CN101975864B - 多种营养盐的自动分析仪与自动分析方法 - Google Patents

多种营养盐的自动分析仪与自动分析方法 Download PDF

Info

Publication number
CN101975864B
CN101975864B CN 201010529916 CN201010529916A CN101975864B CN 101975864 B CN101975864 B CN 101975864B CN 201010529916 CN201010529916 CN 201010529916 CN 201010529916 A CN201010529916 A CN 201010529916A CN 101975864 B CN101975864 B CN 101975864B
Authority
CN
China
Prior art keywords
solenoid valve
sample
way solenoid
mixer
standard specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010529916
Other languages
English (en)
Other versions
CN101975864A (zh
Inventor
张新申
蒋小萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN 201010529916 priority Critical patent/CN101975864B/zh
Publication of CN101975864A publication Critical patent/CN101975864A/zh
Application granted granted Critical
Publication of CN101975864B publication Critical patent/CN101975864B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种多种营养盐的自动分析仪,包括光学流通池、光学检测器、计算机处理系统和液体流路,液体流路由进样流路和反应分析流路组成;所述反应分析流路由第一混合器、第一反应器和光学流通池通过管件依次连接而成,所述进样流路由低压泵、六通自动进样阀、第二混合器、第三混合器、第四混合器、第二反应器、还原柱、第一双通电磁阀、第二双通电磁阀、第三双通电磁阀和液体输送管组装而成。所述多种营养盐的自动分析方法,使用上述结构的自动分析仪,通过调整第一双通电磁阀、第二双通电磁阀、第三双通电磁阀的关闭或开启状态,可实现NO2 --N、NO3 --N和NH4 +-N三种营养盐的分析。

Description

多种营养盐的自动分析仪与自动分析方法
技术领域
本发明属于营养盐分析领域,特别涉及水样中多种营养盐的自动分析仪器与自动分析方法。
背景技术
营养盐NO2 --N、NO3 --N、NH4 +-N等会污染江河、湖泊、海洋中的水,随着工业的发展,营养盐对江河、湖泊、海洋中水的污染越来越严重。因此,水样中营养盐的检测越来越受到重视,已有多种分析仪器和方法问世。
授权公告号为CN 1176381C的专利公开了一类营养盐自动分析方法及实施该方法的仪器,所述方法适用于海水、河口水、工业污水等水样中营养盐的分析,所述仪器的液体流路有三种,因而构成三种不同液体流路的分析仪器。第一种液体流路的仪器,其进样流路由两个低压泵、一个自动进样阀及参比液输送管、显色反应液输送管、试样或标样输送管组装而成,其中一个低压泵用于输送显色反应液R,另一个低压泵用于输送参比液R和试样或标样S,其反应分析流路由第一混合器、第一反应器和光学流通池通过管件依次连接而成,只能用于营养盐
Figure BDA0000030596780000011
的分析。第二种液体流路的仪器,其进样流路在第一种仪器进样流路的基础上增设了第二混合器、第二反应器和氧化液输送管,第二混合器和第二反应器依次连接在试样或标样输送管上,氧化液输送管的一端接低压泵,另一端接第二混合器入口,其反应分析流路与第一种仪器的分析流路相同,只能用于营养盐
Figure BDA0000030596780000013
的分析。第三种液体流路的仪器,其进样流路在第一种仪器进样流路的基础上增设了第二混合器、还原柱和推动液输送管,第二混合器和还原柱依次连接在试样或标样输送管上,推动液输送管的一端接低压泵,另一端接第二混合器,其反应分析流路与第一种仪器的分析流路相同,只能用于营养盐
Figure BDA0000030596780000014
的分析。综上所述,CN 1176381C专利需要三台分析仪器才能完成一种水样中所含的营养盐
Figure BDA0000030596780000016
的分析,因而不仅增加了设备自身的成本,而且在线检测时需携带三台分析仪器,增大了包装、运输的工作量。
发明内容
本发明针对现有技术存在的不足,提供一种多种营养盐的自动分析仪和自动分析方法,以减少分析仪的数量,降低分析成本。
本发明的技术方案:根据某些营养盐的分析可使用相同的参比液R和显色液的特点,通过设置双通电磁阀,对液体流路进行合理组合,实现一台仪器分析多种营养盐。
本发明所述多种营养盐的自动分析仪,包括光学流通池、光学检测器、计算机处理系统和液体流路,液体流路由进样流路和反应分析流路组成;所述反应分析流路由第一混合器、第一反应器和光学流通池通过管件依次连接而成,所述进样流路由低压泵、六通自动进样阀、第二混合器、第三混合器、第四混合器、第二反应器、还原柱(用于将NO3 -还原成NO2 -)、第一双通电磁阀、第二双通电磁阀、第三双通电磁阀和液体输送管组装而成,液体输送管包括显色液输送管、参比液输送管、试样或标样输送管、保护液输送管和氧化液输送管;进样流路各构件的组合方式:显色液输送管、参比液输送管的一端分别与低压泵连接,显色液输送管、参比液输送管的另一端分别与六通自动进样阀的一个进液口连接;试样或标样输送管的一端与低压泵连接,其另一端与第二混合器的进液口连接,第二混合器的出液口与第二反应器通过管件接通,第二反应器的出液口通过管件与第一双通电磁阀的进液口连接,第一双通电磁阀的出液口通过管件与第四混合器的进液口连接,第四混合器的出液口通过管件与反应分析流路中的第一混合器连接,还原柱与第一双通电磁阀并联;保护液输送管上设置有第二双通电磁阀,其一端与低压泵连接,其另一端与第三混合器的一个进液口连接;氧化液输送管上设置有第三双通电磁阀,其一端与低压泵连接,其另一端与第三混合器的一个进液口连接;第三混合器的出液口通过管件与第二混合器的进液口连接。
上述多种营养盐的自动分析仪,当第二双通电磁阀和第三双通电磁阀处于关闭状态、第一双通电磁阀处于开启状态时,形成分析营养盐NO2 --N的进样流路。
上述多种营养盐的自动分析仪,当第三双通电磁阀和第一双通电磁阀处于关闭状态、第二双通电磁阀处于开启状态时,形成分析营养盐NO3 --N的进样流路。
上述多种营养盐的自动分析仪,当第二双通电磁阀处于关闭状态、第三双通电磁阀和第一双通电磁阀处于开启状态时,形成分析营养盐NH4 +-N的进样流路。
本发明所述多种营养盐的自动分析方法,使用上述结构的自动分析仪,可分析NO2 --N、NO3 --N和NH4 +-N三种营养盐,操作步骤分别如下:
①分析NO2 --N
使第二双通电磁阀、第三双通电磁阀处于关闭状态,使第一双通电磁阀处于开启状态,使低压泵处于工作状态,进入反应分析流路中的参比液R与进入反应分析流路中的试样S相混合形成混合液,所述混合液进入光学流通池产生基线被测绘;在参比液R的推动下进入反应分析流路中的显色液R与进入反应分析流路的试样S相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池产生试样谱图被测绘;使用一系列NO2 --N浓度已知的标样代替试样S,重复上述步骤,得到一系列标样谱图,以标样的浓度为横坐标、以标样谱图的峰高为纵坐标绘制工作曲线;将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程计算出试样中的NO2 --N含量;
②分析NO3 --N
使第三双通电磁阀、第一双通电磁阀处于关闭状态,使第二双通电磁阀处于开启状态,使低压泵处于工作状态,进入反应分析流路中的参比液R与进入反应分析流路中的试样S和保护液H的混合液混合后进入光学流通池,产生基线被测绘;在参比液R的推动下进入反应分析流路中的显色液R与进入反应分析流路中的试样S和保护液H的混合液相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池产生试样谱图被测绘;使用一系列NO3 --N浓度已知的标样代替试样S,重复上述步骤,得到一系列标样谱图,以标样的浓度为横坐标、以标样谱图的峰高为纵坐标绘制工作曲线;将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程计算出试样中的NO3 --N含量;
③NH4 +-N
使第二双通电磁阀处于关闭状态,使第三双通电磁阀、第一双通电磁阀处于开启状态,使低压泵处于工作状态,进入反应分析流路中的参比液R与进入反应分析流路中的试样S和氧化液O的混合液混合后进入光学流通池,产生基线被测绘;在参比液R的推动下进入反应分析流路中的显色液R与进入反应分析流路中的试样S和氧化液O的混合液相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池产生试样谱图被测绘;使用一系列NH4 +-N浓度已知的标样代替试样S,重复上述步骤,得到一系列标样谱图,以标样的浓度为横坐标、以标样谱图的峰高为纵坐标绘制工作曲线;将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程计算出试样中的NH4 +-N含量。
本发明所述多种营养盐的自动分析方法,显色液R为磺胺-盐酸萘乙二胺-盐酸水溶液,参比液R为磺胺-盐酸水溶液,氧化液O为溴化钾-溴酸钾-盐酸-氢氧化钠水溶液,保护液H为氯化铵水溶液。
优选地,在上述方法中,显色液R的组成为:显色液R中,磺胺的质量百分数为0.15~0.4%,盐酸萘乙二胺的质量百分数为0.015~0.04%,盐酸的浓度为0.3~0.8mol/L。
优选地,在上述方法中,参比液R的组成为:参比液R中,磺胺的质量百分数为0.15~0.4%,盐酸的浓度为0.3~0.8mol/L。
优选地,在上述方法中,氧化液O的组成为:氧化液O中,溴化钾的质量百分数为0.003~0.006%,溴酸钾的质量百分数为0.0005~0.0008%,盐酸的浓度为0.03~0.08mol/L,氢氧化钠的质量百分数为0.5~2.0%。
优选地,在上述方法中,保护液H的组成为:保护液H中,氯化铵的质量百分数为1~4%。
本发明具有以下有益效果:
1、本发明所述营养盐自动分析仪具有一台仪器可分析三种营养盐的功能,因而一台仪器可代替三台现有营养盐自动分析仪,不仅可降低成本,而且在线分析十分方便。
2、本发明所述营养盐自动分析方法由于测试绘制基线和测试绘制被测物质谱图的溶液中均含有参比液及等量的相同试样或标样,因而消除了盐度变化对测试分析产生的干扰,保证了测试精度。
附图说明
图1是本发明所述多种营养盐自动分析仪的一种结构示意图,也是本发明所述多种营养盐自动分析方法的工艺流程图。
图中,1-低压泵、2-第二双通电磁阀、3-第三双通电磁阀、4-六通自动进样阀、5-第二混合器、6-第三混合器、7-第二反应器、8-第一双通电磁阀、9-还原柱、10-第一混合器、11-第四混合器、12-第一反应器、13-光学流通池、14-光学检测器、15-计算机处理系统、R-显色液、R-参比液、S-试样或标样、H-保护液、O-氧化液。
具体实施方式
下面通过实施例对本发明所述多种营养盐自动分析仪的结构和本发明所述多种营养盐自动分析方法的操作进一步予以说明。
实施例1
本实施例中,多种营养盐的自动分析仪的结构如图1所示,包括光学流通池13、光学检测器14、计算机处理系统15和液体流路,液体流路由进样流路和反应分析流路组成。所述反应分析流路由第一混合器10、第一反应器12和光学流通池13通过管件依次连接而成;所述进样流路由低压泵1、六通自动进样阀4、第二混合器5、第三混合器6、第四混合器11、第二反应器7、还原柱9、第一双通电磁阀8、第二双通电磁阀2、第三双通电磁阀3和液体输送管组装而成,液体输送管包括显色液输送管、参比液输送管、试样或标样输送管、保护液输送管和氧化液输送管。仪器中,低压泵1为五通道恒流泵,泵流量0.4~1.0ml/min,工作压力2~3×105Pa。六通自动进样阀4的结构见ZL 02244841.1。第一混合器10、第二混合器5、第三混合器6和第四混合器11的结构相同,均为三通管式结构。第一反应器12、第二反应器7的结构相同,为盘管式结构,由内径0.5mm的聚四氟乙烯管绕制而成,长度为4.5m。还原柱9为铜-镉还原柱。第一双通电磁阀8、第二双通电磁阀2、第三双通电磁阀3均为普通电磁阀,有市售商品。
进样流路各构件的组装方式:显色液输送管、参比液输送管的一端分别与低压泵1连接,显色液输送管、参比液输送管的另一端分别与六通自动进样阀4的一个进液口连接;试样或标样输送管的一端与低压泵1连接,其另一端与第二混合器5的进液口连接,第二混合器5的出液口与第二反应器7通过管件接通,第二反应器7的出液口通过管件与第一双通电磁阀8的进液口连接,第一双通电磁阀8的出液口通过管件与第四混合器11的进液口连接,第四混合器11的出液口通过管件与反应分析流路中的第一混合器10连接,还原柱9与第一双通电磁阀8并联;保护液输送管上设置有第二双通电磁阀2,其一端与低压泵1连接,其另一端与第三混合器6的一个进液口连接;氧化液输送管上设置有第三双通电磁阀3,其一端与低压泵1连接,其另一端与第三混合器6的一个进液口连接;第三混合器6的出液口通过管件与第二混合器5的进液口连接。
实施例2
本实施例分析海水、河口水及工业污水中的NO2 --N,使用实施例1所述的自动分析仪,光学流通池13的光程为10mm,检测波长为530nm,使第二双通电磁阀2、第三双通电磁阀3处于关闭状态,使第一双通电磁阀8处于开启状态,使低压泵1处于工作状态。
本实施例测试分析的操作步骤:
1、配制测试分析所需的标样及溶液
(1)配制标样
称取NaNO2(分析纯)配制1000mg/L NO2 --N的标准贮备液,将配制好的标准贮备液稀释,配制成一系列标样,各标样NO2 --N浓度分别为2.0μg/L、10.0μg/L、20.0μg/L、40.0μg/L和50.0μg/L。
(2)配制显色液R
称取2.50g磺胺于1000mL容量瓶中,加入600mL水后,不必待溶完后加入100mL 6mol/L的HCl,摇匀加入0.250g盐酸萘乙二胺(NED),溶解后定容至1000mL;其中,磺胺的质量百分数为0.25%,盐酸萘乙二胺的质量百分数为0.025%,HCl的浓度为0.6mol/L。
(3)配制参比液R
称取2.50g磺胺于1000mL容量瓶中,加入600mL水,再加入100mL 6mol/的HCl,用水定容至1000mL;其中,磺胺的质量百分数为0.25%,HCl的浓度为0.6mol/L。
2、测试绘制谱图
(1)试样谱图的测试绘制
参比液R依次经参比液输送管、六通自动进样阀4进入反应分析流路,试样S依次经试样或标样输送管、第二混合器5、第二反应器7、第一双通电磁阀8、第四混合器11进入反应分析流路,在反应分析流路中,参比液R与试样S相混合形成混合液,所述混合液进入光学流通池13,光学检测器14将信号传输给计算机处理系统15,即在计算机显示屏上绘制出一条基线;基线测试完成后,经显色液输送管进入六通自动进样阀4的显色液R在经参比液输送管进入六通自动进样阀4的参比液R的推动下进入反应分析流路,在反应分析流路中,所述显色液R与依次经试样或标样输送管、第二混合器5、第二反应器7、第一双通电磁阀8、第四混合器11进入反应分析流路的试样S相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池13,光学检测器14将信号传输给计算机处理系统15,即在计算机显示屏上绘出被测试样的NO2 --N谱图。
(2)标样谱图的测试绘制
测试绘制标样谱图所用的仪器、显色液R、参比液R与测试绘制试样谱图所用的仪器、显色液R、参比液R相同,测试方法也相同。
将所配制标样由低浓度到高浓度依次进行分析,即得一系列标样谱图,以标样的浓度(μg/L)为横坐标、以标样谱图的峰高(mV)为纵坐标即可绘制出工作曲线。
3、试样测试结果计算
将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程则可计算出试样中的NO2 --N含量。
实施例3
本实施例分析海水、河口水及工业污水中的NO3 --N,使用实施例1所述的自动分析仪,光学流通池13的光程为10mm,检测波长为530nm,使第三双通电磁阀3、第一双通电磁阀8处于关闭状态,使第二双通电磁阀2处于开启状态,使低压泵1处于工作状态。
1、配制测试分析所需的标样及溶液
(1)配制标样
称取KNO3(分析纯)配制200mg/L NO3 --N的标准贮备液,将配制好的标准贮备液稀释,配制成一系列标样,各标样NO3 --N浓度分别为20μg/L、100μg/L、200μg/L、400μg/L、600μg/L、和1000μg/L。
(2)配制显色液R
配制显色液的原料、方法及显色液R中磺胺的质量百分数、盐酸萘乙二胺的质量百分数、HCl的浓度均与实施例1相同。
(3)配制参比液R
配制参比液的原料、方法及参比液R中磺胺的质量百分数、HCl的浓度均与实施例1相同。
(4)配制保护液H
称取30.9g的氯化铵,加入900mL水溶解后,定容至1000mL;其中,氯化铵的质量百分数为3.09%
2、测试绘制谱图
(1)试样谱图的测试绘制
参比液R依次经参比液输送管、六通自动进样阀4进入反应分析流路,经试样或标样输送管进入第二混合器5的试样S与经保护液输送管进入第二混合器5的保护液H相混合形成的混合液依次经第二反应器7、还原柱9、第四混合器11进入反应分析流路,在反应分析流路中,试样S与保护液H形成的混合液与参比液R混合后进入光学流通池13,光学检测器14将信号传输给计算机处理系统15,即在计算机显示屏上绘制出一条基线;基线测试完成后,经显色液输送管进入六通自动进样阀4的显色液R在经参比液输送管进入六通自动进样阀4的参比液R的推动下进入反应分析流路,经试样或标样输送管进入第二混合器5的试样S与经保护液输送管进入第二混合器5的保护液H相混合形成的混合液依次经第二反应器7、还原柱9、第四混合器11进入反应分析流路,在反应分析流路中,显色液R与试样S和保护液H形成的混合液相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池13,光学检测器14将信号传输给计算机处理系统15,即在计算机显示屏上绘出被测试样的NO3 --N谱图。
(2)标样谱图的测试绘制
测试绘制标样谱图所用的仪器、显色液R、参比液R、保护液H与测试绘制试样谱图所用的仪器、显色液R、参比液R、保护液H相同,测试方法也相同。
将所配制标样由低浓度到高浓度依次进行分析,即得一系列标样谱图,以标样的浓度(μg/L)为横坐标、以标样谱图的峰高(mV)为纵坐标即可绘制出工作曲线。
3、试样测试结果计算
将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程则可计算出试样中的NO3 --N含量。
实施例4
本实施例分析海水、河口水及工业污水中的NH4 +-N,使用实施例1所述的自动分析仪,光学流通池13的光程为10mm,检测波长为530nm,使第二双通电磁阀2处于关闭状态,使第三双通电磁阀3、第一双通电磁阀8处于开启状态,使低压泵1处于工作状态。
1、配制测试分析所需的标样及溶液
(1)配制标样
称取0.4716g(NH4)2SO4(分析纯)配制1000mg/L NH4 +-N的标准贮备液,将配制好的标准贮备液稀释,配制成一系列标样,各标样NH4 +-N浓度分别为8.0μg/L、20.0μg/L、60.0μg/L、100μg/L、140μg/L和200μg/L。
(2)配制显色液R
配制显色液的原料、方法及显色液R中磺胺的质量百分数、盐酸萘乙二胺的质量百分数、HCl的浓度均与实施例1相同。
(3)配制参比液R
配制参比液的原料、方法及参比液R中磺胺的质量百分数、HCl的浓度均与实施例1相同。
(4)配制氧化液O
称取2.00g溴化钾和0.250g溴酸钾溶入100mL水中配制成氧化液贮备液;取2.5mL氧化液贮备液,放入1000mL棕色容量瓶中,加入200.0mL水,再加入7.5mL 6mol/L的HCl,迅速盖上塞子于暗处摇动5分钟后,加入50mL 5mol/LNaOH,摇匀后稀释至1000mL;其中,溴化钾的质量百分数为0.005%,溴酸钾的质量百分数为0.000625%,HCl的浓度为0.045mol/L,NaOH的质量百分数为1%。
2、测试绘制谱图
(1)试样谱图的测试绘制
参比液R依次经参比液输送管、六通自动进样阀4进入反应分析流路,经试样或标样输送管进入第二混合器5的试样S与经氧化液输送管进入第二混合器5的氧化液O相混合形成的混合液依次经第二反应器7、第一双通电磁阀8、第四混合器11进入反应分析流路,在反应分析流路中,试样S与氧化液O形成的混合液与参比液R混合后进入光学流通池13,光学检测器14将信号传输给计算机处理系统15,即在计算机显示屏上绘制出一条基线;基线测试完成后,经显色液输送管进入六通自动进样阀4的显色液R在经参比液输送管进入六通自动进样阀4的参比液R的推动下进入反应分析流路,经试样或标样输送管进入第二混合器5的试样S与经氧化液输送管进入第二混合器5的氧化液O相混合形成的混合液依次经第二反应器7、第一双通电磁阀8、第四混合器11进入反应分析流路,在反应分析流路中,显色液R与试样S和氧化液O形成的混合液相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池13,光学检测器14将信号传输给计算机处理系统15,即在计算机显示屏上绘出被测试样的NH4 +-N谱图。
(2)标样谱图的测试绘制
测试绘制标样谱图所用的仪器、显色液R、参比液R、氧化液O与测试绘制试样谱图所用的仪器、显色液R、参比液R、氧化液O相同,测试方法也相同。
将所配制标样由低浓度到高浓度依次进行分析,即得一系列标样谱图,以标样的浓度(μg/L)为横坐标、以标样谱图的峰高(mV)为纵坐标即可绘制出工作曲线。
3、试样测试结果计算
将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程则可计算出试样中的NH4 +-N含量。

Claims (10)

1.多种营养盐的自动分析仪,包括光学检测器(14)、计算机处理系统(15)和液体流路,液体流路由进样流路和反应分析流路组成,所述反应分析流路由第一混合器(10)、第一反应器(12)和光学流通池(13)通过管件依次连接而成,其特征在于所述进样流路由低压泵(1)、六通自动进样阀(4)、第二混合器(5)、第三混合器(6)、第四混合器(11)、第二反应器(7)、还原柱(9)、第一双通电磁阀(8)、第二双通电磁阀(2)、第三双通电磁阀(3)和液体输送管组装而成,液体输送管包括显色液输送管、参比液输送管、试样或标样输送管、保护液输送管和氧化液输送管;
显色液输送管、参比液输送管的一端分别与低压泵(1)连接,显色液输送管、参比液输送管的另一端分别与六通自动进样阀(4)的一个进液口连接;
试样或标样输送管的一端与低压泵(1)连接,其另一端与第二混合器(5)的进液口连接,第二混合器(5)的出液口与第二反应器(7)通过管件接通,第二反应器(7)的出液口通过管件与第一双通电磁阀(8)的进液口连接,第一双通电磁阀(8)的出液口通过管件与第四混合器(11)的进液口连接,第四混合器(11)的出液口通过管件与反应分析流路中的第一混合器(10)连接,还原柱(9)与第一双通电磁阀(8)并联;
保护液输送管上设置有第二双通电磁阀(2),其一端与低压泵(1)连接,其另一端与第三混合器(6)的一个进液口连接;氧化液输送管上设置有第三双通电磁阀(3),其一端与低压泵(1)连接,其另一端与第三混合器(6)的一个进液口连接;第三混合器(6)的出液口通过管件与第二混合器(5)的进液口连接。
2.根据权利要求1所述的多种营养盐的自动分析仪,其特征在于当第二双通电磁阀(2)和第三双通电磁阀(3)处于关闭状态、第一双通电磁阀(8)处于开启状态时,形成分析营养盐NO2 -N的进样流路。
3.根据权利要求1所述的多种营养盐的自动分析仪,其特征在于当第三双通电磁阀(3)和第一双通电磁阀(8)处于关闭状态、第二双通电磁阀(2)处于开启状态时,形成分析营养盐NO3 -N的进样流路。
4.根据权利要求1所述的多种营养盐的自动分析仪,其特征在于当第二双通电磁阀(2)处于关闭状态、第三双通电磁阀(3)和第一双通电磁阀(8)处于开启状态时,形成分析营养盐NH4 +-N的进样流路。
5.多种营养盐的自动分析方法,其特征在于使用权利要求1所述的自动分析仪,分析NO2 -N、NO3 -N和NH4 +-N的操作步骤分别如下:
①分析NO2 -N
使第二双通电磁阀(2)、第三双通电磁阀(3)处于关闭状态,使第一双通电磁阀(8)处于开启状态,使低压泵(1)处于工作状态,进入反应分析流路中的参比液(R)与进入反应分析流路中的试样(S)相混合形成混合液,所述混合液进入光学流通池(13)产生基线被测绘;在参比液(R)的推动下进入反应分析流路中的显色液(R)与进入反应分析流路的试样(S)相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池(13)产生试样谱图被测绘;使用一系列NO2 -N浓度已知的标样代替试样(S),重复上述步骤,得到一系列标样谱图,以标样的浓度为横坐标、以标样谱图的峰高为纵坐标绘制工作曲线;将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程计算出试样中的NO2 -N含量;
②分析NO3 -N
使第三双通电磁阀(3)、第一双通电磁阀(8)处于关闭状态,使第二双通电磁阀(2)处于开启状态,使低压泵(1)处于工作状态,进入反应分析流路中的参比液(R)与进入反应分析流路中的试样(S)和保护液(H)的混合液混合后进入光学流通池(13),产生基线被测绘;在参比液(R)的推动下进入反应分析流路中的显色液(R)与进入反应分析流路中的试样(S)和保护液(H)的混合液相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池(13)产生试样谱图被测绘;使用一系列NO3 -N浓度已知的标样代替试样(S),重复上述步骤,得到一系列标样谱图,以标样的浓度为横坐标、以标样谱图的峰高为纵坐标绘制工作曲线;将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程计算出试样中的NO3 -N含量;
③NH4 +-N
使第二双通电磁阀(2)处于关闭状态,使第三双通电磁阀(3)、第一双通电磁阀(8)处于开启状态,使低压泵(1)处于工作状态,进入反应分析流路中的参比液(R)与进入反应分析流路中的试样(S)和氧化液(O)的混合液混合后进入光学流通池(13),产生基线被测绘;在参比液(R)的推动下进入反应分析流路中的显色液(R)与进入反应分析流路中的试样(S)和氧化液(O)的混合液相混合,在混合过程中被测物质生成络合物,含有色络合物的混合液进入光学流通池(13)产生试样谱图被测绘;使用一系列NH4 +-N浓度已知的标样代替试样(S),重复上述步骤,得到一系列标样谱图,以标样的浓度为横坐标、以标样谱图的峰高为纵坐标绘制工作曲线;将所绘制的试样谱图与标样谱图比较,通过所述工作曲线的回归方程计算出试样中的NH4 +-N含量。
6.根据权利要求5所述的多种营养盐的自动分析方法,其特征在于显色液(R)为磺胺—盐酸萘乙二胺—盐酸水溶液,参比液(R)为磺胺—盐酸水溶液,氧化液(O)为溴化钾—溴酸钾—盐酸—氢氧化钠水溶液,保护液(H)为氯化铵水溶液。
7.根据权利要求6所述的多种营养盐的自动分析方法,其特征在于显色液(R)中,磺胺的质量百分数为0.15~0.4%,盐酸萘乙二胺的质量百分数为0.015~0.04%,盐酸的浓度为0.3~0.8 mol/L。
8.根据权利要求6所述的多种营养盐的自动分析方法,其特征在于参比液(R)中,磺胺的质量百分数为0.15~0.4%,盐酸的浓度为0.3~0.8mol/L。
9.根据权利要求6所述的多种营养盐的自动分析方法,其特征在于氧化液(O)中,溴化钾的质量百分数为0.003~0.006%,溴酸钾的质量百分数为0.0005~0.0008%,盐酸的浓度为0.03~0.08 mol/L,氢氧化钠的质量百分数为0. 5~2.0 % 。
10.根据权利要求6所述的多种营养盐的自动分析方法,其特征在于保护液(H)中,氯化铵的质量百分数为1~4%。
CN 201010529916 2010-11-03 2010-11-03 多种营养盐的自动分析仪与自动分析方法 Expired - Fee Related CN101975864B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010529916 CN101975864B (zh) 2010-11-03 2010-11-03 多种营养盐的自动分析仪与自动分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010529916 CN101975864B (zh) 2010-11-03 2010-11-03 多种营养盐的自动分析仪与自动分析方法

Publications (2)

Publication Number Publication Date
CN101975864A CN101975864A (zh) 2011-02-16
CN101975864B true CN101975864B (zh) 2013-01-23

Family

ID=43575766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010529916 Expired - Fee Related CN101975864B (zh) 2010-11-03 2010-11-03 多种营养盐的自动分析仪与自动分析方法

Country Status (1)

Country Link
CN (1) CN101975864B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025875A1 (en) * 1993-04-29 1994-11-10 Danfoss A/S Device for analyzing a fluid medium
EP0634646B1 (en) * 1993-07-14 1999-01-27 Shimadzu Corporation Method of and apparatus for analyzing nitrogen compounds and phosphorus compounds contained in water
CN1396455A (zh) * 2002-08-09 2003-02-12 四川大学 营养盐自动分析法及实施该方法的仪器
CN2610325Y (zh) * 2003-04-30 2004-04-07 国家海洋技术中心 海水营养盐现场自动分析仪光学测量流通池
CN101738486A (zh) * 2010-01-14 2010-06-16 北京吉天仪器有限公司 奶及奶制品中尿素的全自动分析仪及分析方法
CN201852844U (zh) * 2010-11-03 2011-06-01 四川大学 多种营养盐的自动分析仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025875A1 (en) * 1993-04-29 1994-11-10 Danfoss A/S Device for analyzing a fluid medium
EP0634646B1 (en) * 1993-07-14 1999-01-27 Shimadzu Corporation Method of and apparatus for analyzing nitrogen compounds and phosphorus compounds contained in water
CN1396455A (zh) * 2002-08-09 2003-02-12 四川大学 营养盐自动分析法及实施该方法的仪器
CN2610325Y (zh) * 2003-04-30 2004-04-07 国家海洋技术中心 海水营养盐现场自动分析仪光学测量流通池
CN101738486A (zh) * 2010-01-14 2010-06-16 北京吉天仪器有限公司 奶及奶制品中尿素的全自动分析仪及分析方法
CN201852844U (zh) * 2010-11-03 2011-06-01 四川大学 多种营养盐的自动分析仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张新申, 蒋小萍, 俞凌云.营养盐自动分析仪标准化研究.《绵阳师范学院学报》.2008,第27卷(第11期), *

Also Published As

Publication number Publication date
CN101975864A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
CN102243244A (zh) 溶液中总氮自动分析仪及其分析方法
CN102707005B (zh) 水样中三价铁和二价铁的同时在线分析方法
Mesquita et al. Development of a flow method for the determination of phosphate in estuarine and freshwaters—Comparison of flow cells in spectrophotometric sequential injection analysis
CN103439258B (zh) 一种基于集成阀岛装置的水体营养盐原位检测仪与检测方法
CN101907563B (zh) 基于紫外发光二极管的二氧化硫分析仪及分析方法
CN103785314A (zh) 一种混合器及流通式光度检测自动化分析仪
CN101101264B (zh) 海水中硫化物的自动分析方法
CN1945291A (zh) 分析海水、河口水中磷酸盐的方法
CN102980858A (zh) 小型顺序注射亚硝酸盐分析系统
CN101975864B (zh) 多种营养盐的自动分析仪与自动分析方法
CN102590535A (zh) 水样中亚硝酸盐的自动分析方法
CN201852844U (zh) 多种营养盐的自动分析仪
CN102519922A (zh) 一种多元素同时测定的原子荧光装置及其测定方法
CN202024965U (zh) 一种实时在线检测海水中硝酸根离子浓度的装置
CN103308703B (zh) 水样中甲醛的自动分析方法
CN103940759A (zh) 一种用于检测水中铅离子的方法
CN106018386A (zh) 一种茶叶或茶叶制品中抗氧化能力的分析方法
Nie et al. An ultrasensitive post chemiluminescence reaction of ammonium in NBS–dichlorofluorescein system and its application
Burakham et al. Flow-injection and sequential-injection determinations of paracetamol in pharmaceutical preparations using nitrosation reaction
CN103940758A (zh) 一种用于检测水中铅离子的方法
CN103940763A (zh) 一种用于检测水中铅离子的方法
CN202903672U (zh) 小型顺序注射亚硝酸盐分析系统
Martinovic-Bevanda et al. Spectrophotometric sequential injection determination of D-penicillamine based on a complexation reaction with nickel ion
JP2009115758A (ja) 海水中の溶存態無機窒素の測定方法
Bai et al. Determination of Epinephrine by Flow Injection Analysis Coupled Ag (III) Complex‐Luminol Chemiluminescence Detection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130123

Termination date: 20151103

EXPY Termination of patent right or utility model