CN101963399B - Solar hot water generating device with secondary reflection disc-shaped closed cavity for light collection - Google Patents

Solar hot water generating device with secondary reflection disc-shaped closed cavity for light collection Download PDF

Info

Publication number
CN101963399B
CN101963399B CN2010105006608A CN201010500660A CN101963399B CN 101963399 B CN101963399 B CN 101963399B CN 2010105006608 A CN2010105006608 A CN 2010105006608A CN 201010500660 A CN201010500660 A CN 201010500660A CN 101963399 B CN101963399 B CN 101963399B
Authority
CN
China
Prior art keywords
receiving mechanism
light
gathering receiving
luminous energy
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105006608A
Other languages
Chinese (zh)
Other versions
CN101963399A (en
Inventor
张立君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Graphic Communication
Original Assignee
Beijing Institute of Graphic Communication
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Graphic Communication filed Critical Beijing Institute of Graphic Communication
Priority to CN2010105006608A priority Critical patent/CN101963399B/en
Publication of CN101963399A publication Critical patent/CN101963399A/en
Application granted granted Critical
Publication of CN101963399B publication Critical patent/CN101963399B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a solar hot water generating device with a secondary reflection disc-shaped closed cavity for light collection. The device receives solar energy through the reflecting and focusing actions of a large plane reflector and a rotating paraboloid reflector, so that the receiving efficiency on solar energy can be greatly increased. The device can be used for realizing the collection and the receiving of solar energy in environments with strong light and poor light.

Description

Secondary reflection disc closed housing lighting solar hot water TRT
Affiliated technical field:
The present invention relates to a kind of Application of Solar Energy technology; Particularly a kind of secondary reflection disc closed housing lighting solar hot water TRT that utilizes paraboloid of revolution optically focused principle to receive solar energy; This device receives solar energy through the reflective focussing force of the paraboloid of revolution, can significantly improve the receiving efficiency of solar energy.
Background technology:
Solar energy is a kind of clean energy resource, and is inexhaustible, nexhaustible, also can not cause environmental pollution; Nowadays; No matter in coastal cities, still in inland city, solar product gets into people's the visual field just more and more; Solar street light, solar lawn lamp, solar energy garden lamp, solar corridor lamp, bus station's desk lamp, traffic lights or the like, various solar water heaters have also been walked close to huge numbers of families.But these solar product great majority all do not have light-focusing function, cause solar energy utilization ratio low.The light intensity on solar energy receiving element surface doubles; The receiving efficiency of solar energy receiving element will double; The focus of solar energy industry technology competition at present mainly is the battle of solar energy receiving efficiency; It is thus clear that improve receiving efficiency to whole industry significance level, therefore can effectively improve the intensity of illumination of solar energy receiving element, just become the problem of paying close attention to the most when people utilize solar energy.
In recent years, in the photovoltaic matrix of some solar power stations, realized the Salar light-gathering reception abroad, domestic also have similar experimental rig, but these apparatus structures are complicated, bulky, cost is high-leveled and difficult on the solar domestic product, to obtain popularization.
Summary of the invention:
In order to overcome shortcomings such as existing beam condensing unit complicated in mechanical structure, bulky, cost height. the present invention is directed to the deficiency that prior art exists; Prior art is improved, proposed the Salar light-gathering receiving system that a kind of volume is little, simple and reliable for structure, cost is low, the optically focused reception that it can realize solar energy.
The technical solution adopted for the present invention to solve the technical problems is: a plurality of Salar light-gathering receiving mechanisms have been installed in a rectangular box; A water tank has been installed above rectangular box; On rectangular box, be stamped a planar transparent cover plate; The planar transparent cover plate is enclosed in each Salar light-gathering receiving mechanism in the rectangular box; Each Salar light-gathering receiving mechanism proper alignment is in rectangular box; Each Salar light-gathering receiving mechanism all is made up of a paraboloid of revolution reflective mirror and a luminous energy receiver, and the Salar light-gathering receiving mechanism is divided into many groups, and the middle part of the square big plane mirror of a block length all has been installed in the front of each group Salar light-gathering receiving mechanism, respectively organizing the big plane mirror of Salar light-gathering receiving mechanism front has a long straight light entrance slit along its long side direction; Each big plane mirror and planar transparent cover plate of organizing Salar light-gathering receiving mechanism front intersects 45
The luminous energy receiver of each Salar light-gathering receiving mechanism all is made of a hollow heat conduction cavity of disc, a disc solar panel, a taper seat reflective mirror and a hemisphere face transparent light guide lid; The top of taper seat reflective mirror has a light incident circular hole; The disc solar panel of each luminous energy receiver is concentric with the hollow heat conduction cavity of the disc of this luminous energy receiver; The disc solar panel close adhesion of each luminous energy receiver is on the surface of the hollow heat conduction cavity of the disc of this luminous energy receiver; The taper seat reflective mirror of each luminous energy receiver covers closely on the hollow heat conduction cavity of the disc of this luminous energy receiver; The hemisphere face transparent light guide of each luminous energy receiver is covered on the light incident circular hole of the taper seat reflective mirror of this luminous energy receiver; Hemisphere face transparent light guide lid, the hollow heat conduction cavity of disc and the taper seat reflective mirror of each luminous energy receiver constitute a closed housing
Each luminous energy receiver of organizing the Salar light-gathering receiving mechanism is installed in the back side of reflective surface of the big plane mirror of this group; Each organizes the reflective surface of disk plane over against the disk plane of the light entrance slit of the big plane mirror of this group Salar light-gathering receiving mechanism front and the hollow heat conduction cavity of each disc over against this paraboloid of revolution reflective mirror of the hollow heat conduction cavity of each disc of the luminous energy receiver of Salar light-gathering receiving mechanism; The center of circle of the disk plane of the hollow heat conduction cavity of disc of the luminous energy receiver of each Salar light-gathering receiving mechanism is positioned on the symmetry axis of paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism; The disk plane of the hollow heat conduction cavity of disc of the luminous energy receiver of each Salar light-gathering receiving mechanism is perpendicular to the symmetry axis of the paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism; The focus of the centre of sphere of the center of circle of the light incident circular hole of the taper seat reflective mirror of the luminous energy receiver of each Salar light-gathering receiving mechanism and hemisphere face transparent light guide lid and the paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism overlaps; Each focus of organizing the paraboloid of revolution reflective mirror of Salar light-gathering receiving mechanism is positioned on the light entrance slit of big plane mirror of this group Salar light-gathering receiving mechanism front
When sunshine during perpendicular to the incident of planar transparent cover plate; Light entrance slit and the light incident circular hole of taper seat reflective mirror that can both pass the big plane mirror of this group Salar light-gathering receiving mechanism front behind the reflect focalization of big plane mirror and the paraboloid of revolution reflective mirror of each group Salar light-gathering receiving mechanism of incident ray through each group Salar light-gathering receiving mechanism front are radiated on the disc solar panel of each luminous energy receiver; A luminous energy part that is radiated on the disc solar panel of each luminous energy receiver converts electric energy into through the disc solar panel; Another part of luminous energy converts heat energy into through the hollow heat conduction cavity of the disc of each luminous energy receiver; Hemisphere face transparent light guide lid, the hollow heat conduction cavity of disc and closed housing of taper seat reflective mirror formation because of each luminous energy receiver; And the light incident circular hole of each taper seat reflective mirror is very little; The light that gets into the light incident circular hole of each taper seat reflective mirror repeatedly is radiated on the disc solar panel of each luminous energy receiver through the reflection of the taper seat reflective mirror of each luminous energy receiver; The major part of luminous energy changes electric energy and heat energy in closed housing, therefore significantly improved the photoelectricity and the photo-thermal conversion ratio of each luminous energy receiver.
The invention has the beneficial effects as follows: the reflective focussing force through each paraboloid of revolution reflective mirror has significantly improved the sun light intensity that is radiated on each luminous energy receiver; Thereby significantly improved the photoelectricity and the photo-thermal conversion ratio of each luminous energy receiver, realized that higher photoelectricity and photo-thermal conversion ratio are all arranged under the environment of the high light and the low light level.
Description of drawings:
Below in conjunction with accompanying drawing and embodiment the present invention is further specified.
Fig. 1 is overall structure figure of the present invention.
Fig. 2 is the A-A cutaway view of overall structure figure of the present invention.
Fig. 3 is the B-B cutaway view of overall structure figure of the present invention.
Fig. 4 is the enlarged drawing of the Salar light-gathering receiving mechanism cutaway view of the embodiment of the invention.
Fig. 5 is the sketch map of the paraboloid of revolution.
In the paraboloid of revolution pie graph of Fig. 5: paraboloid of revolution S, the directrix plane S1 of the paraboloid of revolution, the summit O of the paraboloid of revolution, the focus f of the paraboloid of revolution, the symmetry axis L of the paraboloid of revolution.
The specific embodiment:
In Fig. 1, Fig. 2 and Fig. 3; 25 Salar light-gathering receiving mechanisms have been installed in a rectangular box 3-1; 25 Salar light-gathering receiving mechanisms are divided into five groups, and a water tank 8-1 has been installed above rectangular box 3-1, on rectangular box 3-1, are stamped a planar transparent cover plate 4-1; Planar transparent cover plate 4-1 is enclosed in each Salar light-gathering receiving mechanism in the rectangular box 3-1; Each Salar light-gathering receiving mechanism proper alignment is in rectangular box 3-1, and each Salar light-gathering receiving mechanism all is made up of a paraboloid of revolution reflective mirror and a luminous energy receiver
Big plane mirror 1-1-1 has all been installed in front at the reflective surface of first group of Salar light-gathering receiving mechanism paraboloid of revolution reflective mirror; Big plane mirror 1-1-2 has all been installed in front at the reflective surface of second group of Salar light-gathering receiving mechanism paraboloid of revolution reflective mirror; Big plane mirror 1-1-3 has all been installed in front at the reflective surface of the 3rd group of Salar light-gathering receiving mechanism paraboloid of revolution reflective mirror; Big plane mirror 1-1-4 has all been installed in front at the reflective surface of the 4th group of Salar light-gathering receiving mechanism paraboloid of revolution reflective mirror; Big plane mirror 1-1-5 has all been installed in front at the reflective surface of the 5th group of Salar light-gathering receiving mechanism paraboloid of revolution reflective mirror; The middle seat of above-mentioned five big plane mirrors all has a long straight light entrance slit along its long side direction; Above-mentioned five big plane mirrors and planar transparent cover plate 4-1 intersect 45; The hollow heat conduction cavity of the hemisphere face of first group of Salar light-gathering receiving mechanism is serially connected through heat pipe 9-1-3; The hollow heat conduction cavity of the hemisphere face of second group of Salar light-gathering receiving mechanism is serially connected through heat pipe 9-2-3; The hollow heat conduction cavity of the hemisphere face of the 3rd group of Salar light-gathering receiving mechanism is serially connected through heat pipe 9-3-3; The hollow heat conduction cavity of the hemisphere face of the 4th group of Salar light-gathering receiving mechanism is serially connected through heat pipe 9-4-3; The hollow heat conduction cavity of the hemisphere face of the 5th group of Salar light-gathering receiving mechanism is serially connected through heat pipe 9-5-3, and the lower end of heat pipe 9-1-3, heat pipe 9-2-3, heat pipe 9-3-3, heat pipe 9-4-3 and heat pipe 9-5-3 communicates with water tank 8-1 through cold water pipe 9-1-2, and the upper end of heat pipe 9-1-3, heat pipe 9-2-3, heat pipe 9-3-3, heat pipe 9-4-3 and heat pipe 9-5-3 communicates with water tank 8-1 through hot-water line 9-1-1.
Provided the structure of the first Salar light-gathering receiving mechanism among Fig. 4; The first Salar light-gathering receiving mechanism is made up of paraboloid of revolution reflective mirror 1-2-1 and luminous energy receiver 1-3-1 in Fig. 4; Luminous energy receiver 1-3-1 is made up of the hollow heat conduction cavity of disc 5-1, disc solar panel 10-1, taper seat reflective mirror 7-1 and hemisphere face transparent light guide lid 6-1; The top of taper seat reflective mirror 7-1 has a light incident circular hole; Disc solar panel 10-1 is concentric with the hollow heat conduction cavity of disc 5-1, and disc solar panel 10-1 close adhesion is on the surface of the hollow heat conduction cavity of disc 5-1
Taper seat reflective mirror 7-1 covers closely on the hollow heat conduction cavity of disc 5-1; Hemisphere face transparent light guide lid 6-1 covers on the light incident circular hole of taper seat reflective mirror 7-1; Hemisphere face transparent light guide lid 6-1, disc hollow heat conduction cavity 5-1 and taper seat reflective mirror 7-1 constitute a closed cavities
Luminous energy receiver 1-3-1 is installed in the back side of the reflective surface of big plane mirror 1-1-1; The disk plane of the hollow heat conduction cavity of disc 5-1 is over against the light entrance slit of big plane mirror 1-1-1; The disk plane of the hollow heat conduction cavity of disc 5-1 is over against the reflective surface of paraboloid of revolution reflective mirror 1-2-1; The center of circle of the disk plane of the hollow heat conduction cavity of disc 5-1 is positioned on the symmetry axis of paraboloid of revolution reflective mirror 1-2-1; The disk plane of the hollow heat conduction cavity of disc 5-1 is perpendicular to the symmetry axis of paraboloid of revolution reflective mirror 1-2-1; The centre of sphere of the center of circle of the light incident circular hole of taper seat reflective mirror 7-1 and hemisphere face transparent light guide lid 6-1 and the focus of paraboloid of revolution reflective mirror 1-2-1 overlap, and the focus of paraboloid of revolution reflective mirror 1-2-1 is positioned on the light entrance slit of big plane mirror 1-1-1
When sunshine during perpendicular to planar transparent cover plate 4-1 incident; The reflect focalization of incident ray through big plane mirror 1-1-1 and paraboloid of revolution reflective mirror 1-2-1 can both pass the light entrance slit of big plane mirror 1-1-1 and the light incident circular hole of taper seat reflective mirror 7-1 is radiated on the disc solar panel 10-1; A part that is radiated at the luminous energy on the disc solar panel 10-1 converts electric energy into through disc solar panel 10-1; Another part of luminous energy converts heat energy into through the hollow heat conduction cavity of disc 5-1; Because of hemisphere face transparent light guide lid 6-1, disc hollow heat conduction cavity 5-1 and taper seat reflective mirror 7-1 constitute a closed cavities; And the light incident circular hole of taper seat reflective mirror 7-1 is very little; The light that gets into the light incident circular hole of taper seat reflective mirror 7-1 repeatedly is radiated on the disc solar panel 10-1 through the reflection of taper seat reflective mirror 7-1; The major part of luminous energy changes electric energy and heat energy in closed cavities; Therefore significantly improved photoelectricity and the photo-thermal conversion ratio of luminous energy receiver 1-3-1, the structure of above-mentioned each Salar light-gathering receiving mechanism, each item size and luminous energy reception process are identical with the first Salar light-gathering receiving mechanism.

Claims (1)

1. secondary reflection disc closed housing lighting solar hot water TRT; Constitute by rectangular box, water tank, cold water pipe, hot-water line, planar transparent cover plate, big plane mirror and Salar light-gathering receiving mechanism; Each Salar light-gathering receiving mechanism all is made of a paraboloid of revolution reflective mirror and a luminous energy receiver; The luminous energy receiver of each Salar light-gathering receiving mechanism all is made of a hollow heat conduction cavity of disc, a disc solar panel, a taper seat reflective mirror and a hemisphere face transparent light guide lid; The top of taper seat reflective mirror has a light incident circular hole; On rectangular box, be stamped a planar transparent cover plate; The Salar light-gathering receiving mechanism is divided into many groups; The middle part of the square big plane mirror of one block length all has been installed in the front of each group Salar light-gathering receiving mechanism, respectively organizing the big plane mirror of Salar light-gathering receiving mechanism front has a long straight light entrance slit along its long side direction; Each big plane mirror and planar transparent cover plate of organizing Salar light-gathering receiving mechanism front intersects 45; It is characterized in that: each luminous energy receiver of organizing the Salar light-gathering receiving mechanism is installed in the back side of reflective surface of the big plane mirror of this group Salar light-gathering receiving mechanism front; The disc solar panel close adhesion of each luminous energy receiver is on the surface of the hollow heat conduction cavity of the disc of this luminous energy receiver; Each organizes the reflective surface of disk plane over against the disk plane of the light entrance slit of the big plane mirror of this group Salar light-gathering receiving mechanism front and the hollow heat conduction cavity of each disc over against this paraboloid of revolution reflective mirror of the hollow heat conduction cavity of each disc of the luminous energy receiver of Salar light-gathering receiving mechanism; The center of circle of the disk plane of the hollow heat conduction cavity of disc of the luminous energy receiver of each Salar light-gathering receiving mechanism is positioned on the symmetry axis of paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism; The disk plane of the hollow heat conduction cavity of disc of the luminous energy receiver of each Salar light-gathering receiving mechanism is perpendicular to the symmetry axis of the paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism; The focus of the centre of sphere of the center of circle of the light incident circular hole of the taper seat reflective mirror of the luminous energy receiver of each Salar light-gathering receiving mechanism and hemisphere face transparent light guide lid and the paraboloid of revolution reflective mirror of this Salar light-gathering receiving mechanism overlaps; Each focus of organizing the paraboloid of revolution reflective mirror of Salar light-gathering receiving mechanism is positioned on the light entrance slit of big plane mirror of this group Salar light-gathering receiving mechanism front
When sunshine during perpendicular to the incident of planar transparent cover plate; Light entrance slit and the light incident circular hole of taper seat reflective mirror that can both pass the big plane mirror of this group Salar light-gathering receiving mechanism front behind the reflect focalization of big plane mirror and the paraboloid of revolution reflective mirror of each group Salar light-gathering receiving mechanism of incident ray through each group Salar light-gathering receiving mechanism front are radiated on the disc solar panel of each luminous energy receiver; A luminous energy part that is radiated on the disc solar panel of each luminous energy receiver converts electric energy into through the disc solar panel; Another part of luminous energy converts heat energy into through the hollow heat conduction cavity of the disc of each luminous energy receiver; Hemisphere face transparent light guide lid, the hollow heat conduction cavity of disc and closed housing of taper seat reflective mirror formation because of each luminous energy receiver; And the light incident circular hole of each taper seat reflective mirror is very little; The light that gets into the light incident circular hole of each taper seat reflective mirror repeatedly is radiated on the disc solar panel of each luminous energy receiver through the reflection of the taper seat reflective mirror of each luminous energy receiver; The major part of luminous energy changes electric energy and heat energy in closed housing, therefore significantly improved the photoelectricity and the photo-thermal conversion ratio of each luminous energy receiver.
CN2010105006608A 2010-09-30 2010-09-30 Solar hot water generating device with secondary reflection disc-shaped closed cavity for light collection Expired - Fee Related CN101963399B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105006608A CN101963399B (en) 2010-09-30 2010-09-30 Solar hot water generating device with secondary reflection disc-shaped closed cavity for light collection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105006608A CN101963399B (en) 2010-09-30 2010-09-30 Solar hot water generating device with secondary reflection disc-shaped closed cavity for light collection

Publications (2)

Publication Number Publication Date
CN101963399A CN101963399A (en) 2011-02-02
CN101963399B true CN101963399B (en) 2012-05-23

Family

ID=43516382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105006608A Expired - Fee Related CN101963399B (en) 2010-09-30 2010-09-30 Solar hot water generating device with secondary reflection disc-shaped closed cavity for light collection

Country Status (1)

Country Link
CN (1) CN101963399B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455067A (en) * 2010-10-25 2012-05-16 北京印刷学院 Solar thermoelectric lighting device by condensing light through parabolic cylindrical surface and lighting through closed cavity plane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255611A (en) * 1999-11-05 2000-06-07 南京春辉科技实业有限公司 Solar stove
CN101551169A (en) * 2009-05-07 2009-10-07 上海交通大学 Cavity type solar energy absorber
CN101660845A (en) * 2009-09-07 2010-03-03 东南大学 Secondary reflection light gathering and heat collecting device with compound curved surface
CN101688931A (en) * 2007-06-28 2010-03-31 詹姆斯·罗沙 A non-imaging diffuse light concentrator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255611A (en) * 1999-11-05 2000-06-07 南京春辉科技实业有限公司 Solar stove
CN101688931A (en) * 2007-06-28 2010-03-31 詹姆斯·罗沙 A non-imaging diffuse light concentrator
CN101551169A (en) * 2009-05-07 2009-10-07 上海交通大学 Cavity type solar energy absorber
CN101660845A (en) * 2009-09-07 2010-03-03 东南大学 Secondary reflection light gathering and heat collecting device with compound curved surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455067A (en) * 2010-10-25 2012-05-16 北京印刷学院 Solar thermoelectric lighting device by condensing light through parabolic cylindrical surface and lighting through closed cavity plane

Also Published As

Publication number Publication date
CN101963399A (en) 2011-02-02

Similar Documents

Publication Publication Date Title
CN101949594B (en) Hemispherical light-collecting secondary reflective solar water heater
CN101982711B (en) Condensing multiplication and closed spherical lighting solar water heating and power generating device
CN101982709B (en) Rotary paraboloid light condensing cylindrical bucket-shaped closed cavity lighting solar hot water generating device
CN101963399B (en) Solar hot water generating device with secondary reflection disc-shaped closed cavity for light collection
CN101963394B (en) Secondary reflective spherical surface lighting solar hot water generating device
CN101943489B (en) Secondary reflection light-gathering solar water heater lighted by paraboloid closed cavity
CN101949593B (en) Hemispherical closed daylighting secondary reflection solar water heater
CN201875926U (en) Solar water heating and power generation device based on secondary reflection closed spherical surface lighting
CN101963398B (en) Secondary-reflection revolution-paraboloid daylighting solar water heating and power generation device
CN201844576U (en) Hemispheric closed lighting secondary-reflection solar water heater
CN201885424U (en) Solar-energy water-heating electricity-generating device collecting light through secondary-reflection closed paraboloid
CN101963396B (en) Secondary reflection closed sphere lighting solar energy hot water generation device
CN101982710B (en) Secondary reflection closed paraboloid lighting solar hot water power generation device
CN101957075B (en) Secondary reflecting disc type lighting solar water heater with closed chamber
CN101968268B (en) Secondary reflection sphere lighting solar water heating and power generation device of closed optical-energy receiver
CN201852310U (en) Secondary reflection disc-shaped closed cavity lighting solar hot water generation unit
CN101957076B (en) Secondary-reflection spherical closed cavity lighting solar water heater
CN101975458B (en) Plane lighting and secondary reflection solar water heater
CN101963395B (en) Solar water heating and electricity generating device with secondary reflection panel lighting
CN101963397B (en) Solar water heating and electricity generating device with secondary reflection sphere lighting
CN201885437U (en) Lighting solar water heater with secondary-reflection disc-shaped closed cavity
CN201844580U (en) Plane lighting secondary reflection solar water heater
CN101963405B (en) Spinning paraboloidal condensing and spherical lighting solar water heating and power generating device
CN101963400B (en) Rotary parabolic closed cavity daylighting and condensation-multiplied solar water-heating and electricity-generating device
CN101943490B (en) Multiply solar water heater in hemispherical daylighting and light gathering way

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20130930