CN101968341A - Industrial robot zero-position self-calibration method and device - Google Patents

Industrial robot zero-position self-calibration method and device Download PDF

Info

Publication number
CN101968341A
CN101968341A CN 201010267775 CN201010267775A CN101968341A CN 101968341 A CN101968341 A CN 101968341A CN 201010267775 CN201010267775 CN 201010267775 CN 201010267775 A CN201010267775 A CN 201010267775A CN 101968341 A CN101968341 A CN 101968341A
Authority
CN
China
Prior art keywords
robot
position
psd
laser
industrial
Prior art date
Application number
CN 201010267775
Other languages
Chinese (zh)
Inventor
刘永
席宁
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Priority to CN 201010267775 priority Critical patent/CN101968341A/en
Publication of CN101968341A publication Critical patent/CN101968341A/en

Links

Abstract

The invention discloses a novel industrial robot zero-position self-calibration method and a novel industrial robot zero-position self-calibration device. In the method, a PSD device is optionally arranged in a robot-reachable working space first, and then a central point projected on the PSD is automatically positioned by depending on a beam of laser passing through the tail end of the robot so as to realize a calibration task of the robot. Accurate positioning and control of the robot is realized through high-precision PSD feedback; the position of the PSD central point is calculated by a wire-based method; and the zero error of the robot is obtained through an iterative algorithm by establishing a target function based on point constraint. The method does not need the position of the PSD central point or actual physical contact measurement, and has the obvious advantages of low cost, automation, portability, high efficiency, high precision and the like.

Description

一种工业机器人零位自标定方法及装置 An industrial robot zero self-calibration method and apparatus

技术领域 FIELD

[0001] 本发明属于工业机器人的标定技术,特别是一种6自由度工业机器人关节零位的自标定方法及其装置。 [0001] The present invention belongs to the industrial robot calibration techniques, in particular a 6 DOF industrial robot joints zero self-calibration method and apparatus.

背景技术 Background technique

[0002] 随着工业机器人应用范围的扩大和复杂任务的需要,工业机器人的定位精度越来越重要。 [0002] With the need to expand the scope of application of industrial robots and complex tasks, positioning accuracy of industrial robots increasingly important. 目前工业机器人具有高的重复精度(O. Imm或更高),然而(绝对)定位精度却很低(达Icm或更差),定位精度问题已经严重制约了工业机器人的应用能力和应用范围。 Currently industrial robots with high repeatability (O. Imm or higher), but (absolute) positioning accuracy is very low (up to Icm or worse), positioning accuracy problems have severely restricted the ability of the application and scope of application of industrial robots. 尽管导致机器人定位精度不高的因素有很多,如齿轮误差、热膨胀以及机器人杆件的机械形变,但最主要的因素来自于机器人运动学模型的参数误差。 Although cause the robot positioning accuracy is not high, there are many factors, such as the gear error, thermal expansion, and mechanical deformation of the robot rod member, but the most important factor from the parameter error kinematic model of the robot. 机器人标定技术是消除这些参数误差进而提高机器人定位精度的最有效方法,因此,成为机器人研究的热点问题之一。 Robot Calibration parameters eliminate these errors is the most effective way and to improve the positioning accuracy of the robot, thus the robot has become a hot topic of research.

[0003] 所谓机器人的零位问题就是机器人的运动学模型中的关节角参考点与实际机器人关节角度反馈码盘的参考点的偏差。 Zero Problems [0003] is called the robot kinematic model of the robot joint angle of the robot reference point and the actual joint angle feedback deviation of the reference point of the code wheel. 机器人零位的微小变化由于杆件长度等的放大作用导致机器人末端的位置产生很大偏差。 Small changes in zero position of the robot, the amplifying of the lever causes the length of the end position of the robot have a great variation. 一般认为导致工业机器人定位精度偏低的问题90%来自于机器人的零点位置问题(WSNewman and DW Osborn, "A new method for kinematic parameter calibration via laser line,,,in Proc. IEEE Int. Conf. Robot. Autom.,1993, vol. 2,pp. 160-165)。机器人零点标定问题还没有很好的解决办法,目前工厂较多使用重锤的方法,但存在设备携带困难,操作复杂且受操作人员影响等问题。 It is generally believed to result in low industrial robot positioning accuracy problem in 90% of the zero position of the robot in question (WSNewman and DW Osborn, "calibration via A new method for kinematic parameter laser line ,,, in Proc. IEEE Int. Conf. Robot. Autom., 1993, vol. 2, pp. 160-165). robot zero calibration problems have not been a good solution, the factory use more weight method, but there are difficulties in carrying equipment, complicated operation by the operator and and other issues affecting.

[0004] 二十余年来,在机器人标定领域国内外一些学者已经取得了令人瞩目的研究成果。 [0004] more than twenty years, robot calibration in the field of domestic and foreign scholars have made a number of remarkable research achievements. 归纳起来主要有两类机器人标定方法,其中一类方法需要高精度的测量设备精确测量机器人末端的位置或姿态。 It can be summarized in two types of robot calibration method, in which a class of methods requires accurate measurement device accurately measuring the position or posture of the robot end. 比如经典的三坐标测量方法(Coordinate Measurement Machines) (Μ. R. Driels, LW Swayze, and LS Potter, "Full-pose calibration of a robot manipulator using a coordinate measuring machine, "Int.J.Adv. Manuf. Techno.,vol.8, no. 1,pp. 34-41,1993)以及角度剖分型激光跟踪测试和球坐标型激光跟踪测试等方法(M. Vincze, JP Prenninger, and H. Gander, "A laser tracking system to measure position and orientation of robot end effectors under motion," Int. J. Robot. Res.,vol. 13,pp. 305-314,1994),光学经纬仪测试系统,基于双摄像机的测试系统(B. Preising, TC Hsia. Robot Performance Measurement and Calibration Using a 3D Computer Vision System. Proceeding of the 1991 IEEE International Conference on Robotics and Automation Sacramen to California. 1991 :2079_2084)。 Classical methods such as CMM (Coordinate Measurement Machines) (Μ. R. Driels, LW Swayze, and LS Potter, "Full-pose calibration of a robot manipulator using a coordinate measuring machine," Int.J.Adv. Manuf. techno., vol.8, no. 1, pp. 34-41,1993), and the angle of the split laser tracking test and laser tracking spherical coordinate testing method (M. Vincze, JP Prenninger, and H. Gander, " a laser tracking system to measure position and orientation of robot end effectors under motion, "Int. J. Robot. Res., vol. 13, pp. 305-314,1994), optical theodolite test system, the test system based on the double camera (. B. Preising, TC Hsia Robot Performance Measurement and Calibration Using a 3D Computer Vision System Proceeding of the 1991 IEEE International Conference on Robotics and Automation Sacramen to California 1991:.. 2079_2084). 但这些方法三坐标测量机和激光跟踪测试仪设备非常昂贵,安装调试及操作比较复杂,主要适合于机器人制造企业实验室场合应用,操作过程依赖于操作人员的水平且非常浪费时间。 However, these methods CMM and laser tracking tester equipment is very expensive, installation, commissioning and operation is more complicated, mainly for robot manufacturers laboratory occasions, the operation depends on the level of the operator and is a waste of time. 基于立体摄像机的视觉方法不仅存在双目摄像机本身标定的问题,而且视觉方法由于视场和分辨力的矛盾很难获得比较高的测量精度。 Visual stereo camera method is not only a problem in itself binocular camera calibration, and visual method because the field of view and resolution of conflicts is difficult to obtain high measurement accuracy based.

[0005] 另一类方法是在机器人末端施加一些约束从而形成运动学闭合链。 [0005] Another method is to apply some constraints on the robot end so as to form a closed kinematic chain. Zhuang和Ikits等对机器人末端施加多个平面或者一个平面约束(H. Zhuang,SH Motaghedi,andZ. S. Roth, "Robot calibration with planar constraints,,,in Proc. IEEE Int. Conf. Robot. Autom.,Detroit, MI, 1999,pp. 805-810.),这些手工操作方法受限于准确定位和效率不高的问题。Newman 等(WS Newman and DW Osborn, "A new method for kinematic parameter calibration via laser line, "in Proc. IEEE Int. Conf. Robot. Autom. ,1993, vol. 2,pp. 160-165)提出一种基于激光线跟踪的方法。这种方法的特点是约束机器人末端的某点沿着一束静止的任意激光线移动,但没能给出跟踪激光线的可行的、精确的、自动化的方法。适合机器人工作现场、便于携带及低成本机器人零位标定方法及装备已经成为机器人应用企业迫切需要解决的课题。 Zhuang and applying a plurality of plane or the like Ikits a plane constraint (H. Zhuang, SH Motaghedi, andZ. S. Roth end of the robot, "Robot calibration with planar constraints ,,, in Proc. IEEE Int. Conf. Robot. Autom. , Detroit, MI, 1999, pp. 805-810.), manual operation of these methods is limited by the accurate positioning and efficiency is not high .Newman like (WS Newman and DW Osborn, "a new method for kinematic parameter calibration via laser line, "in Proc. IEEE Int. Conf. robot. Autom., 1993, vol. 2, pp. 160-165) proposes a method based on laser line tracing. characteristic of this method is a point of constraint robot end to move in any bunch of static laser line, but failed to give practical, accurate, automated way to track the laser line suitable for robot work site, portable and low-cost robot zero calibration methods and equipment have become robots enterprise application urgent need to address the issue.

发明内容 SUMMARY

[0006] 本发明的目的在于提出一种基于位置敏感器件(PSD)和激光的虚拟点约束机器人自标定方法及其装置,以解决现有方法设备昂贵、安装操作复杂或定位精度低等瓶颈问题。 [0006] The object of the present invention is to provide a position sensitive device (PSD) based on the laser beam and the virtual point constraint and self-calibration of the robot apparatus, a method to solve the conventional equipment is expensive, complicated installation operation or low positioning accuracy bottlenecks .

[0007] 实现本发明目的的技术解决方案为:一种工业机器人零位自标定方法,步骤如下: [0007] The purpose of the present invention is a technical solution: an industrial robot zero self-calibration method, the following steps:

[0008] a.建立空间虚拟点约束,将一个位置敏感器件PSD装置任意放置在工业机器人可达工作空间,PSD装置的中心点为约束点; . [0008] a point to establish a virtual space constraints, a position sensitive detector PSD means any of the industrial robot is placed in the work space up to the center point of the PSD constraint points;

[0009] b.基于激光和PSD的精确机器人定位,工业机器人末端载着激光器以右倾30〜 60°的位姿作为位置1,将激光束投射到PSD表面,PSD作为反馈传感器精确测量光斑在PSD 表面的二维位置,基于PSD高精度位置反馈通过机器人闭环伺服定位,实现机器人携带激光束光斑精确定位在PSD的有效表面中心点位置; [0009] b. Robots based on the accurate positioning of the laser and the PSD, the industrial robot carrying the end of the laser to 30~ 60 ° rightward pose as a position 1, the laser beam is projected to the surface of the PSD, a PSD sensor feedback accurate measurement spot in the PSD surface of the two-dimensional position based on the position feedback precision PSD closed loop servo positioning of the robot, the robot to achieve accurate positioning of the laser beam spot carrying the active surface of the center point of the PSD;

[0010] C.准确定位后,工业控制计算机通过网络通讯或工业机器人通讯接口从工业机器人控制器读取6个机器人关节的角度值,每个角度值读取两次以上取其平均值作为位置1 的机器人关节角; [0010] C. After accurate positioning, industrial control computer interface to read the six values ​​of the robot joint angles from the industrial robot controller through the communication network traffic or industrial robot, each angle value is read more than twice the average value as the position joint angle of the robot 1;

[0011] d.工业机器人末端载着激光器基于位置1向左旋转,旋转的角度为左右倾角的范围除以旋转次数,最大左倾30〜60°,第一次旋转的位姿作为位置2,重复步骤b和c获得位置2的机器人6个关节角度; [0011] d. Industrial robot end carrying the laser based on the position 1 to the left, the rotation angle about the rotation angle range is divided by the number of times, the maximum Left 30~60 °, the position and orientation of the first rotation position as 2, repeat steps b and c to obtain the position of the robot joint angle 2 6;

[0012] e.依次旋转获得位置i的机器人6个关节角,直到位置N,NI为旋转次数; . [0012] e i is sequentially rotated to obtain the position of joint angles of the robot 6, until the position N, NI is the number of revolutions;

[0013] f.依据以上步骤获取N个位置的机器人各关节角度值,接着基于建立的机器人运动学误差模型,获得N个位置的机器人末端位置和姿态; . [0013] f according to the above step of acquiring the N position of the robot each joint angle values, then the robot kinematic model of the error obtained based on the position and attitude of the robot end positions N;

[0014] g.计算约束点的空间位置,基于线交点的方法,即物理上任意两条激光束相交于PSD表面的中心点,根据获得的N个位置的机器人末端位置和姿态,建立N个激光束几何方程,其中任意两个空间直线方程计算交点或中垂线的中点得到约束点的空间位置; [0014] g. Calculate the spatial position of the constraint points, line intersections based method, i.e., arbitrary two laser beams intersect at the center point of the physical surface of the PSD, the robot position and posture of the N-terminal position obtained, the establishment of the N geometric equations laser beam, wherein the linear equation two spaces or midpoint intersection perpendicular to obtain spatial position of constraint points;

[0015] h.优化目标函数获得机器人零位标定参数,以点约束建立目标函数,通过迭代算法搜索机器人标定参数,直到任意两个空间直线方程计算的交点收敛于一点。 [0015] h. The objective function to get the robot zero calibration parameters, a point constrained objective function, calibration parameters by an iterative search algorithm robots to space any two intersection points of the linear equation in convergence.

[0016] 一种实现上述工业机器人零位自标定方法的装置,包括激光器、连接装置、位置敏感器件PSD、信号处理电路、工业控制计算机、数据采集卡,所述的激光器通过连接装置固定安装在工业机器人末端,位置敏感器件PSD及其信号处理电路,合称为PSD装置,PSD装置任意放置在工业机器人的可达工作空间,PSD装置的中心点为约束点;数据采集卡采用无线通讯方式与工业控制计算机通讯;工业机器人本体通过机器人末端载着激光器将激光光斑投射在PSD表面,光斑在PSD的精确位置通过信号处理电路和数据采集卡传送给工业控制计算机,反过来,工业控制计算机基于该位置反馈发命令给机器人控制器控制机器人本体移动带动激光器将光斑精确定位到PSD的表面中心点位置,物理上实现虚拟点约束。 [0016] means from the zero calibration method for realizing the above-described industrial robot, comprising a laser, a connecting means, the PSD position sensitive device, a signal processing circuit, an industrial control computer, data acquisition card, a laser fixedly mounted by connecting means industrial robot end, the position sensitive device PSD and the signal processing circuitry, collectively known as the PSD, PSD means any place reachable on industrial robot working space, the center point of the PSD constraint points; data acquisition card wireless communication and industrial control computer communications; industrial laser robot by a robot carrying a body end surface PSD projected laser spot, the spot at a precise location of the PSD signal processing circuit and transmitted to a data acquisition card industrial computer, in turn, on the basis of the industrial control computer commanding position feedback to the robot controller controls the robot body movement to drive the laser spot center point of the PSD surface to pinpoint the location of virtual point physical constraints.

[0017] 本发明与现有技术相比,其显著优点:(1)与目前机器人标定方法的本质不同在于仅需要空间单点约束,且不需要知道该点的空间位置,且没有物理接触,因此本方法为“虚拟点约束”,这样是测量的精度高,不受操作人员水平的影响。 [0017] Compared with the prior art that significant advantages: (1) the nature of the current robot calibration method requires that the different spatial constraints only a single point, and does not need to know the spatial location of the point, and without physical contact, Thus, the present process is a "virtual point constraint", so that a high measurement accuracy, not affected by the level of the operating personnel. (2)基于PSD反馈激光束光斑的位置实现机器人自动定位,在机器人不同位姿下自动定位控制过程中实现机器人的标定任务,不需要人工干预,自动化程度高,操作简单。 (2) achieved automatic positioning based on the position feedback of the laser beam spot PSD, automatic positioning control of the robot in a different position and orientation achieved during calibration of the robot task, without manual intervention, high degree of automation, simple operation. (3)不仅解决了工业现场广泛需求的机器人零位标定问题,还可以用于机器人全部运动学参数的标定。 (3) not only solved the problem of industrial robot zero calibration field wide-ranging needs, the robot can also be used to calibrate all the kinematic parameters. (4)基于该方法易于开发低成本、便携、高精度、自动化机器人标定装置。 (4) Based on this method is easy to develop low-cost, portable, high-precision, automatic calibration of the robot apparatus. 因为,标定装置只需要1个半导体激光器和1个具有0. Ium的分辨力的PSD器件以及信号处理采集电路,成本很低而精度很高。 Because, only one calibration device and a semiconductor laser having a resolution of 0. Ium PSD acquisition circuit and a signal processing device, low cost and high precision.

[0018] 下面结合附图对本发明作进一步详细描述。 [0018] The following figures of the present invention will be further described in detail with.

附图说明 BRIEF DESCRIPTION

[0019] 图1是本发明工业机器人零位自标定装置的示意图。 [0019] FIG. 1 is a schematic view from the zero calibration of an industrial robot apparatus according to the present invention.

[0020] 图2是本发明工业机器人零位自标定方法示意图。 [0020] FIG. 2 is an industrial robot according to the present invention is from zero schematic calibration method.

[0021] 图3是基于线的位置测量方法。 [0021] FIG. 3 is a line based on the location measurement method.

[0022] 图4是机器人标定情形示例。 [0022] FIG. 4 is an exemplary case where the robot calibration.

具体实施方式 Detailed ways

[0023] 结合图1和图2,本发明工业机器人零位自标定方法,步骤如下: [0023] FIG. 1 and FIG. 2, the industrial robot zero self-calibration method according to the present invention, the following steps:

[0024] a.建立空间虚拟点约束,将一个位置敏感器件PSD装置任意放置在工业机器人可达工作空间,PSD装置的中心点11为约束点; . [0024] a point to establish a virtual space constraints, a position sensitive detector PSD means any of the industrial robot is placed in the work space up to the center point of the PSD device 11 as the constraint points;

[0025] b.基于激光和PSD的精确机器人定位,工业机器人末端10载着激光器2以右倾30〜60°的位姿作为位置1,将激光束投射到PSD表面,PSD作为反馈传感器精确测量光斑在PSD表面的二维位置,基于PSD高精度位置反馈通过机器人闭环伺服定位,实现机器人携带激光束光斑精确定位在PSD的有效表面中心点位置; [0025] b. Laser robot and PSD based on the accurate positioning of the end of the industrial robot 10 carrying the laser 2 to 30~60 ° rightward position as a position and orientation, the laser beam is projected to the surface of the PSD, PSD accurate measurement as feedback sensor spot in the two-dimensional position of the surface of the PSD, PSD precision position feedback based closed-loop servo positioning of the robot, the robot to achieve accurate positioning of the laser beam spot carrying the active surface of the center point of the PSD;

[0026] c.准确定位后,工业控制计算机7通过网络通讯或工业机器人通讯接口从工业机器人控制器8读取6个机器人关节的角度值,每个角度值读取两次以上取其平均值作为位置1的机器人关节角; [0026] c. After accurate positioning, industrial control computer 7 via the network communications interface to read communications from the industrial robot or industrial robot controller 86 of the robot joint angles values, each angle value is read more than twice the mean value as the position of a joint angle of the robot;

[0027] d.工业机器人末端10载着激光器2基于位置1向左旋转,旋转的角度为左右倾角的范围除以旋转次数,最大左倾30〜60°,第一次旋转的位姿作为位置2,重复步骤b和c 获得位置2的机器人6个关节角度; [0027] d. Industrial robot end 10 carrying a laser 2 is based on a position to the left, the rotation angle around the angle range divided by the number of revolutions, the maximum Left 30~60 °, the position and orientation of the first rotation position as a 2 repeating steps b and c to obtain the position of the robot joint angle 2 6;

[0028] e.依次旋转获得位置i的机器人6个关节角,直到位置N,NI为旋转次数; . [0028] e i is sequentially rotated to obtain the position of joint angles of the robot 6, until the position N, NI is the number of revolutions;

[0029] f.依据以上步骤获取N个位置的机器人各关节角度值,接着基于建立的机器人运动学误差模型,获得N个位置的机器人末端位置和姿态; . [0029] f according to the above step of acquiring the N position of the robot each joint angle values, then the robot kinematic model of the error obtained based on the position and attitude of the robot end positions N;

[0030] g.计算约束点的空间位置,基于线交点的方法,即物理上任意两条激光束相交于PSD表面的中心点,根据获得的N个位置的机器人末端位置和姿态,建立N个激光束几何方程,其中任意两个空间直线方程计算交点或中垂线的中点得到约束点的空间位置; [0030] g. Calculate the spatial position of the constraint points, line intersections based method, i.e., arbitrary two laser beams intersect at the center point of the physical surface of the PSD, the robot position and posture of the N-terminal position obtained, the establishment of the N geometric equations laser beam, wherein the linear equation two spaces or midpoint intersection perpendicular to obtain spatial position of constraint points;

[0031] h.优化目标函数获得机器人零位标定参数,以点约束建立目标函数,通过迭代算法搜索机器人标定参数,直到任意两个空间直线方程计算的交点收敛于一点。 [0031] h. The objective function to get the robot zero calibration parameters, a point constrained objective function, calibration parameters by an iterative search algorithm robots to space any two intersection points of the linear equation in convergence.

[0032] 结合图1,本发明实现上述工业机器人零位自标定方法的装置,包括激光器2、连接装置1、位置敏感器件PSD 4、信号处理电路5、工业控制计算机7、数据采集卡6,所述的激光器2通过连接装置1固定安装在工业机器人末端10,连接装置1与机器人末端10通过标准机械定位接口保证安装精度。 [0032] conjunction with Figure 1, the present invention achieves the above-described industrial robot apparatus self-calibration of the zero position, includes a laser 2, the connecting device 1, a position sensitive device PSD 4, signal processing circuit 5, industrial control computer 7, the data acquisition card 6, 2 the laser 1 via the connecting device is fixedly mounted on the end of the industrial robot 10, the robot apparatus 1 is connected to terminal 10 to ensure that standard mechanical mounting accuracy by positioning the interface. 位置敏感器件PSD 4及其信号处理电路5,合称为PSD 装置,PSD装置任意放置在工业机器人的可达工作空间,PSD装置的中心点11为约束点;数据采集卡6采用无线通讯方式与工业控制计算机7通讯;工业机器人本体9通过机器人末端10载着激光器2将激光光斑投射在PSD 4表面,光斑在PSD 4的精确位置通过信号处理电路5和数据采集卡6传送给工业控制计算机7,反过来,工业控制计算机7基于该位置反馈发命令给机器人控制器8控制机器人本体9移动带动激光器2将光斑精确定位到PSD 4 的表面中心点11位置,物理上实现虚拟点约束。 A position sensitive device PSD. 4 and signal processing circuit 5, are collectively referred to the PSD, PSD means any place reachable on industrial robot working space, the center point of the PSD device 11 as a constraint points; 6 data acquisition card wireless communication and Corresponding industrial control computer 7; industrial robot main body 92 of the robot laser spot projected by the laser tip 10 carrying surface PSD 4, the spot at a precise location of the PSD 4 and 5 by the signal processing circuit 6 is transmitted to a data acquisition card industrial control computer 7 , in turn, industrial control computer 7 based on the position feedback send commands to the robot controller 8 controls the laser drive 9 moves the robot body 2 to the precise positioning of the spot center point of the PSD surface 4 of the 11 positions, virtual point physical constraints. {B}为机器人基座坐标系,{E}代表机器人末端坐标系。 {B} is a robot base coordinate system, {E} representative of the end of the robot coordinate system.

[0033] 上述的激光器2是可调焦距精密半导体激光器,功率lmW,波长670nm,激光束3的光斑直径为2. 5mm。 [0033] The tunable laser 2 is the focal length of the semiconductor laser precision, power lmW, wavelength 670nm, laser beam spot diameter of 3 to 2. 5mm. 可以事先标定激光束3和连接装置1的关系,或不标定则在标定机器人零位时同时标定之间关系。 Relationship may be previously calibrated laser beam 3 and the connecting device 1, calibration or calibration of the robot at the time of calibration relationship between the zero simultaneously. 位置敏感器件PSD 4采用分段式高精度光电器件,分辨率达0. lum,有效表面直径为10mm,可检测激光束光斑在PSD表面的二维位置。 A position sensitive device PSD. 4 sub-type photovoltaic device with high accuracy, resolution of 0. lum, the effective surface diameter of 10mm, the laser beam spot can be detected two-dimensional position in the PSD surface. PSD输出信号经信号处理电路5给出激光光斑在PSD表面的二维位置坐标,作为反馈信号精确控制机器人的位置,即PSD表面的中心点作为机器人定位目标位置。 PSD output signal via the signal processing circuit 5 is given two-dimensional position coordinates of the laser spot at the surface of the PSD, as a feedback signal to control the exact position of the robot, i.e., the center point of the PSD surface is positioned as the target position of the robot. 数据采集卡6采用无线通讯方式与工业控制计算机7通讯,可实现PSD装置的无线工作。 6 data acquisition card wireless communication and communication industrial control computer 7 can work wireless device PSD. PSD装置通过可充电锂聚电池供电,实现PSD装置的电源自供给。 PSD device by poly rechargeable lithium battery, for power supply from the supply device PSD. 这些措施保证了PSD装置的便携和易于安装操作。 These measures ensure that the PSD device portable and easy mounting operation.

[0034] 实施例 [0034] Example

[0035] 采用本发明的装置在工业机器人IRB1600上开展标定试验,具体实施步骤如下: [0035] The apparatus of the present invention is carried out on an industrial robot calibration tests IRB1600, specific implementation steps are as follows:

[0036] a)将PSD装置任意放置在机器人工作空间,建立空间虚拟点约束。 [0036] a) The PSD is placed in the robot apparatus according to any workspace, to establish a virtual point space constraints. 注意该约束点的空间位置是未知的。 Note that this constraint points spatial location is unknown. 位置敏感器件PSD 4采用分段式高精度光电器件,分辨率达O.lum, 有效表面直径为10mm,可检测激光束光斑在PSD表面的二维位置。 A position sensitive device PSD. 4 sub-type photovoltaic device with high accuracy, resolution of O.lum, the effective surface diameter of 10mm, the laser beam spot can be detected two-dimensional position in the PSD surface. PSD输出信号经信号处理电路5给出激光光斑在PSD表面的二维位置坐标,作为反馈信号精确控制机器人的位置, 即PSD表面的中心点作为机器人定位目标位置。 PSD output signal via the signal processing circuit 5 is given two-dimensional position coordinates of the laser spot at the surface of the PSD, as a feedback signal to control the exact position of the robot, i.e., the center point of the PSD surface is positioned as the target position of the robot.

[0037] b)基于激光和PSD的精确机器人定位。 [0037] b) based on the positioning accuracy of the laser robot and the PSD. 机器人末端载着激光器以右倾30°的位姿(位置1)将激光束投射到PSD表面,PSD作为反馈传感器精确测量光斑在PSD表面的二维位置,基于PSD高精度位置反馈通过机器人闭环伺服定位,实现机器人携带激光束光斑精确定位在PSD的有效表面中心点位置,如图1所示,一个激光器2通过连接装置1固定安装在机器人末端10,工业控制计算机7通过数据采集卡6与PSD装置连接,工业控制计算机7通过网络接口与机器人控制器8连接,机器人控制器8和工业机器人本体9连接。 Right at the end of the robot carrying the laser 30 ° pose (position 1) the laser beam is projected to the surface of PSD, PSD as a feedback sensor measuring the precise position of the spot on the two-dimensional surface of the PSD, PSD precision position feedback based closed-loop servo positioning of the robot , for robot carrying the laser beam spot accurately positioned on the active surface of the center point of the PSD, as shown in FIG. 1, a laser 1 by connection means 2 is fixedly mounted on the end of the robot 10, the industrial control computer 76 via a data acquisition card device PSD connection, industrial control computer 7 through the network interface 8 is connected to the robot controller, the robot controller 8 and the body 9 is connected to an industrial robot.

[0038] c)准确定位后,工业控制计算机通过网络通讯或工业机器人通讯接口(如串口) 从工业机器人控制器读取6个机器人关节的角度值,每个角度值读取两次以上取平均值作为位置1的机器人关节角。 [0038] c) After the accurate positioning, industrial control computer 6 reads the values ​​of the robot joint angles from the industrial robot controller through the communication network or communication interfaces industrial robot (e.g., serial port), for each angle value read twice or more were averaged 1 as the value of the position of the robot joint angle. 系统初始化并建立与机器人控制器。 System initialization and the establishment of the robot controller. 8的通讯连接,然后执行基于PSD和激光的不同位置机器人精确定位,步骤如d)到g);[0039] d)工业机器人末端载着激光器基于位置1向左旋转,旋转的角度为左右倾角的范围除以旋转次数,最大左倾30〜60°,第一次旋转的位姿作为位置2,重复步骤b)和c)获得位置2的机器人6个关节角度。 8 communication link, and then perform precise positioning based on different positions of the robot and the laser PSD, as step d) to g); [0039] d) an industrial robot carrying a terminal position of the laser 1 to the left, the rotation based on the angle of inclination is about divided by the number of revolutions of the range, the maximum Left 30~60 °, the position and orientation of the first rotation position of the robot to obtain 2 as the angular position of the six joints 2, repeating steps b) and c). 如图2所示,机器人末端载着激光器以右倾30°的位姿(位置1),基于PSD伺服反馈定位激光束光斑在PSD的有效表面中心位置11 ; 2, the robot end carrying the laser Right 30 ° to the position and orientation (position 1), the positioning servo feedback based PSD spot position of the laser beam 11 at the center of the active surface of the PSD;

[0040] e)准确定位后,工业控制计算机通过局域网络通讯从机器人控制器读取6个机器人关节的角度值,三次取平均值作为位置1的关节角度; After [0040] e) accurate positioning, industrial control computer 6 reads the value of the angle joints of the robot from the robot controller through a local area network communications, as the average value of three joint angles at position 1;

[0041] f)依次旋转获得位置i (i为某一旋转次数时的位置)的机器人6个关节角,直到位置N,N-1为旋转次数。 Joint angles of the robot 6 [0041] f) sequentially obtain the rotational position i (i is a position at a certain number of rotations) until the position of the N, N-1 is the number of revolutions. 如机器人末端载着激光器减少10°以右倾20°的位姿(位置2), 重复步骤c)和d)获得位置2的机器人6个关节角度; The robotic end effector carrying a laser robot to reduce the 10 ° to 20 ° rightward pose (position 2), repeating steps c) and d) obtaining a position of the joint angle 2 6;

[0042] g)依次递减10°获得位置i的机器人6个关节角度,直到位置N(这里N =7)。 [0042] g) obtained in descending order 10 ° position i of the robot joint angle 6, until the position N (where N = 7). 整个机器人定位过程自动完成,耗时不到3分钟; The entire robot localization process automatically, takes less than 3 minutes;

[0043] h)自动标定过程结束,至此获得7个不同机器人位置下的6个关节角度值。 [0043] h) automatic calibration process ends, so far obtained six seven different values ​​of the joint angles of the robot position.

[0044] i)基于以下建立的机器人运动学误差模型,代入以上7组关节数据,获得机器人末端的位置和姿态。 [0044] i) Kinematic error model based on the established joint substituting into the above seven groups of data, the position and posture of the robot end.

[0045] 工业机器人以ABB的IRB1600为例,机器人每个关节包含机器人杆件参数和机器人零点位置误差的DH关系可改写为, [0045] In the industrial robot as an example of ABB IRB1600, each joint of the robot comprising a robot and a robot parameters lever DH zero position error relationship may be rewritten as,

[0046] [0046]

Figure CN101968341AD00081

[0047] 其中,ai,Ciydi* Qi分别是杆件长度,连杆扭角,连杆距离和关节角度。 [0047] where, ai, Ciydi * Qi are the length of the lever, link torsion angle, distance and the link joint angle. c θ和分别s θ表示cos θ和sin θ。 c θ s θ respectively represent cos θ and sin θ. δ i表示第i个关节的零位误差,罗分别代表COS ( θ i+ δ i) 和sin( θ i+ δ》。则六自由度机器人正运动学方程表达为, [delta] i represents the i-th zero point error joints, Luo representing COS (θ i + δ i) and sin (θ i + δ ". DOF the forward kinematics expressed as equation,

[0048] [0048]

Figure CN101968341AD00082

[0049] j)基于线的方法计算中心点位置 [0049] j) A method based on the calculated center line position

[0050] 本发明中,PSD器件任意放置在机器人工作空间,PSD中心点的位置是未知的。 [0050] In the present invention, PSD means any working space of the robot is placed in the position of the center point of the PSD is unknown. 图2中对于准确定位在PSD中心点的N个机器人位置,其中任意两个机器人位置下的激光都相交于同一点,该同一点为PSD中心点11,如图3所示。 In FIG. 2 for an accurate positioning of the N PSD center point of the robot position, wherein the laser robot at any two positions intersect at the same point, the center point of the PSD is the same point 11, as shown in FIG. 也就是说,通过任意两条激光线的方程可以计算PSD中心点位置。 That is, the center point may be calculated by the equation PSD any two laser line. 根据以上机器人正运动学方程和获得的每个机器人位置下的关节角度,可以获得机器人末端在机器人基座坐标系下的位姿矩阵。 According to the above forward kinematics of the joint angle in the equation and the obtained position of each robot, the robot can be obtained at the end of the robot posture matrix base coordinate system. 由于安装的激光和机器人末端的关系R是固定的,可以通过简单标定如CNC坐标测量方法预先获得的,也可以把R作为未知参数在线与机器人其他参数一起标定。 Since the mounting of the laser and the end of the robot R is the fixed relationship may be calibrated by a simple method such as CNC coordinate measuring is obtained in advance, may be used as the unknown parameters R online calibration parameters together with other robots. 因此,可以给出每个机器人位置下的第i 条激光线在机器人基座坐标系下的方程为,[0051] Thus, the laser can be given i-th line at each position in the equations of the robot base coordinate system of the robot, [0051]

Figure CN101968341AD00091

•固定点在机器人基座坐标系下的坐标, • fixation point coordinates in the robot base coordinate system,

[0052] 其中(xiB,yiB,ziB)是第i条激光线某-(miB, niB, piB)是该激光线的单位矢量方向。 [0052] wherein (xiB, yiB, ziB) is the i-th line of a laser beam - (miB, niB, piB) is a unit vector in the direction of the laser line.

[0053] 则任意两条激光束如第i条激光线和第j条激光线的交点或公垂线中点可以通过联立以下方程获得: [0053] or the intersection of any vertical midpoint of the two laser beams known as the i-th line and the j-th laser beam of the laser line can be obtained by the following simultaneous equations:

Figure CN101968341AD00092

[0054] [0054]

Figure CN101968341AD00093

[0055] k)优化目标函数实现机器人标定 [0055] k) the objective function for robot calibration

[0056] 假设基于PSD位置反馈的机器人定位误差可以忽略,如果没有机器人杆件参数误差和机器人零点位置误差,理论上,N条激光线应该相交于同一点,即PSD的中心点位置(11),如图4(a)所示情形。 [0056] Location based on the assumption PSD robot feedback position error is negligible, if there is no error parameters of the robot and the robot lever position error zero, theoretically, N laser beams lines should intersect at the same point, i.e., the center point of the PSD (11) , the case shown in FIG. 4 (a). 如果机器人参数存在误差,则如图4(b)所示,计算的任意两条激光线(3)之间的交点(12)或公垂线的中点(12)则在某个区域分布,通过迭代算法搜索机器人的误差参数使激光束交点的集合无限收敛于一点,即实际的PSD中心点位置(11)。 If there is an error parameters of the robot, the 4 (b), the intersection of any two laser line (12) or point (12) between the common perpendicular (3) is calculated as shown in a distribution area, the intersection of the laser beam by the search robot error parameter iterative algorithm converges to an infinite set point, i.e., the actual PSD center point (11). 也就是说,我们可以最小化以下目标函数来优化机器人杆件参数误差和机器人零点位置误差。 That is, we can optimize the minimum error parameters of the robot and the robot lever zero position error of the objective function.

[0057] δ * = arg Min (^kVΨ^Ψ^) [0057] δ * = arg Min (^ kVΨ ^ Ψ ^)

[0058] 其中,Pk是激光线ru and rLJ(i Φ j,i, je N, ke Μ)的交点或者公垂线的中心点。 [0058] where, Pk is the center point of the laser line ru and rLJ (i Φ j, i, je N, ke Μ), or an intersection of the vertical well. nPAve表示第η次迭代时所有激光线交点的Pk k= 1,L,M的中心点。 nPAve η represents the first iteration of all laser line intersections center point Pk k = 1, L, M's. xwk,ywk,zwk 分别表示Pk和nPAve在X,y,Z方向上的分布误差。 xwk, ywk, zwk and Pk denote nPAve error distribution on X, y, Z directions.

[0059] 通过迭代优化算法计算机器人关节零位标定参数,本实例实验标定结果及与激光跟踪标定结果对比误差如表1所示;从实验结果看,多次标定试验结果与真实值的平均误差小于0. Γ,实验结果验证了本方法的有效性和标定结果的准确性。 [0059] by an iterative optimization algorithm zero calibration parameters of the robot joints, the experimental results of the present example, the calibration and comparison with the laser tracking error calibration results are shown in Table 1; the mean deviation from the experimental results, the results of calibration tests times the true value less than 0. Γ, experimental results demonstrate the validity and accuracy of the calibration results of the method.

[0060] [0061] [0060] [0061]

m)更改机器人控制器零位参数。 m) the parameter controller changes the zero position of the robot. 表1实例IRB1600机器人零位标定结果(单位:度) Table 1 Example IRB1600 robot zero calibration results (unit: degree)

[0062] [0062]

标定参数 真实值 初始值 标定结果 平均误差 1.1 0.0 1.1834 0.062 0.1 0.0 0.1221 0.051 0.1 0.0 0.0798 0.026 0.0 0.0 0.0414 0.038S6 0.0 0.0 0.0353 0.026 True initial value of the parameter calibration the calibration results are averaged error 1.1 0.0 1.1834 0.062 0.1 0.0 0.1221 0.051 0.1 0.0 0.0798 0.026 0.0 0.0 0.0414 0.038S6 0.0 0.0 0.0353 0.026

9 9

Claims (7)

  1. 一种工业机器人零位自标定方法,其特征在于步骤如下:a.建立空间虚拟点约束,将一个位置敏感器件PSD装置任意放置在工业机器人可达工作空间,PSD装置的中心点(11)为约束点;b.基于激光和PSD的精确机器人定位,工业机器人末端(10)载着激光器(2)以右倾30~60°的位姿作为位置1,将激光束投射到PSD表面,PSD作为反馈传感器精确测量光斑在PSD表面的二维位置,基于PSD高精度位置反馈通过机器人闭环伺服定位,实现机器人携带激光束光斑精确定位在PSD的有效表面中心点位置;c.准确定位后,工业控制计算机(7)通过网络通讯或工业机器人通讯接口从工业机器人控制器(8)读取6个机器人关节的角度值,每个角度值读取两次以上取其平均值作为位置1的机器人关节角;d.工业机器人末端(10)载着激光器(2)基于位置1向左旋转,旋转的角度为左右倾角的范围除以旋转次 An industrial robot zero self-calibration method, comprising the steps of:. A point establishing a virtual space constraints, a position sensitive detector PSD means any of the industrial robot is placed in the work space up to the center point of the PSD device (11) constraint points;. b based on precise positioning of the laser robot and the PSD, the end of the industrial robot (10) carrying a laser (2) Right to 30 ~ 60 ° pose as a position 1, a laser beam is projected to the surface of the PSD, PSD as a feedback accurate two-dimensional position sensor measuring spot on the surface of the PSD, PSD precision position feedback based closed-loop servo positioning of the robot, the robot to achieve accurate positioning of the laser beam spot carrying the active surface of the center point of the PSD;. c after accurate positioning, industrial control computer (7) via a network communication interface to read communications from the industrial robot or industrial robot controller (8) 6 of the robot joint angle value, the value of each angle is read more than twice the average value as the position of a joint angle of the robot; d. industrial robot end (10) carrying a laser (2) based on the position 1 to the left, the rotation angle about the rotation angle range divided times ,最大左倾30~60°,第一次旋转的位姿作为位置2,重复步骤b和c获得位置2的机器人6个关节角度;e.依次旋转获得位置i的机器人6个关节角,直到位置N,N‑1为旋转次数;f.依据以上步骤获取N个位置的机器人各关节角度值,接着基于建立的机器人运动学误差模型,获得N个位置的机器人末端位置和姿态;g.计算约束点的空间位置,基于线交点的方法,即物理上任意两条激光束相交于PSD表面的中心点,根据获得的N个位置的机器人末端位置和姿态,建立N个激光束几何方程,其中任意两个空间直线方程计算交点或中垂线的中点得到约束点的空间位置;h.优化目标函数获得机器人零位标定参数,以点约束建立目标函数,通过迭代算法搜索机器人标定参数,直到任意两个空间直线方程计算的交点收敛于一点。 , The maximum leftward 30 ~ 60 °, the position and orientation of the first rotation position as 2, repeating steps b and c to obtain the position of the robot joint angle 6 2;. E sequentially obtained rotational position i of joint angles of the robot 6, until the position N, N-1 is the number of revolutions;. F N according to the above step of acquiring a position of the robot each joint angle values, then the robot kinematic model of the error obtained based on the position and attitude of the robot end positions N; G computation constraints. the spatial position of a point, a method based on the intersection of the line, i.e., arbitrary two laser beams intersect at the center point of the physical surface of the PSD, the robot end position and posture obtained by N positions, establishing geometric equation N laser beams, wherein any two spatial linear equation midpoint intersection or perpendicular to obtain spatial position of constraint points;. h optimizing an objective function to obtain the zero calibration parameters of the robot, to point constraint objective function, the calibration parameters of the robot by an iterative searching algorithm, until any two spatial line equation of the intersection in convergence.
  2. 2.根据权利要求1所述的工业机器人零位自标定方法,其特征在于步骤f中,工业机器人每个关节包含机器人杆件参数和机器人零点位置误差的DH关系改写为,q§x -S^cai s 贫Saiφ _ C^Cdri -Cff1Sai qs豸1I = Λ j0 Sai cat Cti ,0 0 0 1其中,ai,0”屯和θ 别是杆件长度,连杆扭角,连杆距离和关节角度;c θ和分别s θ表示cos θ和sin θ。δ i表示第i个关节的零位误差,c梦和$夢分别代表cos ( θ i+ δ 和sin( θ i+ δ》。则六自由度机器人正运动学方程表达为,L OOOOOObTe=TlT2T3T4T5T6 。 2. The industrial robot 1 from the zero calibration method according to claim, wherein step f, an industrial robot includes an error of each joint of the robot and the robot parameters lever DH relationship is rewritten as zero position, q§x -S ^ cai s depleted Saiφ _ C ^ Cdri -Cff1Sai qs Zhi 1I = Λ j0 Sai cat Cti, 0 0 0 1 wherein, ai, 0 "are respectively Tun and θ rod length, rod twist angle, distance and link joints angle; c θ respectively s θ represents cos θ and sin θ.δ i represents a zero point error of the i-th joint, c dreams and $ Sleeper representing cos (θ i + δ and sin (θ i + δ "is six free. of the forward kinematics expressed as equation, L OOOOOObTe = TlT2T3T4T5T6.
  3. 3.根据权利要求1所述的工业机器人零位自标定方法,其特征在于步骤g中,基于线交点的方法计算中心点位置,即对于准确定位在PSD中心点的N个机器人位置,其中任意两个机器人位置下的激光都相交于同一点,该同一点为PSD中心点(11),根据机器人正运动学方程和获得的每个机器人位置下的关节角度,获得机器人末端在机器人基座坐标系下的位姿矩阵,给出每个机器人位置下的第i条激光线在机器人基座坐标系下的方程为, The industrial robot zero self-calibration method according to claim 1, wherein the step g, based on the method of calculating the intersection of the center line position, i.e. for accurate positioning of the N positions of the robot center point of the PSD, wherein any at two positions of the laser robot intersect at the same point, the center point of the PSD is the same point (11), in accordance with the joint angle and the forward kinematics equation obtained for each position of the robot, the robot base coordinate is obtained at the end of the robot under the posture matrix-based, given i-th laser line equation at each position of the robot in the robot base coordinate system is,
    Figure CN101968341AC00031
    其中(xiB,yiB,ziB)是第i条激光线某一固定点在机器人基座坐标系下的坐标,(miB,niB, PiB)是该激光线的单位矢量方向;则任意两条激光束如第i条激光线和第j条激光线的交点或公垂线中点通过联立以下方程获得: '· Wherein (xiB, yiB, ziB) are coordinates of the i-th line of laser light at a fixed point in the robot base coordinate system, (miB, niB, PiB) is a unit vector in the direction of the laser line; any of the two laser beams the intersection of the i-th line and the j-th laser beam of a laser line or by male vertical midpoint of simultaneous equations to obtain the following: '·
    Figure CN101968341AC00032
  4. 4.根据权利要求1所述的工业机器人零位自标定方法,其特征在于步骤h中,优化目标函数实现机器人标定,即最小化以下目标函数来优化机器人杆件参数误差和机器人零点位置误差:δ * = arg ΜίηΓΨ,νψ^Ψ^) 其中,Pk是激光线ru and Γ LJ (i Φ j,i,je N,ke Μ)的交点或者公垂线的中心点。 The industrial robot according to a zero self-calibration method, wherein the step h, an optimization target function for robot calibration, i.e. the minimum error parameters to optimize the lever position error of the robot and the robot zero objective function of the following claims: δ * = arg ΜίηΓΨ, νψ ^ Ψ ^) where, Pk is the center point of the laser line ru and Γ LJ (i Φ j, i, je N, ke Μ), or an intersection of the vertical well. nPAve表示第η次迭代时所有激光线交点的Pk k = 1,L,M的中心点;xWk,^k, ΖΨ,分别表示Pk和nPAre在X,y,Z方向上的分布误差。 nPAve η represents the first iteration of all laser line intersections center point Pk k = 1, L, M's; xWk, ^ k, ΖΨ, respectively, and Pk nPAre error distribution on X, y, Z directions.
  5. 5. 一种实现权利要求1至4所述的任意一项工业机器人零位自标定方法的装置,其特征在于包括激光器(2)、连接装置(1)、位置敏感器件PSD(4)、信号处理电路(5)、工业控制计算机(7)、数据采集卡(6),所述的激光器(2)通过连接装置(1)固定安装在工业机器人末端(10),位置敏感器件PSD (4)及其信号处理电路(5),合称为PSD装置,PSD装置任意放置在工业机器人的可达工作空间,PSD装置的中心点(11)为约束点;数据采集卡(6)采用无线通讯方式与工业控制计算机(7)通讯;工业机器人本体(9)通过机器人末端(10)载着激光器(2)将激光光斑投射在PSD(4)表面,光斑在PSD(4)的精确位置通过信号处理电路(5)和数据采集卡(6)传送给工业控制计算机(7),反过来,工业控制计算机(7)基于该位置反馈发命令给机器人控制器(8)控制机器人本体(9)移动带动激光器(2)将 An apparatus for implementing the self-calibration method according to any one zero industrial robot according to claim 4, characterized in that it comprises a laser (2), connecting means (1), the PSD position sensitive device (4), the signal a processing circuit (5), an industrial control computer (7), data acquisition card (6), said laser (2) by connecting means (1) is fixedly mounted on the end of the industrial robot (10), position sensitive detector PSD (4) and a signal processing circuit (5), collectively known as the PSD, PSD means any place reachable on industrial robot working space, the center point (. 11) is the PSD constraint points; data acquisition card (6) wireless communication (7) communicates with the control computer industry; precise location of industrial robot body (9) by a robot end (10) carrying a laser (2) the laser spot projected on PSD (4) surface, a light spot PSD (4) by the signal processing circuit (5) and a data acquisition card (6) to the industrial control computer (7), in turn, industrial control computer (7) controlling a robot body (9) based on the position feedback movement driven send commands to the robot controller (8) laser (2) 斑精确定位到PSD(4)的表面中心点(11)位置,物理上实现虚拟点约束。 Precise positioning of the spot (11) position of the PSD (4) the center point of the surface, the physical constraints virtual point.
  6. 6.根据权利要求5所述的工业机器人零位自标定装置,其特征在于激光器(2)是可调焦距精密半导体激光器,功率lmW,波长670nm,激光束(3)的光斑直径为2.5mm。 The industrial robot as claimed in claim 5, wherein the calibration apparatus from the zero position, characterized in that the laser (2) is adjustable focus sophisticated semiconductor laser, lmW power, wavelength 670nm, the laser beam (3) of the spot diameter of 2.5mm.
  7. 7.根据权利要求5所述的工业机器人零位自标定装置,其特征在于位置敏感器件PSD(4)采用分段式高精度光电器件,分辨率达0. lum,有效表面直径为10mm,可检测激光束光斑在PSD表面的二维位置;PSD输出信号经信号处理电路(5)给出激光光斑在PSD表面的二维位置坐标,作为反馈信号精确控制机器人的位置,即PSD表面的中心点作为机器人定位目标位置。 The industrial robot of claim 5 zero self-calibration means, characterized in that the position sensitive detector PSD (4) sub-type photovoltaic device with high accuracy, resolution of 0. lum, the effective surface diameter of 10mm, available claims detecting the laser beam spot in the two-dimensional position of the PSD surface; PSD output signal a signal processing circuit (5) gives the two-dimensional position coordinates of the laser spot on the surface of the PSD, as a feedback signal to control the exact position of the robot, i.e., the center point of the PSD surface as a robot to target location.
CN 201010267775 2010-08-31 2010-08-31 Industrial robot zero-position self-calibration method and device CN101968341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010267775 CN101968341A (en) 2010-08-31 2010-08-31 Industrial robot zero-position self-calibration method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010267775 CN101968341A (en) 2010-08-31 2010-08-31 Industrial robot zero-position self-calibration method and device

Publications (1)

Publication Number Publication Date
CN101968341A true CN101968341A (en) 2011-02-09

Family

ID=43547531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010267775 CN101968341A (en) 2010-08-31 2010-08-31 Industrial robot zero-position self-calibration method and device

Country Status (1)

Country Link
CN (1) CN101968341A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410836A (en) * 2011-07-26 2012-04-11 清华大学 Space six-freedom degrees article locating system based on two-dimensional sensitive sensor
CN102654387A (en) * 2012-05-25 2012-09-05 南京理工大学 Online industrial robot calibration device based on spatial curved surface restraint
CN102706277A (en) * 2012-05-25 2012-10-03 南京理工大学 Industrial robot online zero position calibration device based on all-dimensional point constraint and method
CN102825602A (en) * 2012-08-21 2012-12-19 华北电力大学(保定) PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device
CN103720514A (en) * 2013-12-13 2014-04-16 张安吉 Parameter optimization method for medical surgery robot for surgery space
CN104165585A (en) * 2013-05-17 2014-11-26 上海三菱电梯有限公司 Non-contact high-precision calibration method of tool coordinate system of single robot
CN104315981A (en) * 2014-10-10 2015-01-28 中国科学院光电研究院 Laser tracker position sensitive detector (PSD) zero tracking calibrating method
CN104440935A (en) * 2014-12-23 2015-03-25 重庆花金王科技开发有限公司璧山分公司 Three-dimensional sensor capable of serving as joint
CN104759945A (en) * 2015-03-25 2015-07-08 西北工业大学 Mobile hole-making robot standard alignment method based on high precision industrial camera
CN104827480A (en) * 2014-02-11 2015-08-12 泰科电子(上海)有限公司 Automatic calibration method of robot system
CN105547172A (en) * 2016-01-06 2016-05-04 上海大学 System and method for measuring repeatability precision of industrial robot on the basis of acupuncture luminescence method
CN105773610A (en) * 2016-03-22 2016-07-20 长春大正博凯汽车设备有限公司 Robot correction device
CN106017264A (en) * 2016-08-03 2016-10-12 安徽巨自动化装备有限公司 Robot self-calibration method for light car body production line
CN106610266A (en) * 2015-10-22 2017-05-03 沈阳新松机器人自动化股份有限公司 SCARA robot calibration method
CN107152911A (en) * 2017-06-01 2017-09-12 无锡中车时代智能装备有限公司 Point laser sensor and robot relative position calibration method based on PSD feedback
CN107525472A (en) * 2017-10-11 2017-12-29 北京航空航天大学 Laser displacement sensor position error calibration method
CN107677207A (en) * 2017-10-11 2018-02-09 北京航空航天大学 Extended Kalman filter-based laser distance measuring sensor position error calibration method
CN107677205A (en) * 2017-09-29 2018-02-09 桂林电子科技大学 Laser measurement system and method based on industrial robot
CN107726982A (en) * 2017-10-11 2018-02-23 北京航空航天大学 Calibration method for calibrating installation position error of laser distance-measuring sensor
WO2018170931A1 (en) * 2017-03-24 2018-09-27 深圳配天智能技术研究院有限公司 Method and device for robot calibration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240270A (en) * 1999-07-02 2000-01-05 清华大学 Target space position and attitude laser tracking-measuring system and method
CN1888815A (en) * 2006-07-13 2007-01-03 上海交通大学 Projecting structural optical space position and shape multi-point fitting calibrating method
CN201155969Y (en) * 2008-01-08 2008-11-26 西安理工大学 Device for utilizing two-dimension PSD position sensor for measuring rectangular guiding rail linearity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240270A (en) * 1999-07-02 2000-01-05 清华大学 Target space position and attitude laser tracking-measuring system and method
CN1888815A (en) * 2006-07-13 2007-01-03 上海交通大学 Projecting structural optical space position and shape multi-point fitting calibrating method
CN201155969Y (en) * 2008-01-08 2008-11-26 西安理工大学 Device for utilizing two-dimension PSD position sensor for measuring rectangular guiding rail linearity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems》 20091215 Yong Liu等 An Automated Method to Calibrate Industrial Robot Joint Offset Using Virtual Line-based Single-point Constraint Approach , 2 *
《The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems》 20091215 Yong Liu等 Development and Sensitivity Analysis of a Portable Calibration System for Joint Offset of Industrial Robot , 2 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410836B (en) 2011-07-26 2014-01-29 清华大学 Space six-freedom degrees article locating system based on two-dimensional sensitive sensor
CN102410836A (en) * 2011-07-26 2012-04-11 清华大学 Space six-freedom degrees article locating system based on two-dimensional sensitive sensor
US8958078B2 (en) 2011-07-26 2015-02-17 Tsinghua University Two-dimensional, position-sensitive sensor-based system for positioning object having six degrees of freedom in space
CN102654387B (en) 2012-05-25 2014-07-02 南京理工大学 Online industrial robot calibration device based on spatial curved surface restraint
CN102654387A (en) * 2012-05-25 2012-09-05 南京理工大学 Online industrial robot calibration device based on spatial curved surface restraint
CN102706277A (en) * 2012-05-25 2012-10-03 南京理工大学 Industrial robot online zero position calibration device based on all-dimensional point constraint and method
CN102706277B (en) * 2012-05-25 2014-11-05 南京理工大学 Industrial robot online zero position calibration device based on all-dimensional point constraint and method
CN102825602A (en) * 2012-08-21 2012-12-19 华北电力大学(保定) PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device
CN102825602B (en) * 2012-08-21 2015-03-25 华北电力大学(保定) PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device
CN104165585A (en) * 2013-05-17 2014-11-26 上海三菱电梯有限公司 Non-contact high-precision calibration method of tool coordinate system of single robot
CN103720514B (en) * 2013-12-13 2016-03-23 北京柏惠维康科技有限公司 Parameter optimization method for medical surgical robotic surgical space
CN103720514A (en) * 2013-12-13 2014-04-16 张安吉 Parameter optimization method for medical surgery robot for surgery space
CN104827480A (en) * 2014-02-11 2015-08-12 泰科电子(上海)有限公司 Automatic calibration method of robot system
CN104315981A (en) * 2014-10-10 2015-01-28 中国科学院光电研究院 Laser tracker position sensitive detector (PSD) zero tracking calibrating method
CN104440935A (en) * 2014-12-23 2015-03-25 重庆花金王科技开发有限公司璧山分公司 Three-dimensional sensor capable of serving as joint
CN104759945A (en) * 2015-03-25 2015-07-08 西北工业大学 Mobile hole-making robot standard alignment method based on high precision industrial camera
CN106610266A (en) * 2015-10-22 2017-05-03 沈阳新松机器人自动化股份有限公司 SCARA robot calibration method
CN106610266B (en) * 2015-10-22 2019-01-04 沈阳新松机器人自动化股份有限公司 A kind of SCARA robot calibration method
CN105547172B (en) * 2016-01-06 2018-05-01 上海大学 Illumination systems and methods based on needle Measurement industrial robot repeatability
CN105547172A (en) * 2016-01-06 2016-05-04 上海大学 System and method for measuring repeatability precision of industrial robot on the basis of acupuncture luminescence method
CN105773610A (en) * 2016-03-22 2016-07-20 长春大正博凯汽车设备有限公司 Robot correction device
CN105773610B (en) * 2016-03-22 2018-01-16 长春大正博凯汽车设备有限公司 A robot calibration apparatus
CN106017264A (en) * 2016-08-03 2016-10-12 安徽巨自动化装备有限公司 Robot self-calibration method for light car body production line
WO2018170931A1 (en) * 2017-03-24 2018-09-27 深圳配天智能技术研究院有限公司 Method and device for robot calibration
CN107152911A (en) * 2017-06-01 2017-09-12 无锡中车时代智能装备有限公司 Point laser sensor and robot relative position calibration method based on PSD feedback
CN107677205A (en) * 2017-09-29 2018-02-09 桂林电子科技大学 Laser measurement system and method based on industrial robot
CN107677207A (en) * 2017-10-11 2018-02-09 北京航空航天大学 Extended Kalman filter-based laser distance measuring sensor position error calibration method
CN107726982A (en) * 2017-10-11 2018-02-23 北京航空航天大学 Calibration method for calibrating installation position error of laser distance-measuring sensor
CN107525472A (en) * 2017-10-11 2017-12-29 北京航空航天大学 Laser displacement sensor position error calibration method

Similar Documents

Publication Publication Date Title
JP3946711B2 (en) Robot system
Ziegert et al. Basic considerations for robot calibration
Zhuang Self-calibration of parallel mechanisms with a case study on Stewart platforms
JP3443030B2 (en) measuring device
CN101680743B (en) Determining positions
Omodei et al. Three methodologies for the calibration of industrial manipulators: Experimental results on a SCARA robot
US8989897B2 (en) Robot-cell calibration
EP1631423A1 (en) A method for fine tuning of a robot program
WO2003089197A1 (en) In-process relative robot workcell calibration
US20040251866A1 (en) Method for calibrating and programming of a robot application
DK2760642T3 (en) Calibration and programming of robots
CN101456452B (en) Aircraft fuselage flexiblization and automation attitude-adjusting method
JP2008275624A (en) Coordinate measuring method and device
CN102216860B (en) A method and an apparatus for calibration of an industrial robot system
Conrad et al. Robotic calibration issues: Accuracy, repeatability and calibration
Nubiola et al. Absolute robot calibration with a single telescoping ballbar
Gatla et al. An automated method to calibrate industrial robots using a virtual closed kinematic chain
CN102087096A (en) Automatic calibration apparatus for robot tool coordinate system based on laser tracking measurement and method thereof
Zhong et al. A new method for autonomous robot calibration
CN102985232B (en) A method for calibrating a robot can be located on the mobile platform
CN101362511B (en) Synergetic control method of aircraft part pose alignment based on four locater
Puskorius et al. Global calibration of a robot/vision system
Nubiola et al. Comparison of two calibration methods for a small industrial robot based on an optical CMM and a laser tracker
Joubair et al. Kinematic calibration of a five-bar planar parallel robot using all working modes
US7756608B2 (en) System for calibration of an industrial robot and a method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)