阈值以上的距离来识别拍摄转场。因此,该方法仅根据空间非敏感的色彩内容信息来检测拍摄转场。因此,该方法未利用存在于空间排列和色彩互相关(interrelation)中的信息资源。
在Zabih,R.,Miller,J.,Mai,K.,“A Feature-Based Algorithm for Detecting and Classifying Scene Breaks”,In Proceedings of 1995 3rd ACM International Conference on Multimedia,San Francisco,CA USA,pp.189-200,1995中,提出了一种用于检测视频序列中的拍摄转场的不同方法。针对序列中的每个帧,计算出边沿图。然后根据存在于第一帧中而不存在于第二帧中的边沿的数量以及存在于第二帧中而不存在于第一帧中的边沿的数量,来计算序列中多个连续帧之间的差异。然后,该差异测度的时间序列中的峰点(sharp peak)表示拍摄转场的存在性。因此,该方法仅根据边沿信息(其为一种类型的空间互相关信息)检测拍摄转场。尽管其原理是正确的,但是该方法未利用存在于帧的色彩内容中的信息资源。此外,边沿图创建过程很耗计算机时并且意味着仅揭示帧内最强的色彩不连续性。此外,该方法对运动相当敏感。因此,作者建议使用图象配准技术来抵消该缺点,但是这种处理很耗计算机时。
在Dailianas,A.,Allen,R.B.,England,P.,“Comparison of Automatic Video Segmentation Algorithms”,SPIE Integration Issues in Large Commercial Media Delivery Systems,vol.2615,pp.2-16,Oct.1995中,提出了用于检测视频序列中的拍摄转场的另一方法。将序列中的多个连续帧之间的差异计算为绝对像素方面(pixel-wise)差异的总和。然后通过搜索预定固定阈值以上的距离来识别拍摄转场。因此,该方法仅根据空间敏感的色彩内容信息来检测拍摄转场。尽管其原理是正确的,但是该方法未利用存在于色彩的空间互相关中的信息资源。此外,对视频结果的这种简单处理导致对噪声和运动高度敏感性。一种运动补偿算法可以解决该运动敏感性问题,但是这种处理很耗计算机时。
在Xiong,W.,“Shot Boundary Detection”,US 2003/0091235 A1,published 15 May,2003中,提出了一种基于不同类型信息的组合检测拍摄转场的方法。该方法包括计算两个帧之间的块基(block-based)差异,如果该块基差异超过固定阈值,则表明是候选拍摄转场。在此情况下,通过规定这两个帧之间的色彩和/或边沿差异也超过预定阈值,验证拍摄转场。为了对块基差异进行计算,将帧划分成多个块并计算块平均。然后,对相应块之间的差异进行阈值比较以确定两个块是相似的还是不同的,并对两个帧之间的不同块的数量进行阈值比较以确定两个帧是相似的还是不同的。色差是绝对双向差异的总和,而边沿差异利用边沿直方图,以捕获边沿量级和方向信息。
在Nakajima,Y.,Sugano,M.,Yanagihara,H.,for KDDI CORPORATION(JP),“Picture Searching Apparatus”,US 2004/0091044A1,published 13 May,2004中,提出了一种用于检测拍摄转场的方法,其基于以下信息:(a)图像之间的相关性,(b)子采样图像之间的相关性,(c)图像之间的运动,以及(d)子采样图像之间的运动。其中,将图像之间和子采样图像之间的相关性测量为像素向差异或直方图差异,并且根据各种运动矢量差测量图像之间和子采样图像之间的运动。
在Jafarkhani,H.,Shahraray,B.,for AT&T CORP.(US),“Method for Analyzing Video”,US6,542,619B1,granted 1 April,2003中,提出了一种拍摄转场检测方法,其包括以下步骤:创建视频帧的两个一维投影,即行和列投影;对每个投影执行小波变换并只保留高频分量(即,小波系数);以及对每次变换的高频分量进行自相关。对于一系列视频帧,当所得自相关系数时间曲线显示出预定最高值时,表示拍摄转场。因此,该方法使用了由小波变换提供的空间敏感色彩内容和互相关信息,但是该信息不是关于帧的而是关于帧投影的,导致很大的信息损失。
在Jacobs,C.E.,Finkelstein,A.,Salesin,D.H.,“Fast Multiresolution Image Querying”,In Proceedings of 1995 ACM SIGGRAPH Conference,Los Angeles CA,USA,Aug.9-11,pp.277-286,1995中,提出了一种用于检索与给定图像相似的图像的方法。根据该方法,最初通过图像的Haar小波分解来表示图像。然后,截取该分解,即,仅保留标度函数系数(平均强度)和很少数量的最大幅度小波系数。然后,对截取的分解进行量化,即,仅保留小波系数的符号。由此,形成了表征图像的单个图像描述符以用于图像检索。
在Zhuang,Z.-Y.,Hsu,C.-T.,Chen,H.-Y.,Ouhyoung,M.,Wu,J.-L.,″Efficient Multiresolution Scene Change Detection by Wavelet Transformation″,In Proceedings of 1997 IEEE International Conference on Consumer Electronics ICCE ′97,Taipei,Taiwan,Jun.11-13,pp.250-251,1997中,提出了一种用于检测拍摄转场的方法,其按与在“Fast Multiresolution Image Querying(快速多分辨率图像查询)”中所描述的相同方式对视频帧进行表征。“Fast Multiresolution Image Querying”方法与“Efficient Multiresolution Scene Change detection by WaveletTransformation(利用小波变换的高效多分辨率场景变化检测)”方法之间的差别在于,根据后一方法,舍弃帧的周边并将帧缩减到只剩它们的中央部分。这种方法会引起很大的信息损失,并且当在视频中存在显著运动时会导致假视频分割和/或很大的过分割。
上述两种方法共有的缺陷是这样的假设,即,通过只保留很少数量的最大幅度系数可以有效地截取小波分解。为了阐述这一点,从128x128像素开始到2x2像素的图像平面的多尺度小波分解将产生16383个小波系数。如本领域技术人员所了解的,根据量级将该序列截取为很小数量的系数(例如,如作者所建议的40或60个最大量级系数),会得到这样的描述符,即,其极易受噪声影响、易受图像检索和视频分割的部分遮挡的影响、以及易受视频分割的高视频运动和内摄照明效应的影响,存在一些问题。通过只保留符号对所截取序列进行量化会放大该问题。
根据这些方法的另一显著问题在于,未利用Haar小波分解的系数所附的语义信息(semantic information)。这种语义信息包括:系数所表示的特定色彩信息,例如RGB的R或YCbCr的Y;其中存在系数的特定图像尺度,例如,它是在捕获精细细节的高图像尺度下的系数或是在捕获粗图像信息的低图像尺度下的系数等。
其中,对图像之间的相似度进行评估的方法例如以从与给定图像相似的一组图像检索图像或者以检测数字视频中的帧不连续性(如拍摄转场或照明和其他效应)开始。这些方法依赖于以下操作:提取这样的图像描述符,即,其捕获了在一个或更多个图像尺度下的并且在一个或多个图像通道上的空间敏感色彩内容和互相关信息;接着,不按单个描述符而按多个描述符(由语义内容区分这些描述符)组合描述符;以及在有效利用所述语义内容的多重判定框架中使用这些描述符。因此,与先前的方法不同,可以建立图像之间的复杂关联,例如建立这样的关系:两幅图像表示同一场景,但是一幅图像存在很明显的遮挡(如一个人走到相机跟前);或者两幅图像表示同一场景,却是在不同的照明条件下拍摄的;或者两个帧属于同一次拍摄,但是由于整体照明效果而看起来很不相同。
发明内容
在所附权利要求中陈述了本发明的多个方面。
根据本发明一个方面,根据对关于图像的一个或更多个区域的色彩信息和/或色彩互相关信息进行捕获的子描述符的特征(例如,区域、尺度、色彩、色彩互相关、色彩通道等),把这些子描述符关联起来以形成两个或更多个描述符。
子描述符可以具有也捕获色彩和/或色彩互相关信息的元素。在此情况下,这些子描述符元素也可以构成子描述符。例如,图像区域的Haar小波变换的四个测度LL、HL、LH以及HH一起形成该图像区域的子描述符。然而,也可以把LL本身或HH本身看成它们本身的子描述符。
所述“将子描述符关联起来”的步骤可以包括以下步骤:将它们拆分成它们的构成元素并根据对应特征对所述元素进行分组或关联。
附图说明
以下参照附图对本发明实施例进行描述,附图中:
图1示出了根据本发明一实施例的针对Y通道的块平均再采样过程;
图2A-2D示出了在本发明一个实施例中对尺度描述符进行的计算;
图3A-3D示出了根据本发明另一实施例对尺度描述符进行的计算;
图4是根据本发明一实施例的用于对多幅图像进行比较的流程图;
图5是根据本发明另一实施例的用于对多幅图像进行比较的流程图;
图6是根据本发明另一实施例的用于对多幅图像进行比较的流程图;
图7是根据本发明另一实施例的用于对多幅图像进行比较的流程图;
图8是根据本发明另一实施例的用于对多幅图像进行比较的流程图;
图9是根据本发明另一实施例的用于对多幅图像进行比较的流程图;以及
图10是适于实现本发明实施例的处理设备的示意图。
具体实施方式
考虑数字图像Fi(x,y),其中(x,y)表示空间坐标,x=0…M-1并且y=0…N-1。在本发明一个实施例中,在色彩空间YCbCr中表示Fi,但是这并非限制性的,本发明实施例可以适用任何数量个通道的任何色彩空间。在本发明一个实施例中,Fi的空间分辨率是720x576个像素,即,M=720并且N=576,但是这并非限制性的,本发明实施例可以适用任何空间分辨率。在本发明一个实施例中,把要提取描述符所用最高分辨率选择为64×64个像素,但是这并非限制性的,本发明实施例可以适用其他分辨率。因此,对Fi进行再采样以得到64×64像素图像Fi(64×64)。在本发明一个实施例中,该再采样过程是如图1所示的简单块平均过程,但是对再采样机制的选择也并非限制性的。更具体来说,图1示出了针对Y通道的块平均再采样过程,但是这并非限制性的,而是可以将该过程用于任何色彩空间的任何通道。在本发明另一实施例中,要提取描述符所用的最高尺度与Fi的分辨率相一致并且最初不必进行再采样。
图2示出了在本发明一个实施例中对该尺度的描述符进行的计算。更具体来说,图2示出了对Y通道的描述符的计算,但是这并非限制性的,而是可以将类似方法应用于所有色彩通道。在图2A中,将2×2窗口应用于图像的左上角。该窗口指定了局部邻域。对于该邻域中的像素FY i(64×64)(0,0)、FY i(64×64)(1,0)、FY i(64×64)(0,1)以及FY i(64×64)(1,1),可以将2维Haar变换系数LL、HL、LH以及HH计算成:
LL=(FY i(64×64)(0,0)+FY i(64×64)(1,0)+FY i(64×64)(0,1)+FY i(64×64)(1,1))/2 (1)
HL=(FY i(64×64)(0,0)-FY i(64×64)(1,0)+FY i(64×64)(0,1)-FY i(64×64)(1,1))/2 (2)
LH=(FY i(64×64)(0,0)+FY i(64×64)(1,0)-FY i(64×64)(0,1)-FY i(64×64)(1,1))/2 (3)
HH=(FY i(64×64)(0,0)-FY i(64×64)(1,0)-FY i(64×64)(0,1)+FY i(64×64)(1,1))/2 (4)
在上述公式中,LL捕获色彩内容信息,而HL、LH以及HH捕获色彩互相关信息。本领域的技术人员将理解,例如通过首先在水平方向上然后在垂直方向上执行计算,可以对公式(1)-(4)进行修改以减少所需计算次数。根据公式(1)-(4)或它们的最优化但是以值4而非值2作为分母来计算Haar系数,也是很常见的。
以VY i(64×64)表示FY i(64×64)的描述符,可以如下将这些值写入描述符中:
VY i(64×64)(1)=LL,VY i(64×64)(2)=HL,VY i(64×64)(3)=LH,VY i(64×64)(4)=HH (5)
接下来,如图2B所示,所述2×2窗口向右滑动2个像素以形成包括像素FY i(64×64)(2,0)、FY i(64×64)(3,0)、FY i(64×64)(2,1)以及FY i(64×64)(3,1)的新邻域。针对新像素值再计算Haar变换系数LL、HL、LH以及HH,然后把它们存储在描述符位置VY i(64×64)(5)到VY i(64×64)(8)中。如图2C和2D所示,一旦完成了对一组行的所有计算,则滑动窗口向下移动两个像素并再从左向右滑动,直到处理完整幅图像为止。这完成了对描述符VY i(64×64)的计算,该描述符VY i(64×64)在64×64像素的尺度下捕获了针对Y平面的图像空间敏感色彩内容和互相关。
本发明多个实施例涉及对捕获空间敏感色彩内容和互相关信息的描述符的计算。
因此,在以上描述中,针对LL、HL、LH以及HH的公式(1)-(4)仅仅是在邻域内可以进行的度量的一个示例,并且仅代表一个实施例。Haar变换是小波变换的一个简单示例,其生成了信号的多分辨率时频表示。本发明另一实施例使用另一类似的但是更复杂的小波变换,即2维Daubechies小波变换,而非使用Haar变换。与前一变换不同,该变换按4×4窗口以2个像素的滑动步长进行操作,即,所得邻域是相交叠的。图3示出了该变换。在图3A中,将4×4窗口应用于图像的左上角。该窗口指定了局部邻域。对于该邻域中的像素,计算以下描述符元素:
a1=h0·(h0·FY i(64×64)(0,0)+h1·FY i(64×64)(1,0)+h2·FY i(64×64)(2,0)+h3·FY i(64×64)(3,0))
+h1·(h0·FY i(64×64)(0,1)+h1·FY i(64×64)(1,1)+h2·FY i(64×64)(2,1)+h3·FY i(64×64)(3,1))
+h2·(h0·FY i(64×64)(0,2)+h1·FY i(64×64)(1,2)+h2·FY i(64×64)(2,2)+h3·FY i(64×64)(3,2))
+h3·(h0·FY i(64×64)(0,3)+h1·FY i(64×64)(1,3)+h2·FY i(64×64)(2,3)+h3·FY i(64×64)(3,3)) (6)
a2=h0·(h3·FY i(64×64)(0,0)-h2·FY i(64×64)(1,0)+h1·FY i(64×64)(2,0)-h0·FY i(64×64)(3,0))
+h1·(h3·FY i(64×64)(0,1)-h2·FY i(64×64)(1,1)+h1·FY i(64×64)(2,1)-h0·FY i(64×64)(3,1))
+h2·(h3·FY i(64×64)(0,2)-h2·FY i(64×64)(1,2)+h1·FY i(64×64)(2,2)-h0·FY i(64×64)(3,2))
+h3·(h3·FY i(64×64)(0,3)-h2·FY i(64×64)(1,3)+h1·FY i(64×64)(2,3)-h0·FY i(64×64)(3,3)) (7)
a3=h3·(h0·FY i(64×64)(0,0)+h1·FY i(64×64)(1,0)+h2·FY i(64×64)(2,0)+h3·FY i(64×64)(3,0))
-h2·(h0·FY i(64×64)(0,1)+h1·FY i(64×64)(1,1)+h2·FY i(64×64)(2,1)+h3·FY i(64×64)(3,1))
+h1·(h0·FY i(64×64)(0,2)+h1·FY i(64×64)(1,2)+h2·FY i(64×64)(2,2)+h3·FY i(64×64)(3,2))
-h0·(h0·FY i(64×64)(0,3)+h1·FY i(64×64)(1,3)+h2·FY i(64×64)(2,3)+h3·FY i(64×64)(3,3)) (8)
a4=h3·(h3·FY i(64×64)(0,0)-h2·FY i(64×64)(1,0)+h1·FY i(64×64)(2,0)-h0·FY i(64×64)(3,0))
-h2·(h3·FY i(64×64)(0,1)-h2·FY i(64×64)(1,1)+h1· FY i(64×64)(2,1)-h0·FY i(64×64)(3,1))
+h1·(h3·FY i(64×64)(0,2)-h2·FY i(64×64)(1,2)+h1·FY i(64×64)(2,2)-h0·FY i(64×64)(3,2))
-h0·(h3·FY i(64×64)(0,3)-h2·FY i(64×64)(1,3)+h1·FY i(64×64)(2,3)-h0·FY i(64×64)(3,3)) (9)
其中,
在以上公式中,a1是标度函数系数,捕获色彩内容信息,a2、a3以及a4是小波变换系数,捕获色彩互相关信息。本领域的技术人员将理解,可以对公式(6)-(13)进行修改以减少所需计算次数。可以沿公式(5)的行把这些值写入描述符VY i(64×64)中,然后,如图3B所示,将该4×4窗口向右滑动2个像素以形成新邻域,针对新像素值再计算描述符元素,依此类推。如图3C所示,一旦滑动窗口到达图像的右边沿,那么就没有足够的像素以形成完整的4×4邻域。可以通过多种方法处理该问题。这些方法中的一个是假设对数据进行镜像映射,如图3C所示。另一方法是假设数据是周期性的。还存在其他方法。当滑动窗口到达图像的下边沿时也会引起同样的问题,并可以如上所述地处理该问题。如图3D所示,一旦完成了对一组行的所有计算,则滑动窗口向下移动两个像素并再从左向右滑动,直到处理完整幅图像为止。
在以上描述中,针对描述符的计算使用了小波变换。另选实施例可以依靠用于计算色彩内容和色彩互相关描述符元素的其他过程。例如,一另选实施例可以依靠产生色彩内容和互相关描述符元素的描述符提取过程,但是,与上述过程不同,每像素邻域所计算出的描述符元素数量比该邻域中的像素数量要少,从而得到更小的描述符,这更便于存储和处理但是仍然给出了对图像的空间均匀覆盖。再一另选实施例可以基于这样的描述符提取过程,即,与上述过程不同,通过该描述符提取过程,仅根据邻域像素的子集计算邻域的描述符元素,这将导致显著的加速。
例如,对于如图2A所示的局部邻域的像素FY i(64×64)(0,0)、FY i(64×64)(1,0)、FY i(64×64)(0,1)以及FY i(64×64)(1,1),本发明一另选实施例将描述符元素χ1到χ4计算成:
χ1=(FY i(64×64)(0,0)+FY i(64×64)(1,0)+FY i(64×64)(0,1)+FY i(64×64)(1,1))/4 (14)
χ2=(FY i(64×64)(0,0)-FY i(64×64)(1,0))/2 (15)
χ3=(FY i(64×64)(0,0)-FY i(64×64)(0,1))/2 (16)
χ4=(FY i(64×64)(0,0)-FY i(64×64)(1,1))/2 (17)
因此,表示局部像素平均的元素χ1捕获色彩内容信息,而各表示一像素与另一像素的差异的元素χ2、χ3以及χ4捕获色彩互相关信息。可以沿公式(5)的行把这些值写入描述符VY i(64×64)中,然后,如图2B所示,将该2×2窗口向右滑动2个像素以形成新邻域,针对新像素值再计算描述符元素,依此类推。
本发明再一另选实施例将公式(14)-(17)替换成以下所示的公式(I)-(IV):
φ1=(FY i(64×64)(0,0)+FY i(64×64)(1,0)+FY i(64×64)(0,1)+FY i(64×64)(1,1))/4 (I)
φ2=(FY i(64×64)(0,0)-FY i(64×64)(1,0))/2 (II)
φ3=(FY i(64×64)(1,0)-FY i(64×64)(1,1))/2 (III)
φ4=(FY i(64×64)(1,1)-FY i(64×64)(0,1))/2 (IV)
在以上所示的公式中,φ1捕获色彩内容信息,而φ2-φ4捕获色彩互相关信息。
本发明再一另选实施例将公式(14)-(17)替换成以下所示的公式(18)和(19):
ψ1=(FY i(64×64)(0,0)+FY i(64×64)(1,0)+FY i(64×64)(0,1)+FY i(64×64)(1,1))/4 (18)
ψ2=max(FY i(64×64)(0,0),FY i(64×64)(1,0),FY i(64×64)(0,1),FY i(64×64)(1,1))-
min(FY i(64×64)(0,0),FY i(64×64)(1,0),FY i(64×64)(0,1),FY i(64×64)(1,1)) (19)
在以上所示的公式中,ψ1捕获色彩内容信息,而ψ2捕获色彩互相关信息。
此外,尽管以上描述和图考虑了2×2和4×4像素大小的滑动邻域窗口,但是这并非限制性的。另选实施例可以为邻域窗口指定任何尺寸和/或几何形状和/或滑动步长,以例如适合于给定计算需要或邻域量度过程本身。
在以上描述中,在FY i(64×64)的所有位置处使用相同的邻域窗口和描述符提取过程。在另选实现中不必如此。另选实施例可以在图像的不同位置处使用不同的邻域参数和/或描述符提取过程。例如,本发明一另选实施例在图像的周边使用快速描述符提取过程,如公式(1)-(4)的过程或公式(14)-(17)的过程,而在图像的中央处使用较慢但是更强大的描述符提取过程,如公式(6)-(9)的过程。
接下来,将FY i(64×64)再采样到新的较小尺度。在一个实施例中,该新尺度是32×32像素。然后,按与用于64×64图像的方式完全相同的方式计算新描述符VY i(32×32)。注意,可能该再采样过程实际上不需要进行计算。如可从公式(1)看到的,先将新像素值计算为LL值并将其存储在VY i(64×64)(1)、VY i(64×64)(5)、VY i(64×64)(9)...VY i(64×64)(4093)。因此,在一个实施例中,计算出描述符VY i(64×64)、VY i(32×32)、VY i(16×16)、VY i(8×8)、VY i(4×4)以及VY i(2×2)。
这里所概述的本发明实施例包括按图像Fi的一个或更多个尺度提取描述符。
因此,在以上描述中,最细或最大或最高的尺度、最粗或最小或最低的尺度、尺度数量和尺度间的关联仅代表了本发明一个可能的实施例,另选实施例可以使用不同的这种参数,以例如与系统的计算能力相匹配。
在本发明一个实施例中,在随后处理之前从这些特定尺度的描述符中去除某些元素。在本发明一个实施例中,对于公式(1)-(4)(即,Haar变换)所概述的标识符提取过程,在2b×2b、2b-1×2b-1、2b-2×2b-2等尺度(例如,64×64、32×32、16×16等)上,除了在最低尺度下的LL元素以外,可以去除VY i中的所有LL元素。这是因为根据在2b-k-1×2b-k-1尺度上的LL值和在2b-k×2b-k尺度下的HL、LH以及HH元素可以直接计算出在2b-k×2b-k尺度下的LL元素。注意,并非总是存在这个性质。例如,如果在2b×2b、2b-2×2b-2、2b-4×2b-4等尺度(例如,64×64、16×16、4×4等)下计算描述符,那么该性质无效。此外,如果只计算LL、HL、LH以及HH元素的一子集作为标识符提取过程的一部分,则该性质也无效。
等价性质也适用于Daubechies小波变换。即,在本发明一个实施例中,对于在2b×2b、2b-1×2b-1、2b-2×2b-2等尺度(例如,64×64、32×32、16×16等)下的Daubechies小波变换,除了在最低尺度下的a1元素以外,可以去除VY i中的所有a1元素。
等价性质也适用于公式(14)-(17)的变换。即,在本发明一个实施例中,对于在2b×2b、2b-1×2b-1、2b-2×2b-2等尺度(例如,64×64、32×32、16×16等)下的该变换,除了在最低尺度下的χ1元素以外,可以去除VY i中的所有χ1元素。同样的性质也适用于公式(I)-(IV)的变换。
把同样的描述符提取过程应用于Fi的Cb和Cr通道给出了描述符VCb i(64×64)、...VCb i(2×2)以及VCr i(64×64)、...VCr i(2×2)。所有这些特定尺度特定通道描述符都捕获了在多尺度下并在多个通道上的图像空间敏感色彩内容和互相关信息。
在以上描述中,假设Fi在YCbCr色彩空间中并且将所有通道用于对描述符的提取。另选实现可以在对描述符的计算之间在新色彩空间中表示该图像,并且/或者在对其描述符的计算中仅使用色彩平面的一子集。
在以上描述中,在相同尺度下计算在Fi的不同色彩通道上的描述符。在另选实现中,不必如此。例如,本发明另选实施例在比Cb和/或Cr通道描述符更多的尺度并且/或者不同的尺度下计算Y通道描述符。这种细调将得到对特定图像或视频材料的更佳适应,并且可以改进性能。
在以上描述中,将相同的邻域窗口和描述符提取过程用于Fi的所有色彩通道。在另选实现中,不必如此。另选实施例可以针对各通道使用不同的邻域参数和/或描述符提取过程。例如,本发明一另选实施例针对Cb和Cr通道使用快速描述符提取过程而针对Y通道使用较慢但是更强大的描述符提取过程。这种细调将得到对特定图像或视频材料的更佳适应,并且可以改进系统性能。
在本发明一个实施例中,将一些或所有描述符元素表示成带有整数和小数部分的实数。在本发明另一实施例中,例如通过截去或舍入其小数部分把一些或所有描述符元素表示成整数形式。在本发明又一实施例中,通过比例换算把一些或所有描述符元素表示成整数形式。例如,公式(1)-(4)得到其中小数部分只有三个值的实数,即,.25、.50以及.75。因此,将这些描述符元素乘以值4将得到没有任何信息损失的整数表示。在本发明再一实施例中,通过任何方法把一些或所有描述符元素表示成整数形式,然后把它们量化为较短(例如3位或4位长的)值。
因此,在本发明一个实施例中,图像Fi由其描述符VC1 i(C1SCq)、...VC1 i(C1SC1)、VC2 i(C2SCq)、...VC2 i(C2SC1)、...VCp i(CpSCq)、...VCp i(CpSC1)来表示,其中,C1、C2、...Cp是Fi的第一、第二以及第p色彩通道,C1SCq是信道C1的最高描述符尺度,C1SC1是信道C1的最低描述符尺度,C2SCq是信道C2的最高描述符尺度,C2SC1是信道C2的最低描述符尺度,依此类推。所有这些特定尺度特定通道描述符都在多尺度(优选地,一个以上)下并在多个通道(优选地,一个以上)上捕获图像的空间敏感色彩内容和互相关信息。
如现有技术中的普通方法那样地将图像Fi的所有这些描述符融合(即,连接)成Vi的单个描述符以与描述符Vj或Fj相比较,在比较速度方面和对Fi与Fj之间的关系的理解方面会导致非最优性能。
本发明一个实施例的特征在于:将特定尺度特定通道描述符融合成捕获不同尺度的至少两个描述符。例如,对于在6个不同尺度下的特定尺度特定通道描述符,本发明一个实施例生成6个相同尺度下的特定尺度特定通道描述符。另一实施例生成两个面向尺度多通道描述符,一个针对低尺度,一个针对高尺度,而再一实施例生成3个面向尺度多通道描述符,一个针对低尺度,一个针对中间尺度,而一个针对高尺度。在本发明一优选实施例中,确实在多通道上计算描述符并将它们融合成面向尺度描述符,但是一另选实施例只在单个通道上计算描述符并把它们融合成面向尺度描述符。
图4示出了按照以上段落内容的本发明一个实施例。在步骤4100中,如前所述地提取特定尺度特定通道描述符。在步骤4250中,将这些描述符融合成一组面向尺度多通道描述符Vi(SCQ)、...Vi(SCA),其中SCA和SCQ分别是最低和最高描述符尺度。在步骤4300中,将当前尺度C_SC设置为最低尺度SCA。在步骤4400中,仅将当前尺度C_SC描述符Vi(C_SC)和Vj(C_SC)用于对图像Fi与Fj之间的相似性测度Dj,i(C_SC)的计算。在步骤4500中,将该相似性测度用于对两幅图像的相似性或不相似性进行临时判定。在步骤4600中,考查相似性测度和/或临时判定以确定是否希望在较高尺度下进行处理。如果确定不希望进行这种处理,则过程进行到步骤4900,在步骤4900处,对两幅图像的相似性或不相似性执行最终判定。否则,过程进行到步骤4700,在步骤4700处,检查是否还剩有待处理的较高尺度的任何描述符。如果还有较高尺度描述符,则过程进行到步骤4800,在步骤4800处,增加当前尺度C_SC,然后进行到步骤4400,在步骤4400处,在新尺度下计算新相似性测度,依此类推。另一方面,如果没有较高尺度描述符,则过程进行到步骤4900,在步骤4900处,对两幅图像的相似性或不相似性执行最终判定。
如图4所示的这种面向尺度序列配置的目的是尽可能快地并以尽可能少的计算来确定两幅图像之间的相似性或不相似性。因此,与把所有可用描述符融合成单个描述符的方案相比,这种方案可以提高系统速度。
下面更接近地考查该过程的各个步骤。
在步骤4400中,可以把许多可选方法用于计算相似性测度。例如,在本发明一个实施例中,可以将由下式给出的两个描述符Vi与Vj(各有n个元素)之间的距离L1计算为相似性测度:
这里所概述的本发明实施例涉及把所述描述符用于计算图像之间的一个或更多个相似性测度(其包括至少两个值)。
因此,用于计算描述符距离的公式(20)的L1距离只涉及本发明一个可能实现。一另选实现把公式(20)替换成以下公式(21),该公式(21)计算L2距离:
在相关文献中存在很多种这样的距离度量。
此外,一另选实现把公式(20)替换成以下公式(22),该公式(22)计算加权L1距离:
其中,w(l)是第l个描述符元素的加权系数。此外,也可以与公式(21)的距离L2或文献中提供的任何其他可用距离量度一起使用这种加权。
有很多种用于处理相似性测度的可选方法。在本发明一个实施例中,在步骤4500中将一阈函数作用于相似性测度Dj,i。即,对于阈值thr,如果:
Dj,i≥thr (23)
则认为这两幅图像不相似并在步骤4500中作出临时判定“不相似”。据此,步骤4600确定不必进行其他处理,并在步骤4900中认定(finalise)该临时判定。另一方面,如果在步骤4500中不满足关系(23),则在该步骤中作出临时判定“相似”。据此,步骤4600确定还希望进行其他处理。如果存在较高尺度下的描述符,那么过程返回步骤4400。否则,在步骤4900中认定该临时判定“相似”。
可以扩展这里所概述的本发明多个实施例以使用所述相似性测度(其包括至少两个值)来确定图像之间的相似性或不相似性。因此,在本发明一另选实施例中,如果:
Dj,i≥thr (24)
则认为这两幅图像相似并在步骤4500中作出临时判定“相似”。据此,步骤4600确定不必进行其他处理,并在步骤4900中认定该临时判定。另一方面,如果在步骤4500中不满足关系(24),则在该步骤中作出临时判定“不相似”。据此,步骤4600确定还希望进行其他处理。如果存在较高尺度下的描述符,那么过程返回步骤4400。否则,在步骤4900中认定该临时判定“不相似”。
本发明再一实施例使用两个阈值thr1和thr2,其中thr1<thr2。这样,如果:
Dj,i≥thr1 (25)
则认为这两幅图像相似并在步骤4500中作出临时判定“相似”。据此,步骤4600确定不必进行其他处理,并在步骤4900中认定该临时判定。另一方面,如果在步骤4500中不满足关系(25),则在该步骤中作出临时判定“不相似”。然后,在步骤4600中,如果:
Dj,i≥thr2 (26)
则步骤4600确定不必进行其他处理,并在步骤4900中认定该临时判定。另一方面,步骤4600确定还希望进行其他处理。如果存在较高尺度下的描述符,那么过程返回步骤4400。否则,在步骤4900中认定该临时判定“不相似”,或者,另选地,在步骤4900中生成新判定“可能”,其表示在已处理完所有描述符尺度但是无法达到确信的判定。
在步骤4900中所作出的判定的语义取决于具体实现。
在本发明一个实施例中,Fi和Fj是时间有序图像。例如,它们是视频Fz的帧,目标是查明是否在Fj与Fi之间存在帧不连续性,如拍摄转场或照明效果等。然后,在步骤4900处的判定是:Fj与Fi之间相似性测度是否表示这种帧不连续性。这种系统将用于分割视频。
在本发明另一实施例中,Fj和Fi是没有时间顺序的独立图像。例如,Fj是一组图像Fz中的一幅图像而Fi是Fz内部或外部的另一幅图像,目标是找出Fz中与Fi相似的那些图像。然后,步骤4900的判定是:Fj与Fi之间相似性测度是否表示图像是是相似的。这种系统将用于通过查询进行图像检索或用于在数据库中对图像进行分类。
在本发明一个实施例中,步骤4400的描述符Vi和Vj中的一个或两个不表示图像而表示图像组。
例如,在本发明一个实施例中,Vj是图像Fj1、Fj2、...Fjg(它们形成了图像族Fj)的描述符Vj1、Vj2、...Vjg的函数(如平均或中值)。例如,Fj可以是表示汽车的图像族。对于图像Fi,确定描述符Vi与Vj之间的相似性不是揭示Fi是否与特定图像相似,而是揭示其是否与特定图像类或图像族相似。一组图像Fz可以包括任何数量个这种族,并且这种处理将揭示给定图像与哪个特定族最相配。此外,不仅可以由Vj表示族,而且可以通过其他统计量(如其图像描述符的协方差阵)表示族,该统计量使得可以在步骤4400中计算更复杂的相似性测度,如Mahalanobis距离或最大似然测度。
在本发明的用于分割视频的另一实施例中,Vj是帧Fj1、Fj2、...Fjg的描述符Vj1、Vj2、...Vjg的函数(如平均或中值)。这些帧可能全都在帧Fi之前,或者可能全都在其之后,或者一些在其之前而一些在其之后。
可以扩展这里所概述的本发明多个实施例以使用所述相似性测度(其包括至少两个值)确定图像之间的相似性或不相似性。
因此,在本发明的用于分割视频的前述多个实施例中,在步骤4500中,把两个帧Fi与Fj之间的相似性测度用于检测帧不连续性。本发明一另选实施例不仅使用该相似性测度而且使用帧Fi和Fj附近的多个帧之间的相似性测度。
例如,在本发明一个实施例中,j=i-1,并且对帧不连续性的检测依赖于相似性测度Di+k-1,i+k,在一优选实施例中,t1=t2=t。因此,帧Fi+k形成了以帧Fi为中心的时间窗口。然后,当且仅当以下两式成立时检测到Fi-1与Fi之间的帧不连续性:Di-1,i≥Di+k-1,i+k k≠0并且 (27)其中Di+p-1,i+p≥Di+k-1, i+k k,p≠0 (28)
根据公式(27)和(28),在以Di-1,i为中心的大小为2t+1的时间窗口内考虑各个相似性测度Di-1,i。然后,当且仅当以下条件成立时在帧Fi-1与Fi之间检测到不连续性:Di-1,i是该时间窗口内的最大距离并且比该时间窗口内的第二大距离至少大thr倍。这种时间适应方案旨在减少由于帧之间的高运动级而产生的误检测数量。存在几个用于处理这种时间序列以检测帧不连续性的这种方案。
在本发明一优选实施例中,用于处理面向尺度描述符的任何阈值和控制参数也是面向尺度的。
在一另选实施例中,根据用户指令或使用该过程的自动系统的指令,在处理完最高尺度描述符之间结束对面向尺度描述符的串行处理。例如在实时在线应用中和在系统不能赶上数据速率时,可以如此操作以进一步提高系统速度。
图5示出了本发明另一实施例。在步骤5100中,如前所述地提取特定尺度特定通道描述符。在步骤5250中,将这些描述符融合成一组面向尺度多通道描述符Vi(SCQ)、...Vi(SCA),其中SCA和SCQ分别是最低和最高描述符尺度。在步骤5410、...5490中,把面向尺度描述符对Vi(SCA)和Vj(SCA)、...Vi(SCQ)和Vj(SCQ)用于计算图像Fi与Fj之间的相似性测度Dj,i(SCA)、...Dj,i(SCQ)。因此,计算出多个相似性测度,每个描述符尺度具有一个。在步骤5510、...5590中,把每个相似性测度用于对两幅图像的相似性或不相似性进行的临时判定。因此,执行多次临时判定,每个描述符尺度一次。然后,在步骤5900中,将该多次临时判定用于对两幅图像的相似性或不相似性进行的最终判定。
如图5所示的这种面向尺度并行结构的目的是允许通过处理不同尺度下的相似性判定更加彻底地探查图像Fi与Fj之间的关系。因此,这种系统不仅可以提供最终相似性判定,而且可以提供附加信息,如“这些图像在很粗的级别上相似,但是在细节上很不相似”。与之对照的是,其中把特定尺度特定通道描述符融合成单个多尺度多通道描述符的系统只能提供两幅图像的相似性判定。
因此,在本发明的用于从一组图像中检索出与给定图像Fi相似的图像的一个实施例中,如图5所示的方案允许以分级方式呈现检索结果。首先是在粗级上与Fi相似的一组图FA(即,根据低尺度描述符相似),然后是在更细微级上与Fi相似的一组图FB(其为FA的子集),依此类推。
在本发明的用于检测帧不连续性和视频分割的另一实施例中,图5所示的方案允许在不同粒度(granularity)上进行分割,即粗、中间、细等粒度。
在图5中,步骤5100类似于图4的步骤4100,并且先前针对步骤4100所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤5250类似于图4的步骤4250,并且先前针对步骤4250所描述的所有方法、扩展以及修改都同样在此适用。
类似地,各步骤5410、...5490类似于图4的步骤4400,并且先前针对步骤4400所描述的所有方法、扩展以及修改都同样在此适用。
类似地,各步骤5510、...5590类似于图4的步骤4500,并且先前针对步骤4500所描述的所有方法、扩展以及修改都同样在此适用。
在本发明一个实施例中,步骤5510、...5590的临时判定是二元判定,例如,“1”表示“相似”,“0”表示“不相似”。
在本发明另一实施例中,步骤5510、...5590的初始判定不是二元的,而是包括至少三个值。在此情况下,术语“似然测度”比术语“初始判定”更适于描述处理步骤5510、...5590的结果。例如,在本发明一个实施例中,步骤5510、...5590中的每个步骤都使用三个阈值。如果相似性测度低于第一阈值,则生成表示“不相似”的相似性似然测度“0”。如果相似性测度高于第一阈值但是低于第二阈值(其高于第一阈值),则生成表示“可能不相似”的相似性似然测度“1”。如果相似性测度高于第二阈值但是低于第三阈值(其高于第二阈值),则生成表示“可能相似”的相似性似然测度“2”。如果相似性测度高于第三阈值,则生成表示“相似”的相似性似然测度“3”。在本发明另一实施例中,不通过阈值比较而通过对将相似性测度归一化到固定范围(例如,0与1之间)生成似然测度。
在把二元临时判定或似然测度表示成Zj,i(SCA)、...Zj,i(SCQ)的情况下,在本发明一个实施例中,在步骤5900中,当且仅当下式成立时作出Fi与Fj相似的最终判定:
WSCA·Zj,i(SCA)+……+WSCQ·Zj,i(SCQ)≥thrf (29)
其中thrf是阈值,WSCA、...WSCQ是被赋予各面向尺度判定或似然测度的控制重要性的权重。如果希望,通过设置WSCA=...=WSCQ=1可以取消这些权重。
在本发明另一实施例(其中似然测度包括由步骤5510、...5590生成的至少三个值)中,当且仅当满足公式(29)的条件时认为这两幅图像相似,此外,没有一个或不超过给定数量个独立似然测度低于新的第二阈值。
在本发明一优选实施例中,用于处理面向尺度描述符的任何阈值和控制参数也是面向尺度的。
在对一组描述符(如在本实施例中描述的描述符)的并行处理中,可以使用许多这样的方案以达到明确的判定。
本发明一个实施例的特征在于:将特定尺度特定通道描述符融合成在不同色彩通道上的至少两个描述符。例如,对于在Y、Cb以及Cr通道上的特定尺度特定通道描述符,本发明的一个实施例生成三个多尺度面向通道描述符,而另一实施例生成两个多尺度面向通道描述符,一个是Y通道的,一个是Cb和Cr通道的。在本发明一优选实施例中,确实在多尺度上计算描述符并将它们融合成面向尺度描述符,但是一另选实施例只在单个尺度上计算描述符并把它们融合成面向通道描述符。
图6示出了按照以上段落内容的本发明一个实施例。在步骤6100中,如前所述地提取特定尺度特定通道描述符。在步骤6250中,将这些描述符融合成一组多尺度面向通道描述符VCCA i、...VCCQ i,其中CCA和CCQ是色彩通道或色彩通道组。例如,在本发明一个实施例中,CCA表示Y通道,CCB表示通道对CbCr。在本发明另一实施例中,CCA表示RGB的R通道,CCB表示G通道,CCC表示B通道。在步骤6410、...6490中,把面向通道描述符对VCCA i和VCCA j、...VCCQ i和VCCQ j用于计算图像Fi与Fj之间的相似性测度DCCA j,i、...DCCQ j,i。因此,计算出多个相似性测度,每个面向通道描述符具有一个。在步骤6510、...6590中,把每个相似性测度用于对两幅图像的相似性或不相似性进行的临时判定。因此,执行多次临时判定,每个面向通道描述符尺度一次。然后,在步骤6900中,将该多次临时判定用于对两幅图像的相似性或不相似性进行的最终判定。
如图6所示的这种面向通道并行结构的目的是允许通过处理不同色彩通道上的相似性判定更加彻底地探查图像Fi与Fj之间的关系,捕获关于图像的不同信息。因此,这种系统不仅可以提供最终相似性判定,而且可以提供附加信息,如“这些图像在色度通道上相似,但是在亮度信道上不相似”。与之对照的是,其中把特定尺度特定通道描述符融合成单个多尺度多通道描述符的系统只能提供两幅图像的相似性判定。
因此,在本发明的用于检测帧不连续性(如拍摄转场或照明效果等)的一个实施例中,如图6所示的系统不仅可靠地检测帧不连续性,而且将拍摄转场与其他照明效果区分开来。例如,如果发现两个帧在色度和亮度两方面都很不相同,这就表示拍摄转场。另一方面,如果发现两个帧在亮度方面很不相同但是在色度方面差别很小,这就表示整体照明效果,而非拍摄转场。
因此,在本发明的用于从一组图像中检索出与给定图像Fi相似的图像的一另选实施例中,如图6所示的方案允许检索出与查询图像语义上相似的图像,例如具有相同的风景或城市风光但是在一天中不同时间和在不同照明条件下拍摄的图像。
在图6中,步骤6100类似于图5的步骤5100,并且先前针对步骤5100所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤6250类似于图5的步骤5250,并且先前针对步骤5250所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤6410、...6490类似于图5的步骤5410、...5490,并且先前针对步骤5410、...5490所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤6510、...6590类似于图5的步骤5510、...5590,并且先前针对步骤5510、...5590所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤6900类似于图5的步骤5900,并且先前针对步骤5900所描述的所有方法、扩展以及修改都同样在此适用。
本发明另一实施例的特征在于:最初把特定尺度特定通道描述符分成特定尺度特定通道面向特征语义描述符,然后将它们融合成不同特征语义的至少两个描述符。例如,在本发明一个实施例中,对于在6个不同尺度下并在3个不同色彩通道上的特定尺度特定通道描述符,最初共有18个描述符。将这18个描述符分成36个描述符,其中一半只包含有色彩内容元素(如公式(1)的LL),而另一半只包含有色彩互相关元素(如(2)-(4)的HL、LH以及HH)。然后,把这36个描述符融合成两个描述符,一个包含有在多尺度下并在不同通道上的所有色彩内容元素,而另一个包含有在多尺度下并在不同通道上的所有色彩互相关元素。在本发明另一实施例中,将每个初始描述符分成两个以上描述符。例如,将每个初始描述符分成4个描述符,LL、HL、LH以及HH类型的元素中的每一个元素具有一个描述符。然后将这些描述符融合成4个最终描述符,每个最终描述符都仅包含有在不同尺度下和不同通道上的一种类型的元素,例如,仅LL元素或仅HH元素。在本发明一优选实施例中,确实在多尺度下和多通道上计算描述符,但是一另选实施例只在单个尺度上并且/或者只针对单个通道计算描述符。
图7示出了按照以上段落内容的本发明一个实施例。在步骤7100中,如前所述地提取特定尺度特定通道描述符。在步骤7200中,根据如上所述的特征语义拆分这些描述符。在步骤7250中,将所得描述符融合成一组多尺度多通道面向特征语义描述符VFSA i、...VFSQ i,其中FSA、...FSQ表示特征类型。例如,在本发明一个实施例中,FSA表示LL元素,FSB表示HL、LH以及HH元素。在本发明另一实施例中,FSA表示LL元素,FSB表示HL元素,FSC表示LH元素,FSD表示HH元素。在步骤7410、...7490中,将面向特征语义描述符对VFSA i和VFSA j、...VFSQ i和VFSQ j用于计算图像Fi与Fj之间的相似性测度DFSA j,i、...DFSQ j,i。因此,计算出多个相似性测度,每个面向特征语义描述符具有一个。在步骤7510、...7590中,把每个相似性测度用于对两幅图像的相似性或不相似性进行的临时判定。因此,执行多次临时判定,每个面向特征语义描述符尺度一次。然后,在步骤7900中,将该多次临时判定用于对两幅图像的相似性或不相似性进行的最终判定。
如图7所示的这种面向特征语义并行结构的目的是允许通过处理基于不同特征类型的相似性判定更加彻底地探查图像Fi与Fj之间的关系,捕获关于图像的不同信息。因此,这种系统不仅可以提供最终相似性判定,而且可以提供附加信息,如“这些图像在局部边沿方面相似,但是在色彩内容上不相似”。与之对照的是,其中把特定尺度特定通道描述符融合成单个多尺度多通道描述符的系统只能提供两幅图像的相似性判定。
因此,在本发明的用于检测帧不连续性(如拍摄转场或照明效果等)的一个实施例中,如图7所示的系统不仅可靠地检测帧不连续性,而且将拍摄转场与其他照明效果区分开来。例如,如果发现两个帧在色彩内容和色彩互相关两方面都很不相同,这就表示拍摄转场。另一方面,如果发现两个帧在色彩内容方面很不相同但是在色彩互相关方面差别很小,这就表示整体照明效果,而非拍摄转场。
在本发明的用于从一组图像中检索出与给定图像Fi相似的图像的一另选实施例中,如图7所示的方案允许检索出与查询图像语义上相似的图像,例如具有相同的场景但是在不同照明条件下或使用不同设备导致的不同对比级下拍摄的图像。
在图7中,步骤7100类似于图6的步骤6100,并且先前针对步骤6100所描述的所有方法、扩展以及修改都同样在此适用。
在图7中,步骤7200类似于图6的步骤6200,并且先前针对步骤6200所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤7250类似于图6的步骤6250,并且先前针对步骤6250所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤7410、...7490类似于图6的步骤6410、...6490,并且先前针对步骤6410、...6490所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤7510、...7590类似于图6的步骤6510、...6590,并且先前针对步骤6510、...6590所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤7900类似于图6的步骤6900,并且先前针对步骤6900所描述的所有方法、扩展以及修改都同样在此适用。
本发明另一实施例的特征在于:最初把特定尺度特定通道描述符分成特定尺度特定通道面向区域描述符,然后将它们融合成在图像中覆盖不同区域的至少两个描述符。例如,在本发明一个实施例中,对于在5个不同尺度64×64、32×32、...4×4下并在3个不同色彩通道上的特定尺度特定通道描述符,最初共有15个描述符。将这15个描述符分成4组15个描述符,每个组都只包含有与图像的特定象限对应的那些元素,即,一组用于左上象限,一组用于右上象限,一组用于左下象限,一组用于右下象限。然后把这些描述符融合成4个描述符,一个包含有图像的左上象限的在多尺度下并在不同通道上的所有描述符元素,而另一个包含有图像的右上象限,等等。在本发明另一实施例中,与图像的垂直片段对应地形成多个面向区域描述符。在本发明还一实施例中,与图像的水平片段对应地形成多个面向区域描述符。在本发明一优选实施例中,确实在多尺度下和多通道上计算描述符,但是另选实施例可以只在单个尺度上并且/或者只针对单个通道计算描述符。
图8示出了按照以上段落内容的本发明一个实施例。在步骤8100中,如前所述地提取特定尺度特定通道描述符。在步骤8200中,根据如上所述的图像区域拆分这些描述符。在步骤8250中,将所得描述符融合成一组多尺度多通道面向区域描述符VRSA i、...VRSQ i,其中REA、...REQ表示图像区域。例如,在本发明一个实施例中,REA表示图像的左上象限,REB表示图像的右上象限,REC表示图像的左下象限,RED表示图像的右下象限。在步骤8410、...8490中,将面向区域描述符对VREA i和VREA j、...VREQ i和VREQ j用于计算图像Fi与Fj之间的相似性测度DREA j,i、...DREQ j,i。因此,计算出多个相似性测度,每个面向区域描述符具有一个相似性测度。在步骤8510、...8590中,把每个相似性测度用于对两幅图像的相似性或不相似性进行的临时判定。因此,执行多次临时判定,每个面向区域描述符尺度一次。然后,在步骤8900中,将该多次临时判定用于对两幅图像的相似性或不相似性进行的最终判定。
如图8所示的这种面向区域并行结构的目的是允许通过处理由于图像的不同区域引起的相似性判定更加彻底地探查图像Fi与Fj之间的关系。因此,这种系统可以提供最终相似性判定,提供类似“这些图像在某些区域中很相似,但是在其他区域中不相似”的信息,还可以识别不同图像的对应区域之间的关系。与之对照的是,其中把特定尺度特定通道描述符融合成单个多尺度多通道描述符的系统只能提供两幅图像的相似性判定。
因此,在本发明的用于从一组图像中检索出与给定图像Fi相似的图像的一个实施例中,如图8所示的方案允许检索出与查询图像部分地相似的图像,例如这样的图像,即,其具有相同的场景但是带有由于人突然走入相机光场并遮挡了该场景的其余部分所造成的阻挡。
类似地,在本发明的用于检测帧不连续性的一个实施例中,如图8所示的系统不仅可靠地检测帧不连续性,而且将拍摄转场与其他内摄干扰(比如,人员迅速靠近相机并短暂地遮挡了视场)区分开来。
在图8中,步骤8100类似于图7的步骤7100,并且先前针对步骤7100所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤8200类似于图7的步骤7200,并且先前针对步骤7200所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤8250类似于图7的步骤7250,并且先前针对步骤7250所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤8410、...8490类似于图7的步骤7410、...7490,并且先前针对步骤7410、...7490所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤8510、...8590类似于图7的步骤7510、...7590,并且先前针对步骤7510、...7590所描述的所有方法、扩展以及修改都同样在此适用。
类似地,步骤8900类似于图7的步骤7900,并且先前针对步骤7900所描述的所有方法、扩展以及修改都同样在此适用。
应当清楚地理解,在本发明优选实施例中,在许多尺度下和在多个通道上提取描述符。然而,在本发明另选实施例中不必如此。例如,为了实现面向尺度框架,可以针对单个色彩通道并且/或者针对单个图像区域提取描述符。类似地,为了实现面向通道框架,可以针对单个尺度并且/或者针对单个图像区域提取描述符。类似地,为了实现面向特征语义框架,可以针对单个尺度并且/或者针对单个通道并且/或者针对单个图像区域提取描述符。类似地,为了实现面向区域框架,可以针对单个尺度并且/或者针对单个通道提取描述符。
应当清楚地理解,这里所描述的串行和并行结构并非仅限于特定描述符拆分或面向性。仅以例示性的目的将特定结构应用于特定描述符面向。例如,前述实施例考虑了仅用于面向尺度描述符的串行结构。本发明另选实施例使用其他面向性的描述符的串行结构。例如,本发明一另选实施例按串行结构处理面向通道描述符,以快速过滤掉在多个通道中的一个通道中与给定图像不相似的图像,从而不必处理其他通道。本发明又一另选实施例根据与以上原理相同的原理按串行结构处理面向特征语义描述符。本发明再一另选实施例根据与以上原理相同的原理按串行结构处理面向区域描述符。
应当清楚地理解,系统可以基于多种描述符面向性。例如,在本发明一个实施例中,在对特定尺度特定通道描述符进行了初始计算之后,形成面向尺度面向特征语义描述符。例如,形成4个描述符,即,一个描述符用于色彩内容元素的低尺度,一个描述符用于色彩内容元素的高尺度,一个描述符用于色彩互相关元素的低尺度,一个描述符用于色彩互相关元素的高尺度。在本发明一个实施例中,如前所述地按并行结构处理这种描述符。在本发明另一实施例中,如前所述地按串行结构处理这种描述符。在本发明再一实施例中,使用如图9所示的混合结构。其中,SCA和SCQ分别是最低和最高描述符尺度,FSA、...FSQ表示特征类型。
也可以将该混合结构用于单个描述符面向性。例如,一个另选实施例基于串行结构,通过该串行结构,在每个循环中,在嵌入并行结构中不处理单个面向尺度描述符,而是处理小数量个面向尺度描述符。因此,还应清楚地理解,无论本发明的不同实施例是基于单个描述符面向性还是基于多个描述符面向性,它们都可以基于串行结构或并行结构或混合结构。应当清楚地理解,出于例示性目的,图9仅示出了一个可能的混合结构,其中将并行结构嵌入串行结构。另选实施例使用其他混合结构,例如其中把一个或更多个串行结构嵌入并行结构的结构。
如图9所示,最初按起始粗尺度处理图像,如果不能达到确信的判定,然后在下一较细尺度下进行处理,依此类推,直到达到确信的判定或者用完了可用/允许的尺度为止。
在一优选实施例中,对于每个尺度,每个图像具有4个描述符,并行处理这些描述符并且将其相应的结果组合起来以给出该尺度的判定。这类似于图9,但是所使用的描述符是如下描述符:(i)根据亮度提取的色彩内容;(ii)根据亮度提取的色彩互相关;(iii)根据色度提取的色彩内容;以及(iv)根据色度提取的色彩互相关。
在一另选实施例中,仅将两个色彩内容描述符(一个是亮度的,一个是色度的)用于起始尺度。对于所有其他尺度,仅使用两个色彩互相关描述符。
此外,在前述实施例中,对于对帧不连续性的检测,考虑对所有连续帧对的处理。另选实施例可以更稀疏地处理帧。一另选实施例仅处理每个第四帧,而再一实施例仅处理每个第16帧。这种改进进一步提高了视频分割系统的速度。
此外,上述描述涉及对未压缩数字视频(其中由其像素值表示每个帧)的处理。本发明也可以直接应用于MPEG压缩视频而不必进行解压。
对于本领域的技术人员来说,MPEG视频的特性是公知的,在书Watkinson,J.,“The MPEG Handbook:MPEG-1,MPEG-2,MPEG-4”,Focal Press,Oxford 2001,ISBN:0-240-51656-7中对其进行了专业描述。
在本发明的用于MPEG压缩视频的一个实施例中,仅处理视频的I帧。更具体来说,仅处理I帧的DC表示,即,对于8×8像素的各块,仅采用其DCT变换的DC分量。实际上,在通过8×8块平均对其进行压缩之前,I帧的该DC表示仅仅是原始帧的再采样版。由于不必进行解压就可以直接从压缩视频流取回DC分量,显然可以把本发明实施例直接应用于对MPEG压缩视频的I帧的处理。
例如可以在带有合适的软件和/或硬件修改的计算机系统中实现本发明。例如,可以通过具有以下装置的计算机或类似设备实现本发明:控制或处理装置,如处理器或控制装置;包括图像存储装置的数据存储装置,如存储器、磁存储器、CD、DVD等;数据输出装置,如显示器或监视器或打印机;数据输入装置,如键盘;以及图像输入装置,如扫描仪;或这些组件与附加组件的任何组合。可以按软件和/或硬件形式或者按特定应用设备或特定应用模块(如集成电路)提供本发明的多个方面。在可以从其他组件(例如,在因特网上)远程提供根据本发明实施例的设备中的系统组件。
图10示出了具有计算机系统形成的合适的设备的框图,其中,控制单元10100连接到图像存储装置10200、描述符存储装置10300以及显示器10400。该图像存储装置10200存储有与待根据前述实施例表示或比较的图像对应的数据。该数据可以是与单幅图像、多幅图像、图像族、图像序列或整个图像数据库对应的数据。描述符存储装置10300(其可以是数据库)用于存储所得到的所有描述符,包括由控制单元10100计算出的子描述符。在显示器10400上把控制单元的操作结果呈现给用户。
术语“尺度”与“分辨率”在这里是可互换使用的。图像的区域可以意指整幅图像或图像的一部分。
术语“描述符”表示对图像或图像的一部分所获得的表示,可以将其用于判定进行过程。术语“子描述符”表示对图像或图像的一部分所获得的表示,其与一描述符相关联。然而,本领域的技术人员会明白,这两个术语的区别只是一种方便,并且在所描述的方法中每个术语都表示特定含意。特定实施例的各个子描述符可以充当不同实施例中的描述符,反之亦然。因此,在具体实施例中仅使用术语“描述符”。
Claims (10)
1.一种表示至少一幅图像的方法,其包括以下步骤:生成针对图像的至少一个区域捕获色彩信息和/或色彩互相关信息的多个子描述符;以及根据对应特征将所述多个子描述符关联起来以生成至少两个描述符。
2.一种表示至少一幅图像的方法,其包括以下步骤:生成针对图像的至少一个区域捕获色彩信息和色彩互相关信息的一个或更多个子描述符;以及根据对应特征将子描述符或子描述符元素关联起来以生成至少两个描述符。
3.如权利要求1或2所述的方法,其中,针对图像的多个区域生成子描述符。
4.如权利要求3所述的方法,其中,每个所述区域都对应于n×n像素大小的块。
5.如前述任一权利要求所述的方法,其包括以下步骤:针对图像的多个非重叠区域中的每一个导出子描述符。
6.如前述任一权利要求所述的方法,其包括以下步骤:对图像进行处理以按多个尺度生成图像的多个表示,和导出针对所述多个尺度的子描述符。
7.如权利要求6所述的方法,其中,所述处理包括向下采样(downsampling)。
8.如权利要求7所述的方法,其中,所述向下采样包括对多个像素块进行平均。
9.如前述任一权利要求所述的方法,其包括以下步骤:针对多个色彩通道中的每个通道处理图像,和导出针对所述多个通道中的每个通道的子描述符。
10.如根据权利要求6到8中的任何一项的权利要求9所述的方法,其中,对于不同色彩通道使用相同尺度。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0421217A GB2418555A (en) | 2004-09-23 | 2004-09-23 | Representing an image using descriptors based on colour information |
GB0421217.1 | 2004-09-23 | ||
EP05254924.3 | 2005-08-05 | ||
EP05254924A EP1640914A3 (en) | 2004-09-23 | 2005-08-05 | Methods of representing images and assessing the similarity between images |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005101053609A Division CN1909670B (zh) | 2004-09-23 | 2005-09-23 | 图像表示和分析方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101982827A true CN101982827A (zh) | 2011-03-02 |
CN101982827B CN101982827B (zh) | 2014-12-10 |
Family
ID=33397157
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005101053609A Active CN1909670B (zh) | 2004-09-23 | 2005-09-23 | 图像表示和分析方法 |
CN201010565246.5A Active CN101982827B (zh) | 2004-09-23 | 2005-09-23 | 图像表示和分析方法 |
CN2010105653449A Pending CN101982828A (zh) | 2004-09-23 | 2005-09-23 | 图像表示和分析方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005101053609A Active CN1909670B (zh) | 2004-09-23 | 2005-09-23 | 图像表示和分析方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105653449A Pending CN101982828A (zh) | 2004-09-23 | 2005-09-23 | 图像表示和分析方法 |
Country Status (4)
Country | Link |
---|---|
EP (3) | EP2270749A3 (zh) |
JP (1) | JP5097280B2 (zh) |
CN (3) | CN1909670B (zh) |
GB (1) | GB2418555A (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0901262D0 (en) | 2009-01-26 | 2009-03-11 | Mitsubishi Elec R&D Ct Europe | Video identification |
GB0901263D0 (en) | 2009-01-26 | 2009-03-11 | Mitsubishi Elec R&D Ct Europe | Detection of similar video segments |
EP2216983A1 (en) | 2009-02-05 | 2010-08-11 | Mitsubishi Electric R&D Centre Europe B.V. | Detection of wipe transitions in video |
GB0917417D0 (en) | 2009-10-05 | 2009-11-18 | Mitsubishi Elec R&D Ct Europe | Multimedia signature coding and decoding |
EP2408190A1 (en) | 2010-07-12 | 2012-01-18 | Mitsubishi Electric R&D Centre Europe B.V. | Detection of semantic video boundaries |
ITTO20130629A1 (it) * | 2013-07-24 | 2015-01-25 | Sisvel Technology Srl | Method for encoding an image descriptor based on a gradient histogram and relative image processing apparatus |
EP2890108A1 (en) * | 2013-12-27 | 2015-07-01 | Thomson Licensing | Method for sorting a group of images of a database and method for color correcting an image, corresponding devices, computer program and non-transitory computer-readable medium |
EP2953343A1 (en) * | 2014-06-03 | 2015-12-09 | Thomson Licensing | Method for sorting and homogenizing a group of images, corresponding device, computer program and non-transitory computer-readable medium |
US9883122B2 (en) * | 2014-09-16 | 2018-01-30 | Qualcomm Incorporated | Event-based down sampling |
US10262441B2 (en) * | 2015-02-18 | 2019-04-16 | Qualcomm Incorporated | Using features at multiple scales for color transfer in augmented reality |
CN105651713B (zh) * | 2015-12-30 | 2019-02-01 | 浙江工业大学 | 一种基于计算机图像分析的青菜叶片叶绿素定量检测方法 |
CN107622270B (zh) * | 2016-07-13 | 2020-05-12 | 中国电信股份有限公司 | 图像相似度计算方法和装置、相似图像检索方法和系统 |
CN112837270B (zh) * | 2021-01-11 | 2023-04-07 | 成都圭目机器人有限公司 | 一种自带语义注释的道面图像的合成方法和网络模型 |
CN113301167B (zh) * | 2021-06-30 | 2023-01-13 | 深圳市雪球科技有限公司 | 数字钥匙的跨规范分享方法、装置和设备 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09293082A (ja) * | 1996-04-26 | 1997-11-11 | Toshiba Corp | 画像検索装置及び画像検索方法 |
US5933546A (en) * | 1996-05-06 | 1999-08-03 | Nec Research Institute, Inc. | Method and apparatus for multi-resolution image searching |
KR100390866B1 (ko) * | 1999-02-05 | 2003-07-12 | 삼성전자주식회사 | 컬러 영상 처리 방법 및 그 장치 |
US6778697B1 (en) * | 1999-02-05 | 2004-08-17 | Samsung Electronics Co., Ltd. | Color image processing method and apparatus thereof |
US6542619B1 (en) | 1999-04-13 | 2003-04-01 | At&T Corp. | Method for analyzing video |
US6477269B1 (en) * | 1999-04-20 | 2002-11-05 | Microsoft Corporation | Method and system for searching for images based on color and shape of a selected image |
GB2349460B (en) * | 1999-04-29 | 2002-11-27 | Mitsubishi Electric Inf Tech | Method of representing colour images |
JP3738631B2 (ja) * | 1999-09-27 | 2006-01-25 | 三菱電機株式会社 | 画像検索システムおよび画像検索方法 |
KR100788643B1 (ko) * | 2001-01-09 | 2007-12-26 | 삼성전자주식회사 | 색과 질감의 조합을 기반으로 하는 영상 검색 방법 |
US7123769B2 (en) | 2001-11-09 | 2006-10-17 | Arcsoft, Inc. | Shot boundary detection |
KR100499130B1 (ko) * | 2001-11-27 | 2005-07-04 | 삼성전자주식회사 | 조명 변화에 강건한 영상 검색 방법 및 장치 |
JP4098021B2 (ja) * | 2002-07-30 | 2008-06-11 | 富士フイルム株式会社 | シーン識別方法および装置ならびにプログラム |
JP4082664B2 (ja) | 2002-09-20 | 2008-04-30 | Kddi株式会社 | 映像検索装置 |
-
2004
- 2004-09-23 GB GB0421217A patent/GB2418555A/en not_active Withdrawn
-
2005
- 2005-08-05 EP EP10185986A patent/EP2270749A3/en not_active Withdrawn
- 2005-08-05 EP EP10185969.2A patent/EP2270748A3/en not_active Withdrawn
- 2005-08-05 EP EP05254924A patent/EP1640914A3/en not_active Ceased
- 2005-09-23 CN CN2005101053609A patent/CN1909670B/zh active Active
- 2005-09-23 CN CN201010565246.5A patent/CN101982827B/zh active Active
- 2005-09-23 CN CN2010105653449A patent/CN101982828A/zh active Pending
-
2011
- 2011-01-20 JP JP2011010051A patent/JP5097280B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
CN101982828A (zh) | 2011-03-02 |
CN1909670A (zh) | 2007-02-07 |
CN1909670B (zh) | 2011-01-19 |
JP5097280B2 (ja) | 2012-12-12 |
EP2270748A3 (en) | 2013-06-19 |
CN101982827B (zh) | 2014-12-10 |
EP2270748A2 (en) | 2011-01-05 |
JP2011108262A (ja) | 2011-06-02 |
EP1640914A2 (en) | 2006-03-29 |
GB0421217D0 (en) | 2004-10-27 |
EP2270749A3 (en) | 2012-08-01 |
GB2418555A (en) | 2006-03-29 |
EP1640914A3 (en) | 2007-08-08 |
EP2270749A2 (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1909670B (zh) | 图像表示和分析方法 | |
US8306334B2 (en) | Methods of representing and analysing images | |
US8320664B2 (en) | Methods of representing and analysing images | |
US6606409B2 (en) | Fade-in and fade-out temporal segments | |
Kim et al. | Efficient camera motion characterization for MPEG video indexing | |
US8467611B2 (en) | Video key-frame extraction using bi-level sparsity | |
JP2003016448A (ja) | 前景/背景セグメント化を用いた画像のイベント・クラスタリング | |
Kim et al. | Adaptive weighted fusion with new spatial and temporal fingerprints for improved video copy detection | |
EP1480170A1 (en) | Method and apparatus for processing images | |
EP1640913A1 (en) | Methods of representing and analysing images | |
Duan et al. | Semantic shot classification in sports video | |
Fernando et al. | Fade-in and fade-out detection in video sequences using histograms | |
Song et al. | Automatic shot change detection algorithm using multi-stage clustering for MPEG-compressed videos | |
Latecki et al. | Extraction of key frames from videos by optimal color composition matching and polygon simplification | |
Yilmaz et al. | Shot detection using principal coordinate system | |
Ren et al. | Extracting Objects and Events from MPEG Videos for Highlight-based Indexing and Retrieval. | |
KR20010017515A (ko) | 억제 색 히스토그램을 이용한 객체의 대표색과 그의 부가정보추출, 색인화 및 검색 방법 | |
Denham | Discontinuity Analysis for Video Processing | |
Porikli | Video object segmentation by volume growing using feature-based motion estimator | |
Wildt | Automatic Video Segmentation by Polygon Evolution | |
Duan-Yu et al. | Motion Activity Based Shot Identification and Closed Caption Detection for Video Structuring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190606 Address after: Tokyo, Japan, Japan Patentee after: Rakuten Inc. Address before: Tokyo, Japan, Japan Patentee before: Mitsubishi Electric Corporation |
|
TR01 | Transfer of patent right | ||
CP01 | Change in the name or title of a patent holder |
Address after: Tokyo, Japan Patentee after: Lotte Group Co.,Ltd. Address before: Tokyo, Japan Patentee before: Rakuten, Inc. |
|
CP01 | Change in the name or title of a patent holder |