CN101982711A - Condensing multiplication and closed spherical lighting solar water heating and power generating device - Google Patents

Condensing multiplication and closed spherical lighting solar water heating and power generating device Download PDF

Info

Publication number
CN101982711A
CN101982711A CN2010105005785A CN201010500578A CN101982711A CN 101982711 A CN101982711 A CN 101982711A CN 2010105005785 A CN2010105005785 A CN 2010105005785A CN 201010500578 A CN201010500578 A CN 201010500578A CN 101982711 A CN101982711 A CN 101982711A
Authority
CN
China
Prior art keywords
luminous energy
energy receiver
receiving mechanism
heat conduction
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105005785A
Other languages
Chinese (zh)
Other versions
CN101982711B (en
Inventor
张立君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Graphic Communication
Original Assignee
Beijing Institute of Graphic Communication
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Graphic Communication filed Critical Beijing Institute of Graphic Communication
Priority to CN2010105005785A priority Critical patent/CN101982711B/en
Publication of CN101982711A publication Critical patent/CN101982711A/en
Application granted granted Critical
Publication of CN101982711B publication Critical patent/CN101982711B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The invention relates to a condensing multiplication and closed spherical lighting solar water heating and power generating device which receives the solar energy by the reflection focusing action of a spinning paraboloidal, can greatly improve the receiving efficiency of the solar energy, and can be used for realizing collection and reception of the solar energy in the environments with strong light and faint light.

Description

The optically focused closed sphere lighting solar hot water TRT that doubles
Affiliated technical field:
The present invention relates to a kind of Application of Solar Energy technology, particularly a kind of optically focused that utilizes paraboloid of revolution optically focused principle to receive solar energy closed sphere lighting solar hot water TRT that doubles, this device receives solar energy by the reflective focussing force of the paraboloid of revolution, can significantly improve the receiving efficiency of solar energy.
Background technology:
Solar energy is a kind of clean energy resource, inexhaustible, nexhaustible, can not cause environmental pollution yet, nowadays, no matter in coastal cities, still in inland city, solar product enters people's the visual field just more and more, solar street light, solar lawn lamp, solar energy garden lamp, solar corridor lamp, bus station's desk lamp, traffic lights or the like, various solar water heaters have also been walked close to huge numbers of families.But these solar product great majority all do not have light-focusing function, cause solar energy utilization ratio low.The light intensity on solar energy receiving element surface doubles, the receiving efficiency of solar energy receiving element will double, the focus of solar energy industry technology competition at present mainly is the battle of solar energy receiving efficiency, as seen improve receiving efficiency to whole industry significance level, therefore can effectively improve the intensity of illumination of solar energy receiving element, just become the problem of paying close attention to the most when people utilize solar energy.
In recent years, realized the Salar light-gathering reception abroad in the photovoltaic matrix of some solar power stations, domestic also have similar experimental rig, promotes obtaining on the solar domestic product but these apparatus structure complexity, bulky, cost are high-leveled and difficult.
Summary of the invention:
In order to overcome shortcomings such as existing beam condensing unit complicated in mechanical structure, bulky, cost height, the present invention is directed to the deficiency that prior art exists, prior art is improved, proposed the Salar light-gathering receiving system that a kind of volume is little, simple and reliable for structure, cost is low, the optically focused reception that it can realize solar energy.
The technical solution adopted for the present invention to solve the technical problems is: a plurality of Salar light-gathering receiving mechanisms have been installed in a rectangular box, a water tank has been installed above rectangular box, on rectangular box, be stamped a planar transparent cover plate, the planar transparent cover plate is enclosed in each Salar light-gathering receiving mechanism in the rectangular box, each Salar light-gathering receiving mechanism proper alignment is in rectangular box, each Salar light-gathering receiving mechanism all is made of a paraboloid of revolution reflective mirror and a luminous energy receiver, the opening of the paraboloid of revolution reflective mirror of each Salar light-gathering receiving mechanism is over against the planar transparent cover plate, the focus of the paraboloid of revolution reflective mirror of each Salar light-gathering receiving mechanism is in the same plane, the luminous energy receiver of each Salar light-gathering receiving mechanism is installed on the focus of paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism
The luminous energy receiver of each Salar light-gathering receiving mechanism is all by a spherical hollow heat conduction cavity, a sphere solar panel and a hemisphere face transparent light guide lid constitute, all have a light incident circular hole on spherical hollow heat conduction cavity and the sphere solar panel, the sphere solar panel of each luminous energy receiver is concentric with the spherical hollow heat conduction cavity of this luminous energy receiver, the sphere solar panel close adhesion of each luminous energy receiver is on the surface of the spherical hollow heat conduction cavity of this luminous energy receiver, the light incident circular hole of the spherical hollow heat conduction cavity of each Salar light-gathering receiving mechanism is over against the reflective surface of the paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism, the hemisphere face transparent light guide of each luminous energy receiver is covered on the light incident circular hole of the hollow ball shape heat conduction cavity of this luminous energy receiver, the center of circle of the light incident circular hole of the centre of sphere of the hemisphere face transparent light guide lid of each luminous energy receiver and the hollow ball shape heat conduction cavity of this luminous energy receiver overlaps, the focus of the center of circle of the light incident circular hole of the spherical hollow heat conduction cavity of each Salar light-gathering receiving mechanism and the paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism overlaps, the hemisphere face transparent light guide lid and the spherical hollow heat conduction cavity of each luminous energy receiver constitute a closed cavities
The Salar light-gathering receiving mechanism is divided into many groups, and each spherical hollow heat conduction cavity of organizing the luminous energy receiver all is serially connected by a heat pipe, the heat pipe of each group pass through hot-water line and cold water pipe communicates with water tank,
When sunshine during perpendicular to the incident of planar transparent cover plate, the light incident circular hole that reflection by each paraboloid of revolution reflective mirror makes reflection ray pass the spherical hollow heat conduction cavity of each luminous energy receiver is radiated on the sphere solar panel of each luminous energy receiver, the part of luminous energy is converted to electric energy by the sphere solar panel of each luminous energy receiver, another part of luminous energy is converted to heat energy by the spherical hollow heat conduction cavity of each luminous energy receiver, hemisphere face transparent light guide lid and closed cavities of spherical hollow heat conduction cavity formation because of each luminous energy receiver, and light incident circular hole is very little, the luminous energy major part in closed cavities that enters light incident circular hole changes electric energy and heat energy into, has therefore significantly improved the photoelectricity and the photo-thermal conversion ratio of each luminous energy receiver.
The invention has the beneficial effects as follows: the reflective focussing force by each paraboloid of revolution reflective mirror has significantly improved the sun light intensity that is radiated on each luminous energy receiver, thereby significantly improved the photoelectricity and the photo-thermal conversion ratio of each luminous energy receiver, realized that higher photoelectricity and photo-thermal conversion ratio are all arranged under the environment of the high light and the low light level.
Description of drawings:
The present invention is further described below in conjunction with drawings and Examples.
Fig. 1 is overall structure figure of the present invention.
Fig. 2 is the A-A cutaway view of the overall structure figure of the embodiment of the invention.
Fig. 3 is the enlarged drawing of the Salar light-gathering receiving mechanism cutaway view of the embodiment of the invention.
Fig. 4 is the schematic diagram of the paraboloid of revolution.
In the paraboloid of revolution pie graph of Fig. 4: paraboloid of revolution S, the directrix plane S1 of the paraboloid of revolution, the summit O of the paraboloid of revolution, the focus f of the paraboloid of revolution, the symmetry axis L of the paraboloid of revolution.
The specific embodiment
In Fig. 1 and Fig. 2,25 Salar light-gathering receiving mechanisms have been installed in a rectangular box 3-1,25 Salar light-gathering receiving mechanisms are divided into five groups, a water tank 8-1 has been installed above rectangular box 3-1, on rectangular box 3-1, be stamped a planar transparent cover plate 4-1, planar transparent cover plate 4-1 is enclosed in each Salar light-gathering receiving mechanism in the rectangular box 3-1, each Salar light-gathering receiving mechanism proper alignment is in rectangular box 3-1, each Salar light-gathering receiving mechanism all is made of a paraboloid of revolution reflective mirror and a luminous energy receiver, the opening of the paraboloid of revolution reflective mirror of each Salar light-gathering receiving mechanism is over against planar transparent cover plate 3-1, and the luminous energy receiver of each Salar light-gathering receiving mechanism is installed on the focus of paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism.
Provided the structure of the first solar energy optically focused receiving mechanism among Fig. 3; The first solar energy optically focused receiving mechanism is made of paraboloid of revolution reflective mirror 1-1-1 and light energy receiver 1-2-1 in Fig. 3; Light energy receiver 1-2-1 is made of a spherical hollow heat conduction cavity 5-7 who has a light incident circular hole, sphere solar panel 10-7 who has light incident circular hole and the transparent leaded light lid of hemisphere face 6-7; Sphere solar panel 10-7 is concentric with spherical hollow heat conduction cavity 5-7; Sphere solar panel 10-7 close adhesion is on the surface of the hollow heat conduction cavity of sphere 5-7
Spherical hollow heat conduction cavity 5-7 communicates with water tank 8-1 by heat pipe 9-1-3, cold water pipe 9-1-2 and hot-water line 9-1-1,
The center of circle of the light incident circular hole of spherical hollow heat conduction cavity 5-7 and the focus of paraboloid of revolution reflective mirror 1-1-1 overlap; The light incident circular hole of spherical hollow heat conduction cavity 5-7 is over against the reflecting surface of paraboloid of revolution reflective mirror 1-1-1; The transparent leaded light lid of hemisphere face 6-7 covers on the light incident circular hole of the hollow heat conduction cavity of sphere 5-7; The centre of sphere of the transparent leaded light lid of hemisphere face 6-7 and the focus of paraboloid of revolution reflective mirror 1-1-1 overlap; The transparent leaded light lid 6-7 of hemisphere face and spherical hollow heat conduction cavity 5-7 consist of a closed cavities
When sunshine during perpendicular to planar transparent cover plate 4-1 incident, the light incident circular hole that reflection by paraboloid of revolution reflective mirror 1-1-1 makes reflection ray pass spherical hollow heat conduction cavity 5-7 is radiated on the sphere solar panel 10-7, the part of luminous energy is converted to electric energy by sphere solar panel 10-7, another part of luminous energy is converted to heat energy by spherical hollow heat conduction cavity 5-7, because of hemisphere face transparent light guide lid 6-7 and closed cavities of spherical hollow heat conduction cavity 5-7 formation, and the light incident circular hole of spherical hollow heat conduction cavity 5-7 is very little, the luminous energy major part in closed cavities that enters this light incident circular hole changes electric energy and heat energy into, therefore photoelectricity and the photo-thermal conversion ratio of luminous energy receiver 1-2-1 have significantly been improved, the structure of above-mentioned each Salar light-gathering receiving mechanism, every size is identical with the first Salar light-gathering receiving mechanism with the luminous energy reception process.

Claims (1)

1. an optically focused closed sphere lighting solar hot water TRT that doubles, by rectangular box, water tank, cold water pipe, hot-water line, planar transparent cover plate and Salar light-gathering receiving mechanism constitute, each Salar light-gathering receiving mechanism all is made of a paraboloid of revolution reflective mirror and a luminous energy receiver, the opening of the paraboloid of revolution reflective mirror of each Salar light-gathering receiving mechanism is over against the planar transparent cover plate, the luminous energy receiver of each Salar light-gathering receiving mechanism is installed on the focus of paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism, it is characterized in that: the luminous energy receiver of each Salar light-gathering receiving mechanism is all by a spherical hollow heat conduction cavity, a sphere solar panel and a hemisphere face transparent light guide lid constitute, all have a light incident circular hole on spherical hollow heat conduction cavity and the sphere solar panel, the sphere solar panel of each luminous energy receiver is concentric with the spherical hollow heat conduction cavity of this luminous energy receiver, the sphere solar panel close adhesion of each luminous energy receiver is on the surface of the spherical hollow heat conduction cavity of this luminous energy receiver, the light incident circular hole of the spherical hollow heat conduction cavity of each Salar light-gathering receiving mechanism is over against the reflective surface of the paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism, the hemisphere face transparent light guide of each luminous energy receiver is covered on the light incident circular hole of the hollow ball shape heat conduction cavity of this luminous energy receiver, the center of circle of the light incident circular hole of the centre of sphere of the hemisphere face transparent light guide lid of each luminous energy receiver and the hollow ball shape heat conduction cavity of this luminous energy receiver overlaps, the focus of the center of circle of the light incident circular hole of the spherical hollow heat conduction cavity of each Salar light-gathering receiving mechanism and the paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism overlaps, the hemisphere face transparent light guide lid and the spherical hollow heat conduction cavity of each luminous energy receiver constitute a closed cavities
The Salar light-gathering receiving mechanism is divided into many groups, and each spherical hollow heat conduction cavity of organizing the luminous energy receiver all is serially connected by a heat pipe, the heat pipe of each group pass through hot-water line and cold water pipe communicates with water tank.
CN2010105005785A 2010-09-30 2010-09-30 Condensing multiplication and closed spherical lighting solar water heating and power generating device Expired - Fee Related CN101982711B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105005785A CN101982711B (en) 2010-09-30 2010-09-30 Condensing multiplication and closed spherical lighting solar water heating and power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105005785A CN101982711B (en) 2010-09-30 2010-09-30 Condensing multiplication and closed spherical lighting solar water heating and power generating device

Publications (2)

Publication Number Publication Date
CN101982711A true CN101982711A (en) 2011-03-02
CN101982711B CN101982711B (en) 2012-03-21

Family

ID=43619613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105005785A Expired - Fee Related CN101982711B (en) 2010-09-30 2010-09-30 Condensing multiplication and closed spherical lighting solar water heating and power generating device

Country Status (1)

Country Link
CN (1) CN101982711B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927706A (en) * 2012-11-07 2013-02-13 江苏尚森太阳能科技发展有限公司 Solar heat collecting pipe
CN102927707A (en) * 2012-11-07 2013-02-13 江苏尚森太阳能科技发展有限公司 Solar heat collecting pipe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313024A (en) * 1977-04-05 1982-01-26 Horne William E Conversion of solar to electrical energy
CN2478031Y (en) * 2001-04-16 2002-02-20 盛厚华 Multifunctional energy storage solar generator
US20040031517A1 (en) * 2002-08-13 2004-02-19 Bareis Bernard F. Concentrating solar energy receiver
CN2913955Y (en) * 2006-06-29 2007-06-20 中国科学技术大学 Heat self-dissipating solar energy accumulation type photovoltaic electricity generating system
DE102008021730A1 (en) * 2007-05-01 2008-11-06 Samland und Aatz GbR (vertretungsberechtigte Gesellschafter: Thomas Samland, 78166 Donaueschingen, Bernd Aatz, 79244 Münstertal) Solar system for converting solar electromagnetic radiation energy into electrical energy, has absorber arranged parallel to rotation axes of reflectors in center of module, and solar cells arranged in rows
CN201152637Y (en) * 2007-09-26 2008-11-19 国立勤益技术学院 Seasonal highly efficient solar concentrating heat collector
DE202009007213U1 (en) * 2009-05-19 2009-11-19 Chu, Yu-Lin Generator system that generates heat and electricity using solar energy
CN201885439U (en) * 2010-09-30 2011-06-29 北京印刷学院 Solar-energy water-heating electricity-generating device concentrating light for multiplication and collecting light through closed spherical surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313024A (en) * 1977-04-05 1982-01-26 Horne William E Conversion of solar to electrical energy
CN2478031Y (en) * 2001-04-16 2002-02-20 盛厚华 Multifunctional energy storage solar generator
US20040031517A1 (en) * 2002-08-13 2004-02-19 Bareis Bernard F. Concentrating solar energy receiver
CN2913955Y (en) * 2006-06-29 2007-06-20 中国科学技术大学 Heat self-dissipating solar energy accumulation type photovoltaic electricity generating system
DE102008021730A1 (en) * 2007-05-01 2008-11-06 Samland und Aatz GbR (vertretungsberechtigte Gesellschafter: Thomas Samland, 78166 Donaueschingen, Bernd Aatz, 79244 Münstertal) Solar system for converting solar electromagnetic radiation energy into electrical energy, has absorber arranged parallel to rotation axes of reflectors in center of module, and solar cells arranged in rows
CN201152637Y (en) * 2007-09-26 2008-11-19 国立勤益技术学院 Seasonal highly efficient solar concentrating heat collector
DE202009007213U1 (en) * 2009-05-19 2009-11-19 Chu, Yu-Lin Generator system that generates heat and electricity using solar energy
CN201885439U (en) * 2010-09-30 2011-06-29 北京印刷学院 Solar-energy water-heating electricity-generating device concentrating light for multiplication and collecting light through closed spherical surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927706A (en) * 2012-11-07 2013-02-13 江苏尚森太阳能科技发展有限公司 Solar heat collecting pipe
CN102927707A (en) * 2012-11-07 2013-02-13 江苏尚森太阳能科技发展有限公司 Solar heat collecting pipe

Also Published As

Publication number Publication date
CN101982711B (en) 2012-03-21

Similar Documents

Publication Publication Date Title
CN201885428U (en) Solar-energy water heater collecting and concentrating light through hemispherical surface of closed cavity
CN101982711B (en) Condensing multiplication and closed spherical lighting solar water heating and power generating device
CN101982709B (en) Rotary paraboloid light condensing cylindrical bucket-shaped closed cavity lighting solar hot water generating device
CN201885439U (en) Solar-energy water-heating electricity-generating device concentrating light for multiplication and collecting light through closed spherical surface
CN201844582U (en) Solar water heater adopting spherical surfaces with effect of daylighting and condensing multiplication
CN201954776U (en) Spherical lighting and light-gathering multiplication solar energy hot water generation device
CN201885438U (en) Lighting solar hot-water power generator with rotary parabolic concentrating spherical surface
CN201844578U (en) Rotary paraboloid cavity-closed solar hot water generating device with doubled solar collecting and focusing functions
CN201885427U (en) Solar-energy water-heating electricity-generating device concentrating light through rotating paraboloid and collecting light through barrel-shaped cylindrical closed cavity
CN201885440U (en) Solar-energy water heater concentrating light for multiplication and collecting light through spherical closed cavity
CN201844584U (en) Hemispherical lighting and light gathering multiplication solar water heater
CN101963399B (en) Solar hot water generating device with secondary reflection disc-shaped closed cavity for light collection
CN201844583U (en) Cylindrical barrel type closed lighting cavity condensation-multiplied solar water heater
CN201875926U (en) Solar water heating and power generation device based on secondary reflection closed spherical surface lighting
CN102445005B (en) Solar water heater with spherical closed cavity for day lighting and spot light multiplication
CN102445002B (en) Rotating paraboloid spotlight spherical surface closing lighting solar hot-water generating device
CN102445004B (en) Close cavity semi-spherical surface lighting and spotlight multiplication solar water heater
CN102455065B (en) Solar water heater with revolute paraboloid closed cavity for multiplying lighting and concentrating
CN101963405B (en) Spinning paraboloidal condensing and spherical lighting solar water heating and power generating device
CN101963400B (en) Rotary parabolic closed cavity daylighting and condensation-multiplied solar water-heating and electricity-generating device
CN101963396B (en) Secondary reflection closed sphere lighting solar energy hot water generation device
CN101943490B (en) Multiply solar water heater in hemispherical daylighting and light gathering way
CN102445003B (en) Solar water heater with cylindrical barrel-shaped closed day lighting cavity for spot light multiplication
CN101949596B (en) Plane lighting and condensing multiplication solar water heater
CN101968268B (en) Secondary reflection sphere lighting solar water heating and power generation device of closed optical-energy receiver

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120321

Termination date: 20130930