CN101968629A - PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification - Google Patents

PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification Download PDF

Info

Publication number
CN101968629A
CN101968629A CN2010105112240A CN201010511224A CN101968629A CN 101968629 A CN101968629 A CN 101968629A CN 2010105112240 A CN2010105112240 A CN 2010105112240A CN 201010511224 A CN201010511224 A CN 201010511224A CN 101968629 A CN101968629 A CN 101968629A
Authority
CN
China
Prior art keywords
neural network
output
rbf
layer
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105112240A
Other languages
Chinese (zh)
Inventor
马幼捷
刘玥
周雪松
刘思佳
刘进华
于阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN2010105112240A priority Critical patent/CN101968629A/en
Publication of CN101968629A publication Critical patent/CN101968629A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

一种基于RBF辨识的弹性积分BP神经网络的PID控制系统,它包括:确定BP神经网络的结构,确定初值;确定RBF辨识网络结构;采样;正向计算BP网络,计算PID控制系统的输出;计算RBF辨识网络;修正辨识网络参数;修正BP神经网络的加权系数。本发明的优越性在于:将BP神经网络与传统的PID控制结合,构成智能型的神经网络PID控制系统。它不需建立精确的数学模型,能够自动辨识被控过程参数、自动整定控制参数、适应被控过程参数的变化,是解决传统PID控制系统参数整定难、不能实时调整参数和鲁棒性不强的有效措施。

Figure 201010511224

A PID control system based on an elastic integral BP neural network identified by RBF, which includes: determining the structure of the BP neural network, determining the initial value; determining the structure of the RBF identification network; sampling; forward calculating the BP network, and calculating the output of the PID control system ; Calculate the RBF identification network; modify the identification network parameters; modify the weighting coefficient of the BP neural network. The advantage of the present invention is that: the BP neural network is combined with the traditional PID control to form an intelligent neural network PID control system. It does not need to establish an accurate mathematical model, it can automatically identify the controlled process parameters, automatically adjust the control parameters, and adapt to the changes of the controlled process parameters. effective measures.

Figure 201010511224

Description

基于RBF辨识的弹性积分BP神经网络的PID控制方法 PID control method of elastic integral BP neural network based on RBF identification

【技术领域】:【Technical field】:

本发明属于智能控制技术领域,涉及一种基于BP神经网络改进型参数整定的PID控制系统,尤其是基于RBF辨识的弹性积分BP神经网络的PID控制系统。 The invention belongs to the technical field of intelligent control, and relates to a PID control system based on improved parameter setting of BP neural network, in particular to a PID control system based on elastic integral BP neural network identified by RBF. the

【背景技术】:【Background technique】:

按比例、积分和微分进行控制的调节系统简称为PID控制系统,是工业过程控制中应用最广泛,历史最悠久,生命力最强的控制方式,在目前的工业生产中,90%以上的控制系统为PID控制系统。它采用基于对象数学模型的方法,优点是算法简单、鲁棒性好和可靠性高,控制效果良好,因此被广泛应用于工业控制过程,尤其适用于可建立精确数学模型的确定性控制系统。对于传统PID控制系统,在把其投入运行之前,要想得到较理想的控制效果,必须先整定好三个参数:比例系数KP、积分系数KI、微分系数KD。这是因为生产部门中有各种各样的被控对象,它们对控制系统的特性会有不同的要求,整定的目的就是设法使控制系统的特性能够和被控对象配合好,以便得到最佳控制效果,如果控制系统参数整定不好,即使控制系统本身很先进,其控制效果也会很差。 The adjustment system controlled by proportional, integral and differential is called PID control system for short. It is the most widely used, oldest and most vigorous control method in industrial process control. In the current industrial production, more than 90% of the control systems It is a PID control system. It adopts the method based on the object mathematical model, which has the advantages of simple algorithm, good robustness, high reliability, and good control effect, so it is widely used in industrial control processes, especially for deterministic control systems that can establish accurate mathematical models. For the traditional PID control system, before it is put into operation, in order to obtain a more ideal control effect, three parameters must be adjusted: the proportional coefficient K P , the integral coefficient K I , and the differential coefficient K D . This is because there are various controlled objects in the production department, and they have different requirements on the characteristics of the control system. Control effect, if the control system parameters are not set well, even if the control system itself is very advanced, its control effect will be poor.

随着工业的发展,控制对象的复杂程度也在不断加深,许多大滞后、时变的、非线性的复杂系统,如温度控制系统,被控过程机理复杂,具有高阶非线性、慢时变、纯滞后等特点,常规PID控制显得无能为力;另外,实际生产过程中存在着许多不确定因素,如在噪声、负载振动和其他一些环境条件下,过程参数甚至模型结果都会发生变化,如变结构、变参数、非线性、时变等,不仅难以建立受控对象精确的数学模型,而且PID控制系统的控制参数具有固定形式,不易在线调整,难以适应外界环境的变化,这些使得PID控制系统在实际应用中不能达到理想的效果,越来越受到限制和挑战。 With the development of industry, the complexity of the control object is also deepening. Many large-delay, time-varying, nonlinear complex systems, such as temperature control systems, have complex mechanism of the controlled process, high-order nonlinear, slow time-varying , pure hysteresis and other characteristics, the conventional PID control seems helpless; in addition, there are many uncertain factors in the actual production process, such as noise, load vibration and other environmental conditions, process parameters and even model results will change, such as variable structure , variable parameters, nonlinear, time-varying, etc., not only is it difficult to establish an accurate mathematical model of the controlled object, but also the control parameters of the PID control system have a fixed form, which is difficult to adjust online and adapt to changes in the external environment. These make the PID control system in The ideal effect cannot be achieved in practical application, and it is more and more restricted and challenged. the

人们一直在寻求PID控制系统参数的自适应技术,以适应复杂系统的控制要求,神经网络理论的发展使这种设想成为可能。人工神经网络(简称ANN)是由大量简单的基本神经元相互连接而构成的自适应非线性动态系统。神经网络控制能够充分任意地逼近任何复杂的非线性关系,具有很强的信息综合能力,能够学习和适应严重不确定系统的动态特性,故有很强的鲁棒性和容错性,可以处理那些难以用模型和规则描述的过程,在一些不确定系统的控制中已成功应用。误差反向传播神经网络(简称BP网络),所具有的任意非线性表达能力,可以通系统性能的学习来实现具有最佳组合的PID控制。 People have been looking for the adaptive technology of PID control system parameters to meet the control requirements of complex systems. The development of neural network theory makes this idea possible. Artificial neural network (ANN for short) is an adaptive nonlinear dynamic system composed of a large number of simple basic neurons connected to each other. Neural network control can fully and arbitrarily approach any complex nonlinear relationship, has a strong ability to synthesize information, and can learn and adapt to the dynamic characteristics of severely uncertain systems, so it has strong robustness and fault tolerance, and can handle those Processes that are difficult to describe with models and rules have been successfully applied in the control of some uncertain systems. The error backpropagation neural network (referred to as BP network), with its arbitrary nonlinear expression ability, can realize the PID control with the best combination through the learning of system performance. the

【发明内容】:【Invention content】:

本发明目的是解决传统PID控制系统由于控制参数固定,不易在线实时调整和鲁棒性不强,难以适应外界环境变化的问题,提供一种基于RBF辨识的弹性积分BP神经网络的PID控制方法。 The purpose of the present invention is to solve the problem that the traditional PID control system is difficult to adjust in real time online due to fixed control parameters, and the robustness is not strong, and it is difficult to adapt to changes in the external environment, and to provide a PID control method based on an elastic integral BP neural network identified by RBF. the

本发明涉及的是一种基于BP神经网络的改进型智能PID控制方法,该方法首先在变速积分的基础上提出弹性积分PID控制算法,然后运用BP网络整定PID控制,针对权值修正时导数项 

Figure BSA00000308731300021
求值,用一个径向基网络即RBF神经网络建立一个被控对象的辨识模型,用此模型去训练BP网络控制系统。 The present invention relates to an improved intelligent PID control method based on BP neural network. The method first proposes an elastic integral PID control algorithm on the basis of variable speed integrals, and then uses BP network to tune PID control, and corrects the time derivative term for the weight value.
Figure BSA00000308731300021
Evaluate, use a radial basis network (RBF neural network) to establish an identification model of the controlled object, and use this model to train the BP network control system.

发明提供的基于RBF辨识的弹性积分BP神经网络的PID控制系统包括以下步骤: The PID control system of the elastic integral BP neural network based on RBF identification provided by the invention comprises the following steps:

第1、确定三层BP神经网络的输入层节点数M和隐含层节点数Q,并给出各层加权系数的初值wij (2)(0)和wli (3)(0),选定学习速率η和惯性系数α,此时计算次数k=1; 1. Determine the number of input layer nodes M and the number of hidden layer nodes Q of the three-layer BP neural network, and give the initial value w ij (2) (0) and w li (3) (0) of the weighting coefficients of each layer , select the learning rate η and the inertia coefficient α, and the calculation times k=1 at this time;

第2、确定RBF辨识网络的输入节点数m、隐层节点数s,并给出隐层节点的中心矢量Cj(0)、基宽带参数的初值bj(0)、权系数初值wj(0)、学习速率ρ、惯性系数γ、计算次数k=1,此网络用于建立被控对象的辨识模型,以便动态观测控制对象的输出对控制输入的灵敏度,提供给BP神经网络; 2. Determine the number of input nodes m and the number of hidden layer nodes s of the RBF identification network, and give the center vector C j (0) of the hidden layer nodes, the initial value b j (0) of the base broadband parameter, and the initial value of the weight coefficient w j (0), learning rate ρ, inertia coefficient γ, calculation times k=1, this network is used to establish the identification model of the controlled object, so as to dynamically observe the sensitivity of the output of the controlled object to the control input, and provide it to the BP neural network ;

第3、采样得到三层BP神经网络的输入值r(k)、输出值y(k),计算该时刻误差e(k); 3. Obtain the input value r(k) and output value y(k) of the three-layer BP neural network by sampling, and calculate the error e(k) at this moment;

第4、正向计算BP神经网络各层神经元的输入、输出,BP神经网络输出层的三个输出值即为PID控制系统的三个可调参数KP、KI、KD;给出偏差门限值ε,根据弹性积分控制算法计算PID的输出u(k),并与上一次的u(k-1)相减得到Δu(k)送入控制对象及RBF辨识网络,产生被控对象的输出y(k); 4. Forward calculation of the input and output of neurons in each layer of BP neural network, the three output values of the output layer of BP neural network are the three adjustable parameters K P , KI , K D of the PID control system; given Deviation threshold ε, calculate the PID output u(k) according to the elastic integral control algorithm, and subtract it from the last u(k-1) to get Δu(k), which is sent to the control object and RBF identification network to generate the controlled object output y(k);

第5、根据RBF辨识网络的正向计算公式计算RBF辨识网络各层神经元的输入输出,RBF辨识网络的输出为向量组ym(k),m为输出值个数; The 5th, calculate the input and output of each layer neuron of RBF identification network according to the forward calculation formula of RBF identification network, the output of RBF identification network is vector group y m (k), m is the number of output values;

第6、用RBF辨识网络的迭代算法修正辨识网络输出权系数、隐层节点的中心矢量和隐层节点的基宽参数; Sixth, use the iterative algorithm of the RBF identification network to correct the output weight coefficient of the identification network, the center vector of the hidden layer node and the base width parameter of the hidden layer node;

第7、用BP神经网络的迭代算法修正BP神经网络的加权系数,令计算次数k=k+1,返回第3步,继续按顺序执行,误差达到要求时停止。 The 7th, use the iterative algorithm of BP neural network to revise the weighting coefficient of BP neural network, make calculation times k=k+1, return to step 3, continue to execute in order, stop when the error reaches the requirement. the

第1步中所述的BP神经网络结构采用结构简单的三层BP神经网络。 The BP neural network structure described in the first step adopts a three-layer BP neural network with a simple structure. the

所述的BP神经网络的输入层节点对应所选的被控系统运行状态量,输出层神经元的积分函数取非负的Sigmoid函数,而隐含层神经元的激发函数取正负对称的Sigmoid函数。 The input layer node of the BP neural network corresponds to the selected controlled system operating state quantity, the integral function of the output layer neuron is a non-negative Sigmoid function, and the activation function of the hidden layer neuron is a positive and negative symmetric Sigmoid function. the

第2步中所述的RBF辨识网络运用CMOS电路来实现;将输入电压信号通过跨导放大系统转变为电流信号,然后通过绝对值电路和均方根电路即可得到径向基作为类Gauss函数产生电路的输入,类Gauss函数产生电路的输出即为RBF神经元的输出。 The RBF identification network described in the second step is implemented using CMOS circuits; the input voltage signal is converted into a current signal through a transconductance amplification system, and then the radial basis can be obtained as a Gauss-like function through an absolute value circuit and a root mean square circuit The input of the generation circuit, the output of the Gauss-like function generation circuit is the output of the RBF neuron. the

第4步中所述的弹性积分控制算法是在变速积分算法基础上提出的,具体内容是: The elastic integral control algorithm described in the fourth step is proposed on the basis of the variable speed integral algorithm, and the specific content is:

u(k)=u(k-1)+ u(k)=u(k-1)+

Kp{[e(k)-e(k-1)]+K1f(|e(k)|)*e(k)+KD[e(k)-2e(k-1)+e(k-2)]} K p {[e(k)-e(k-1)]+K 1 f(|e(k)|)*e(k)+K D [e(k)-2e(k-1)+e (k-2)]}

u(k)和u(k-1)分别为PID第k次和第k-1次运算的输出值;e(k)、e(k-1)和e(k-2)分别为BP神经网络中第k次、第k-1次和第k-2次运算的误差值;KP、KI、KD为PID 控制系统的三个参数; 

Figure BSA00000308731300031
是一个系数,其取值规则为: u(k) and u(k-1) are the output values of the kth and k-1th operations of PID respectively; e(k), e(k-1) and e(k-2) are the BP neural The error values of the kth, k-1th and k-2th operations in the network; K P , K I , and K D are the three parameters of the PID control system;
Figure BSA00000308731300031
is a coefficient, and its value rule is:

当|e(k)|≤ε时, f ( | e ( k ) | ) = e - | e ( k ) | e ; When |e(k)|≤ε, f ( | e ( k ) | ) = e - | e ( k ) | e ;

当|e(k)|>ε时, 

Figure BSA00000308731300033
ε为第4步给出的偏差门限,即当系统偏差超出偏差门限值ε时,引入非线性减指数函数的目的是使积分项即使在偏差较大时仍然起一定的作用,偏差越大,积分作用越弱。 When |e(k)|>ε,
Figure BSA00000308731300033
ε is the deviation threshold given in step 4, that is, when the system deviation exceeds the deviation threshold ε, the purpose of introducing a nonlinear subtractive exponential function is to make the integral term still play a certain role even when the deviation is large, and the larger the deviation , the weaker the integral effect.

第7步中所述的中BP神经网络的迭代算法1是: The iterative algorithm 1 of the middle BP neural network described in the 7th step is:

BP神经网络输出层的权系数学习算法为: The weight coefficient learning algorithm of the output layer of BP neural network is:

ΔΔ ww lili 33 (( kk )) == ηη δδ ll (( 33 )) Oo ii (( 22 )) (( kk )) ++ αΔαΔ ww lili (( 33 )) (( kk -- 11 ))

δδ ii (( 33 )) == ee (( kk )) sgnsgn (( ∂∂ ythe y (( kk )) ∂∂ ΔuΔ u (( kk )) )) ∂∂ ΔuΔ u (( kk )) ∂∂ Oo ll (( 33 )) (( kk )) gg (( netnet (( 33 )) (( kk )) ))

(l=1,2,3)(l=1, 2, 3)

Figure BSA00000308731300036
为第k次运算BP神经网络输出层神经元i的权系数修正量;η为学习速率; 为输出层的局部梯度; 
Figure BSA00000308731300038
为隐层中神经元i的激活值,α是动量项,通常是正数;net(3)(k)输出层网络第k次的输入值。 
Figure BSA00000308731300036
For the kth operation BP neural network output layer neuron i weight coefficient correction; η is the learning rate; is the local gradient of the output layer;
Figure BSA00000308731300038
is the activation value of neuron i in the hidden layer, α is the momentum item, usually a positive number; net (3) (k) the input value of the kth time of the output layer network.

第7步中所述的中BP神经网络的迭代算法2是: The iterative algorithm 2 of the middle BP neural network described in the 7th step is:

隐含层的权系数学习算法为: The weight coefficient learning algorithm of the hidden layer is:

ΔΔ ww ijij (( 22 )) (( kk )) == ηη δδ ii (( 22 )) Oo jj (( 11 )) (( kk )) ++ αΔαΔ ww ijij (( 22 )) (( kk -- 11 ))

δδ ii (( 22 )) == ff ′′ (( netnet ii (( 22 )) (( kk )) )) ΣΣ ll == 11 33 δδ ll (( 33 )) ww lili (( 33 )) (( kk ))

(i=1,2,...Q) (i=1,2,...Q) 

g(□)=g(x)(1-g(x)),f′(□)=(1-f2(x))/2 g(□)=g(x)(1-g(x)), f'(□)=(1-f 2 (x))/2

Figure BSA000003087313000311
为隐层神经元j第k次运算的权系数修正量;η为学习速率; 
Figure BSA000003087313000312
为隐层的局部梯度; 
Figure BSA000003087313000313
为网络输入层中神经元j的激活值,α是动量项,通常是正数; 
Figure BSA000003087313000314
隐层第k次的神经元i的输入值。 
Figure BSA000003087313000311
is the correction value of the weight coefficient of the kth operation of the hidden layer neuron j; η is the learning rate;
Figure BSA000003087313000312
is the local gradient of the hidden layer;
Figure BSA000003087313000313
is the activation value of neuron j in the network input layer, α is a momentum item, usually a positive number;
Figure BSA000003087313000314
The input value of the kth neuron i in the hidden layer.

本发明的工作原理: Working principle of the present invention:

基于BP神经网络的PID控制系统由经典的PID控制系统和BP神经网络组成,其基本思想是利用神经网络的自学习功能和非线性函数的表示能力,遵从一定的最优指标,在线调整PID控制系统的参数,使之适应被控对象参数以及结构的变化和输入参考信号的变化,并能够抵御外来扰动的影响,达到具有良好的鲁棒性的目标。 The PID control system based on BP neural network is composed of the classic PID control system and BP neural network. The basic idea is to use the self-learning function of the neural network and the representation ability of nonlinear functions, and follow certain optimal indicators to adjust the PID control online. The parameters of the system can adapt to the changes of the parameters and structure of the controlled object and the change of the input reference signal, and can resist the influence of external disturbances to achieve the goal of good robustness. the

BP神经网络的初始权值 

Figure BSA000003087313000315
和 
Figure BSA000003087313000316
的选取对控制系统的性能影响很大。由于系统是非线性的,初始值对学习是否达到局部最小、是否能够收敛以及训练时间的长短关系 很大。如果初始权值太大,使得加权之后的输入和n落在了S型激活函数的饱和区,从而导致其导数f(s)非常小,而在计算权值修正公式中,因为δ∞f(n),当f(n)→o时,则有δ→0,这使得Δwij→0,调节过程几乎停顿下来。所以,一般总是希望经过初始加权后的每个神经元的输入值都接近于0,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节。 The initial weight of BP neural network
Figure BSA000003087313000315
and
Figure BSA000003087313000316
The selection of , has a great influence on the performance of the control system. Since the system is nonlinear, the initial value has a great relationship with whether the learning reaches the local minimum, whether it can converge and the length of the training time. If the initial weight is too large, the weighted input and n fall into the saturation region of the S-type activation function, resulting in a very small derivative f(s), and in the calculation of the weight correction formula, because δ∞f( n), when f(n)→o, then there is δ→0, which makes Δw ij →0, and the adjustment process almost comes to a standstill. Therefore, it is generally hoped that the input value of each neuron after the initial weighting is close to 0, so as to ensure that the weight of each neuron can be adjusted where their S-type activation function changes the most.

本发明的优点和积极效果: Advantages and positive effects of the present invention:

本发明将BP神经网络与传统的PID控制结合,构成智能型的神经网络PID控制系统。它不需建立精确的数学模型,能够自动辨识被控过程参数、自动整定控制参数、适应被控过程参数的变化,是解决传统PID控制系统参数整定难、不能实时调整参数和鲁棒性不强的有效措施。 The invention combines BP neural network with traditional PID control to form an intelligent neural network PID control system. It does not need to establish an accurate mathematical model, it can automatically identify the controlled process parameters, automatically adjust the control parameters, and adapt to the changes of the controlled process parameters. effective measures. the

【附图说明】:[Description of drawings]:

图1为基于RBF辨识的弹性积分BP神经网络的PID控制系统结构示意图。 Figure 1 is a schematic diagram of the PID control system based on the elastic integral BP neural network identified by RBF. the

(1)弹性积分PID控制系统:直接对被控对象进行闭环控制,并且参数在线调整方式。 (1) Elastic integral PID control system: direct closed-loop control of the controlled object, and online parameter adjustment. the

(2)神经网络:根据系统运行状态,调节PID控制系统的参数,以期达到某种性能指标的最优化,使输出层神经网络输出状态对应于PID控制系统的三个可调参数。通过神经网络的自学习、加权系数调整、使神经网络输出对应于某种最优控制律的PID控制系统。 (2) Neural network: adjust the parameters of the PID control system according to the operating state of the system in order to achieve the optimization of a certain performance index, so that the output state of the output layer neural network corresponds to the three adjustable parameters of the PID control system. Through the self-learning of the neural network and the adjustment of the weighting coefficient, the output of the neural network corresponds to a PID control system of an optimal control law. the

图2为“基于RBF辨识的弹性积分BP神经网络的PID控制系统”中的基于BP和RBF神经网络的弹性积分PID控制结构。 Fig. 2 is the elastic integral PID control structure based on BP and RBF neural network in "PID control system of elastic integral BP neural network based on RBF identification". the

径向基网络RBF神经网络建立了一个被控对象的辨识模型,用此模型去训练BP网络控制系统。 The radial basis network (RBF) neural network establishes an identification model of the controlled object, and uses this model to train the BP network control system. the

图3为“基于RBF辨识的弹性积分BP神经网络的PID控制系统”中的单个RBF神经网络单个模型。 Fig. 3 is a single model of a single RBF neural network in "PID control system based on elastic integral BP neural network identified by RBF". the

图4为“基于RBF辨识的弹性积分BP神经网络的PID控制系统”中的2*3组合RBF神经网络模型。 Figure 4 is the 2*3 combined RBF neural network model in "PID control system based on elastic integral BP neural network identified by RBF". the

图5为“基于RBF辨识的弹性积分BP神经网络的PID控制系统”中的2*3组合RBF神经网络CMOS实现。 Figure 5 is the CMOS implementation of the 2*3 combined RBF neural network in "PID control system based on elastic integral BP neural network identified by RBF". the

图6为本发明所涉“基于RBF辨识的弹性积分BP神经网络的PID控制装置”中被控系统-电路的系统结构图。ROM27OS作为控制程序的存储器,整个程序为1K信息组(二进位的信息组);二个PIA作为输入输出接口分别通过ADC(模拟数字转换器)的数据给定温度,对温度进行数码显示以及对工作状态进行显示;PTM(programmable timer module)附有128等分,作为控制电热丝输入的可控硅触发脉冲输出,通过晶体管,脉冲变压器触发可控硅;ADC的精度为12比特,满刻度(FFF(H))时,输入为50mv(相当于镍铬-镍铝热电偶1232.4°的热电势,1位数相当于0.3C°)。 Fig. 6 is a system structure diagram of the controlled system-circuit in the "PID control device based on elastic integral BP neural network identified by RBF" of the present invention. ROM27OS is used as the memory of the control program, and the whole program is 1K information group (binary information group); two PIAs are used as input and output interfaces to respectively set the temperature through the data of the ADC (Analog to Digital Converter), digitally display the temperature and The working status is displayed; PTM (programmable timer module) is attached with 128 equal parts, which are used as the SCR trigger pulse output to control the input of the heating wire, and the SCR is triggered by the transistor and the pulse transformer; the accuracy of the ADC is 12 bits, and the full scale ( FFF(H)), the input is 50mv (equivalent to the thermoelectric potential of the nickel-chromium-nickel-aluminum thermocouple 1232.4°, 1 digit is equivalent to 0.3C°). the

图7为本发明所涉“基于RBF辨识的弹性积分BP神经网络的PID控制装置”中运用本方法控制电路的流程。 FIG. 7 is a flow chart of using this method to control the circuit in the "PID control device based on elastic integral BP neural network identified by RBF" of the present invention. the

【具体实施方式】:【Detailed ways】:

实施例1: Example 1:

一种基于RBF辨识的弹性积分BP神经网络的PID控制方法(见图1,图2),该方法包括以下步骤: A kind of PID control method (see Fig. 1, Fig. 2) of the elastic integral BP neural network based on RBF identification, this method comprises the following steps:

(1)确定BP网络的结构,并给出各层加权系数的初值 

Figure BSA00000308731300051
和 
Figure BSA00000308731300052
选定学习速率η和惯性系数α,k=1; (1) Determine the structure of the BP network, and give the initial value of the weighting coefficient of each layer
Figure BSA00000308731300051
and
Figure BSA00000308731300052
Select learning rate η and inertia coefficient α, k=1;

(2)确定RBF辨识网络的输入节点及数目m、隐层节点数目s,并给出隐层节点的中心矢量Cj(0)、基宽带参数的初值bj(0)、权系数初值wj(0)、学习速率ρ、惯性系数γ、k=1; (2) Determine the input nodes and the number m of the RBF identification network, the number s of hidden layer nodes, and give the center vector C j (0) of the hidden layer nodes, the initial value b j (0) of the base broadband parameter, and the initial weight coefficient Value w j (0), learning rate ρ, inertia coefficient γ, k=1;

(3)采样得到y(k)、r(k),计算e(k); (3) Sampling to get y(k), r(k), and calculate e(k);

(4)正向计算BP网络各层神经元的输入、输出,BP输出层的输出即为PID控制的三个可调参数;给出偏差门限值ε,根据弹性积分控制算法计算PID控制系统的输出u(k),并与上一次的u(k-1)合并成Δu(k)送入控制对象及RBF辨识网络,产生控制对象的输出y(k); (4) Forward calculation of the input and output of neurons in each layer of the BP network, the output of the BP output layer is the three adjustable parameters of the PID control; the deviation threshold ε is given, and the PID control system is calculated according to the elastic integral control algorithm The output u(k), and combined with the last u(k-1) into Δu(k) is sent to the control object and RBF identification network to generate the output y(k) of the control object;

(5)根据RBF的正向计算公式计算RBF辨识网络各层神经元的输入输出,辨识网络的输出为ym(k); (5) Calculate the input and output of neurons in each layer of the RBF identification network according to the forward calculation formula of RBF, and the output of the identification network is y m (k);

(6)用RBF的迭代算法修正辨识网络输出权系数、隐层节点中心矢量、隐层节点基宽参数; (6) Use the RBF iterative algorithm to modify the identification network output weight coefficient, hidden layer node center vector, and hidden layer node base width parameters;

(7)用BP网络的迭代算法修正BP网络权系数,令k=k+1,返回步骤(3),继续按顺序执行。 (7) Use the iterative algorithm of the BP network to correct the weight coefficient of the BP network, set k=k+1, return to step (3), and continue to execute in sequence. the

上述所说步骤(1)中BP的网络结构采用结构简单的三层神经网络,需要输入层节点数M和隐含层节点数Q。 The network structure of BP in the above-mentioned step (1) adopts a three-layer neural network with a simple structure, which requires the number M of input layer nodes and the number Q of hidden layer nodes. the

上述所说步骤(1)输入节点对应所选的系统运行状态量,输出节点分别对应PID控制系统的三个可调参数,输出层神经元的积分函数取非负的Sigmoid函数,而隐含层神经元的激发函数可取正负对称的Sigmoid函数。 The above-mentioned step (1) input node corresponds to the selected system operating state quantity, and the output node corresponds to the three adjustable parameters of the PID control system, the integral function of the output layer neurons is a non-negative Sigmoid function, and the hidden layer The activation function of neurons can be positive and negative symmetrical Sigmoid function. the

上述所说步骤(2)中RBF辨识网络可以运用CMOS电路来实现。将输入电压信号通过跨导放大系统转变为电流信号,然后通过绝对值电路和均方根电路即可得到径向基作为类Gauss函数产生电路的输入,类Gauss函数产生电路的输出即为RBF神经元的输出。 The RBF identification network in the above-mentioned step (2) can be realized by using a CMOS circuit. The input voltage signal is converted into a current signal through the transconductance amplification system, and then the radial basis can be obtained through the absolute value circuit and the root mean square circuit as the input of the Gauss-like function generation circuit, and the output of the Gauss-like function generation circuit is the RBF nerve element output. the

上述所说步骤(4)中弹性积分控制算法指的是: The elastic integral control algorithm in the above-mentioned step (4) refers to:

u(k)=u(k-1)+ u(k)=u(k-1)+

Kp{[e(k)-e(k-1)]+K1f(|e(k)|)*e(k)+KD[e(k)-2e(k-1)+e(k-2)]} K p {[e(k)-e(k-1)]+K 1 f(|e(k)|)*e(k)+K D [e(k)-2e(k-1)+e (k-2)]}

系数f(|e(k)|)的取值规则为: The value rule of coefficient f(|e(k)|) is:

当|e(k)|≤ε时, f ( | e ( k ) | ) = e - | e ( k ) | e ; When |e(k)|≤ε, f ( | e ( k ) | ) = e - | e ( k ) | e ;

当|e(k)|>ε时, 

Figure BSA00000308731300062
ε为预定的偏差门限。 When |e(k)|>ε,
Figure BSA00000308731300062
ε is a predetermined deviation threshold.

上述所说的步骤(4)中弹性积分是在变速积分算法基础上提出的,当系统偏差超出门限值ε时,引入一非线性的减指数函数,目的是使积分项即使在偏差较大时仍然起一定的作用,偏差越大,积分作用越弱。 The elastic integral in the above-mentioned step (4) is proposed on the basis of the variable speed integral algorithm. When the system deviation exceeds the threshold value ε, a non-linear subtractive exponential function is introduced to make the integral term even when the deviation is large. It still plays a certain role when the deviation is larger, and the integral effect is weaker. the

上述所说的步骤(7)中BP网络的迭代算法: The iterative algorithm of the BP network in the above-mentioned step (7):

BP神经网络输出层的权系数学习算法为: The weight coefficient learning algorithm of the output layer of BP neural network is:

ΔΔ ww lili 33 (( kk )) == ηη δδ ll (( 33 )) Oo ii (( 22 )) (( kk )) ++ αΔαΔ ww lili (( 33 )) (( kk -- 11 ))

δδ ii (( 33 )) == ee (( kk )) sgnsgn (( ∂∂ ythe y (( kk )) ∂∂ ΔuΔu (( kk )) )) ∂∂ ΔuΔu (( kk )) ∂∂ Oo ll (( 33 )) (( kk )) gg (( netnet (( 33 )) (( kk )) ))

(l=1,2,3)(l=1, 2, 3)

隐含层的权系数学习算法为: The weight coefficient learning algorithm of the hidden layer is:

ΔΔ ww ijij (( 22 )) (( kk )) == ηη δδ ii (( 22 )) Oo jj (( 11 )) (( kk )) ++ αΔαΔ ww ijij (( 22 )) (( kk -- 11 ))

δδ ii (( 22 )) == ff ′′ (( netnet ii (( 22 )) (( kk )) )) ΣΣ ll == 11 33 δδ ll (( 33 )) ww lili (( 33 )) (( kk ))

(i=1,2,...Q) (i=1,2,...Q) 

g(□)=g(x)(1-g(x)),f′(□)=(1-f2(x))/2 。g(□)=g(x)(1-g(x)), f′(□)=(1-f 2 (x))/2.

Claims (6)

1. PID control method based on the elasticity integration BP neural network of RBF identification is characterized in that this method may further comprise the steps:
1st, the input layer of determining three layers of BP neural network is counted M and hidden layer node is counted Q, and provides the initial value of each layer weighting coefficient
Figure FSA00000308731200011
With
Figure FSA00000308731200012
Selected learning rate η and inertial coefficient α, calculation times k=1 at this moment;
2nd, determine input number of nodes m, the number of hidden nodes s of RBF identification network, and provide the center vector C of hidden node j(0), the initial value b of sound stage width band parameter j(0), weight coefficient initial value w j(0), learning rate ρ, inertial coefficient γ, calculation times k=1, this network is used to set up the identification model of controlled device, so that dynamic observe the sensitivity of the output of controlling object to the control input, offers the BP neural network;
3rd, sampling obtains input value r (k), the output valve y (k) of three layers of BP neural network, calculates this moment error e (k);
4th, forward calculates the neuronic input of BP each layer of neural network, output, and three output valves of BP neural network output layer are three adjustable parameter K of PID control system P, K I, K DGive the threshold value ε that deviates,, and subtract each other with the u (k-1) of last time and to obtain Δ u (k) and send into controlling object and RBF identification network, produce the output y (k) of controlled device according to the output u (k) of elasticity integration control algorithm computation PID;
5th, calculate the neuronic input and output of RBF each layer of identification network according to the forward computing formula of RBF identification network, the RBF identification network is output as Vector Groups y m(k), m is the output valve number;
6th, export weight coefficient, the center vector of hidden node and the sound stage width parameter of hidden node with the iterative algorithm correction identification network of RBF identification network;
7th, use the weighting coefficient of the iterative algorithm correction BP neural network of BP neural network, make calculation times k=k+1, returned for the 3rd step, continue to carry out in order, stop when error reaches requirement.
2. PID control system according to claim 1, the corresponding selected controlled system running status amount of input layer that it is characterized in that the BP neural network described in the 1st step, the neuronic integral function of output layer is got non-negative Sigmoid function, and the excitation function of hidden layer neuron is got the Sigmoid function of positive and negative symmetry.
3. PID control system according to claim 1 is characterized in that the RBF identification network described in the 2nd step uses cmos circuit to realize; Change input voltage signal into current signal by the mutual conductance amplification system, can obtain radially basic input as class Gauss function generating circuit by absolute value circuit and root mean square circuit then, the output of class Gauss function generating circuit is the neuronic output of RBF.
4. PID control system according to claim 1 is characterized in that the elasticity integration control algorithm described in the 4th step proposes on speed change integral algorithm basis, particular content is:
u(k)=u(k-1)+
K p{[e(k)-e(k-1)]+K 1f(|e(k)|)*e(k)+K D[e(k)-2e(k-1)+e(k-2)]}
U (k) and u (k-1) are respectively the output valve of the k time and the k-1 time computing of PID; E (k), e (k-1) and e (k-2) are respectively the error amount of the k time, the k-1 time and the k-2 time computing in the BP neural network; K P, K I, K DThree parameters for the PID control system; F (| e (k) |) be a coefficient, its value rule is:
When | e (k) | during≤ε, f ( | e ( k ) | ) = e - | e ( k ) | e ;
When | e (k) | during>ε,
Figure FSA00000308731200022
ε is the 4th deviation thresholding that provides of step, promptly when system deviation exceeds deviation threshold value ε, is that integral is still play a part greatly the time in deviation is certain even introduce the non-linear purpose that subtracts exponential function, and deviation is big more, and integral action is weak more.
5. PID control system according to claim 1 is characterized in that the iterative algorithm 1 of the BP neural network described in the 7th step is:
The weight coefficient learning algorithm of BP neural network output layer is:
Δ w li 3 ( k ) = η δ l ( 3 ) O i ( 2 ) ( k ) + αΔ w li ( 3 ) ( k - 1 )
δ i ( 3 ) = e ( k ) sgn ( ∂ y ( k ) ∂ Δu ( k ) ) ∂ Δu ( k ) ∂ O l ( 3 ) ( k ) g ( net ( 3 ) ( k ) )
(l=1,2,3)
Figure FSA00000308731200025
Weight coefficient correction for the k time computing of BP neural network output layer neuron i; η is a learning rate;
Figure FSA00000308731200026
Partial gradient for output layer;
Figure FSA00000308731200027
Be the activation value of neuron i in the hidden layer, α is a momentum term, normally positive number; Net (3)(k) input value of output layer the k time.
6. PID control system according to claim 1 is characterized in that the iterative algorithm 2 of the BP neural network described in the 7th step is:
The weight coefficient learning algorithm of hidden layer is:
Δ w ij ( 2 ) ( k ) = η δ i ( 2 ) O j ( 1 ) ( k ) + αΔ w ij ( 2 ) ( k - 1 )
δ i ( 2 ) = f ′ ( net i ( 2 ) ( k ) ) Σ l = 1 3 δ l ( 3 ) w li ( 3 ) ( k )
(i=1,2,...Q)
g(□)=g(x)(1-g(x)),f′(□)=(1-f 2(x))/2
Figure FSA000003087312000210
Weight coefficient correction for the k time computing of hidden neuron j; η is a learning rate;
Figure FSA000003087312000211
Partial gradient for hidden layer;
Figure FSA000003087312000212
Be the activation value of neuron j in the network input layer, α is a momentum term, normally positive number;
Figure FSA000003087312000213
The input value of the neuron i that hidden layer is the k time.
CN2010105112240A 2010-10-19 2010-10-19 PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification Pending CN101968629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105112240A CN101968629A (en) 2010-10-19 2010-10-19 PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105112240A CN101968629A (en) 2010-10-19 2010-10-19 PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification

Publications (1)

Publication Number Publication Date
CN101968629A true CN101968629A (en) 2011-02-09

Family

ID=43547797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105112240A Pending CN101968629A (en) 2010-10-19 2010-10-19 PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification

Country Status (1)

Country Link
CN (1) CN101968629A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375936A (en) * 2011-10-10 2012-03-14 上海师范大学 Real-time measuring instrument for ethane concentration on tower top of ethylene rectification tower
CN103853894A (en) * 2014-03-26 2014-06-11 上海航天电子通讯设备研究所 RBF (radial basis function) algorithm-based bait bullet delay casting time precision calculating method
CN104102782A (en) * 2014-07-18 2014-10-15 上海电力学院 Method for controlling temperatures of reactors of pressurized water reactor nuclear power stations by aid of RBF (radial basis function) neural networks
CN104834216A (en) * 2015-04-22 2015-08-12 上海晟矽微电子股份有限公司 Binomial-based wireless sensor network trust management method
CN104827928A (en) * 2014-09-09 2015-08-12 北汽福田汽车股份有限公司 Control system of electric automobile and electric automobile with control system
CN105911865A (en) * 2016-06-08 2016-08-31 中国人民解放军后勤工程学院 Control method of PID controller
CN106054598A (en) * 2016-05-05 2016-10-26 安徽农业大学 Robot adaptive steering single neuron PID control method
CN106096286A (en) * 2016-06-15 2016-11-09 北京千安哲信息技术有限公司 Clinical path formulating method and device
CN106383806A (en) * 2016-10-09 2017-02-08 河北汉光重工有限责任公司 Efficient closed-loop iterative algorithm implementation system
CN107305347A (en) * 2016-04-22 2017-10-31 北京澳尔金石油技术开发有限公司 A kind of gas turbine cooling water temperature control method and system
CN108008634A (en) * 2017-12-12 2018-05-08 浙江大学 Inclined methods of self-tuning of the form Non-Model Controller based on local derviation information of MISO
CN108107727A (en) * 2017-12-12 2018-06-01 浙江大学 Tight methods of self-tuning of the form Non-Model Controller based on local derviation information of MISO
CN108107715A (en) * 2017-12-12 2018-06-01 浙江大学 Methods of self-tuning of the MISO full format Non-Model Controller based on local derviation information
CN108181808A (en) * 2017-12-12 2018-06-19 浙江大学 Inclined methods of self-tuning of the form Non-Model Controller based on systematic error of MISO
CN108181809A (en) * 2017-12-12 2018-06-19 浙江大学 Tight methods of self-tuning of the form Non-Model Controller based on systematic error of MISO
CN108664673A (en) * 2017-03-30 2018-10-16 中国铁道科学研究院 A kind of wheel rail force load identification feature-based data model method for building up and device
CN108768904A (en) * 2018-04-19 2018-11-06 南京邮电大学 Signal blind checking method based on the width facies pattern discrete hopfield neural network with disturbance
CN108845599A (en) * 2018-09-28 2018-11-20 山东建筑大学 A kind of control method automatically adjusting timber delayed release device water heating system
CN110376879A (en) * 2019-08-16 2019-10-25 哈尔滨工业大学(深圳) A kind of PID type iterative learning control method neural network based
CN110426959A (en) * 2019-08-09 2019-11-08 太原科技大学 A crawler robot control system
CN111155056A (en) * 2020-01-18 2020-05-15 石家庄铁道大学 Method for measuring and controlling film thickness and evaporation rate in vacuum coating process
CN111273212A (en) * 2020-02-24 2020-06-12 国网湖南省电力有限公司 Data-driven electric quantity sensor error online evaluation closed-loop improvement method, system and medium
CN111290263A (en) * 2020-03-23 2020-06-16 东南大学 Improved PID (proportion integration differentiation) optimization control algorithm based on RBFNN (radial basis function network) and BAS (basic service set)
CN111400870A (en) * 2020-02-25 2020-07-10 唐山钢铁集团有限责任公司 Heavy coil production line tension group model calculation method based on BP neural network
CN111413981A (en) * 2020-04-07 2020-07-14 上海海事大学 A kind of ship autopilot compound neural network PID control method
CN111459014A (en) * 2020-03-25 2020-07-28 唐山钢铁集团有限责任公司 Neural network PID-based crown block swing angle model control method
CN111539508A (en) * 2020-04-01 2020-08-14 国家电网公司华东分部 Generator excitation system parameter identification algorithm based on improved wolf algorithm
CN111856922A (en) * 2020-08-04 2020-10-30 上海海事大学 A control method of PID wave compensation platform based on cyclic neural network
CN114326375A (en) * 2021-12-22 2022-04-12 江苏精瓷智能传感技术研究院有限公司 A nitrogen oxygen sensor pump unit adaptive control system
CN114687870A (en) * 2022-03-03 2022-07-01 沈阳航天新光集团有限公司 Vehicle-mounted power take-off generator set control system and control method
CN114779624A (en) * 2022-05-17 2022-07-22 西安理工大学 BP neural network PID gravure printing machine rewinding correction control system and control method
CN115390434A (en) * 2022-07-15 2022-11-25 哈尔滨工业大学 An intelligent control method for the sail of a composite aircraft in a downwind environment

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375936A (en) * 2011-10-10 2012-03-14 上海师范大学 Real-time measuring instrument for ethane concentration on tower top of ethylene rectification tower
CN103853894B (en) * 2014-03-26 2017-04-12 上海航天电子通讯设备研究所 RBF (radial basis function) algorithm-based bait bullet delay casting time precision calculating method
CN103853894A (en) * 2014-03-26 2014-06-11 上海航天电子通讯设备研究所 RBF (radial basis function) algorithm-based bait bullet delay casting time precision calculating method
CN104102782A (en) * 2014-07-18 2014-10-15 上海电力学院 Method for controlling temperatures of reactors of pressurized water reactor nuclear power stations by aid of RBF (radial basis function) neural networks
CN104102782B (en) * 2014-07-18 2017-05-24 上海电力学院 Method for controlling temperatures of reactors of pressurized water reactor nuclear power stations by aid of RBF (radial basis function) neural networks
CN104827928A (en) * 2014-09-09 2015-08-12 北汽福田汽车股份有限公司 Control system of electric automobile and electric automobile with control system
CN104827928B (en) * 2014-09-09 2017-07-11 北汽福田汽车股份有限公司 The control system of electric automobile and the electric automobile with it
CN104834216A (en) * 2015-04-22 2015-08-12 上海晟矽微电子股份有限公司 Binomial-based wireless sensor network trust management method
CN104834216B (en) * 2015-04-22 2018-05-08 上海晟矽微电子股份有限公司 A kind of circuit and method that PI controller parameters are adjusted based on BP neural network
CN107305347A (en) * 2016-04-22 2017-10-31 北京澳尔金石油技术开发有限公司 A kind of gas turbine cooling water temperature control method and system
CN106054598A (en) * 2016-05-05 2016-10-26 安徽农业大学 Robot adaptive steering single neuron PID control method
CN105911865A (en) * 2016-06-08 2016-08-31 中国人民解放军后勤工程学院 Control method of PID controller
CN106096286A (en) * 2016-06-15 2016-11-09 北京千安哲信息技术有限公司 Clinical path formulating method and device
CN106383806A (en) * 2016-10-09 2017-02-08 河北汉光重工有限责任公司 Efficient closed-loop iterative algorithm implementation system
CN106383806B (en) * 2016-10-09 2019-06-04 河北汉光重工有限责任公司 A kind of iterative realization system for solving laser decoding algorithm
CN108664673A (en) * 2017-03-30 2018-10-16 中国铁道科学研究院 A kind of wheel rail force load identification feature-based data model method for building up and device
CN108008634A (en) * 2017-12-12 2018-05-08 浙江大学 Inclined methods of self-tuning of the form Non-Model Controller based on local derviation information of MISO
CN108181808A (en) * 2017-12-12 2018-06-19 浙江大学 Inclined methods of self-tuning of the form Non-Model Controller based on systematic error of MISO
CN108181809A (en) * 2017-12-12 2018-06-19 浙江大学 Tight methods of self-tuning of the form Non-Model Controller based on systematic error of MISO
CN108107715A (en) * 2017-12-12 2018-06-01 浙江大学 Methods of self-tuning of the MISO full format Non-Model Controller based on local derviation information
CN108107727A (en) * 2017-12-12 2018-06-01 浙江大学 Tight methods of self-tuning of the form Non-Model Controller based on local derviation information of MISO
CN108181808B (en) * 2017-12-12 2020-06-09 浙江大学 System error-based parameter self-tuning method for MISO partial-format model-free controller
CN108107727B (en) * 2017-12-12 2020-06-09 浙江大学 Parameter self-tuning method of MISO (multiple input single output) compact-format model-free controller based on partial derivative information
CN108181809B (en) * 2017-12-12 2020-06-05 浙江大学 Parameter self-tuning method based on systematic error for MISO compact model-free controller
CN108107715B (en) * 2017-12-12 2020-06-09 浙江大学 Parameter self-tuning method based on partial derivative information for MISO full-format model-free controller
CN108008634B (en) * 2017-12-12 2020-06-09 浙江大学 Parameter self-tuning method of MISO partial-format model-free controller based on partial derivative information
CN108768904A (en) * 2018-04-19 2018-11-06 南京邮电大学 Signal blind checking method based on the width facies pattern discrete hopfield neural network with disturbance
CN108768904B (en) * 2018-04-19 2021-09-28 南京邮电大学 Signal blind detection method based on amplitude-phase discrete Hopfield neural network with disturbance
CN108845599A (en) * 2018-09-28 2018-11-20 山东建筑大学 A kind of control method automatically adjusting timber delayed release device water heating system
CN110426959A (en) * 2019-08-09 2019-11-08 太原科技大学 A crawler robot control system
CN110426959B (en) * 2019-08-09 2022-08-26 太原科技大学 Crawler robot control system
CN110376879A (en) * 2019-08-16 2019-10-25 哈尔滨工业大学(深圳) A kind of PID type iterative learning control method neural network based
CN111155056A (en) * 2020-01-18 2020-05-15 石家庄铁道大学 Method for measuring and controlling film thickness and evaporation rate in vacuum coating process
CN111273212A (en) * 2020-02-24 2020-06-12 国网湖南省电力有限公司 Data-driven electric quantity sensor error online evaluation closed-loop improvement method, system and medium
CN111273212B (en) * 2020-02-24 2022-03-11 国网湖南省电力有限公司 Data-driven electric quantity sensor error online evaluation closed-loop improvement method, system and medium
CN111400870A (en) * 2020-02-25 2020-07-10 唐山钢铁集团有限责任公司 Heavy coil production line tension group model calculation method based on BP neural network
CN111290263A (en) * 2020-03-23 2020-06-16 东南大学 Improved PID (proportion integration differentiation) optimization control algorithm based on RBFNN (radial basis function network) and BAS (basic service set)
CN111290263B (en) * 2020-03-23 2022-10-11 东南大学 An Improved PID Optimal Control Algorithm Based on RBFNN and BAS
CN111459014A (en) * 2020-03-25 2020-07-28 唐山钢铁集团有限责任公司 Neural network PID-based crown block swing angle model control method
CN111539508A (en) * 2020-04-01 2020-08-14 国家电网公司华东分部 Generator excitation system parameter identification algorithm based on improved wolf algorithm
CN111539508B (en) * 2020-04-01 2023-09-01 国家电网公司华东分部 Generator excitation system parameter identification algorithm based on improved gray wolf algorithm
CN111413981A (en) * 2020-04-07 2020-07-14 上海海事大学 A kind of ship autopilot compound neural network PID control method
CN111413981B (en) * 2020-04-07 2023-02-21 上海海事大学 A composite neural network PID control method for ship autopilot
CN111856922A (en) * 2020-08-04 2020-10-30 上海海事大学 A control method of PID wave compensation platform based on cyclic neural network
CN114326375A (en) * 2021-12-22 2022-04-12 江苏精瓷智能传感技术研究院有限公司 A nitrogen oxygen sensor pump unit adaptive control system
CN114687870A (en) * 2022-03-03 2022-07-01 沈阳航天新光集团有限公司 Vehicle-mounted power take-off generator set control system and control method
CN114779624A (en) * 2022-05-17 2022-07-22 西安理工大学 BP neural network PID gravure printing machine rewinding correction control system and control method
CN115390434A (en) * 2022-07-15 2022-11-25 哈尔滨工业大学 An intelligent control method for the sail of a composite aircraft in a downwind environment

Similar Documents

Publication Publication Date Title
CN101968629A (en) PID (Proportional Integral Derivative) control method for elastic integral BP neural network based on RBF (Radial Basis Function) identification
Andersson et al. Deep convolutional networks in system identification
CN108621159A (en) A kind of Dynamic Modeling in Robotics method based on deep learning
CN108764540A (en) Water supply network pressure prediction method based on parallel LSTM series connection DNN
CN105612492A (en) Method and apparatus for producing programmable probability distribution function of pseudo-random numbers
Xie et al. Relaxed fuzzy observer design of discrete-time nonlinear systems via two effective technical measures
CN109155001B (en) Signal processing method and device based on impulse neural network
CN107991877A (en) A kind of Dynamic Model Identification method and system based on Recognition with Recurrent Neural Network
CN105512832A (en) Urban water demand combined predication method based on time-varying weight minimum variance
CN113486303A (en) Long-time sequence prediction method based on modification model integration
CN110472280A (en) A kind of power amplifier behavior modeling method based on generation confrontation neural network
Soto et al. A new approach for time series prediction using ensembles of ANFIS models with interval type-2 and type-1 fuzzy integrators
CN106779139A (en) Short-term wind speed forecasting method based on wavelet decomposition and second order grey neural network
He et al. Similar day selecting based neural network model and its application in short-term load forecasting
CN203909497U (en) Single neuron PID controller based on memristors
CN103209417B (en) Based on Forecasting Methodology and the device of the spectrum occupancy state of neural net
Abiyev Fuzzy wavelet neural network for prediction of electricity consumption
Pan et al. Online sequential extreme learning machine based multilayer perception with output self feedback for time series prediction
Maeda et al. Hardware implementation of a pulse density neural network using simultaneous perturbation learning rule
Liang et al. Balance control of two-wheeled robot based on reinforcement learning
Rospawan et al. Output recurrent fuzzy neural LSTM-BLS controller for nonlinear digital time-delay dynamic systems
CN104537416A (en) Fault diagnosis method based on HBF neural network observer
Soto et al. Time series prediction using ensembles of neuro-fuzzy models with interval type-2 and type-1 fuzzy integrators
Li et al. Learning a skill-sequence-dependent policy for long-horizon manipulation tasks
CN114509948A (en) Method for constructing state constraint quantization controller of high-order multi-agent system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110209