CN101963761A - 一种基于spp的大面积干涉光刻技术 - Google Patents

一种基于spp的大面积干涉光刻技术 Download PDF

Info

Publication number
CN101963761A
CN101963761A CN2009100600902A CN200910060090A CN101963761A CN 101963761 A CN101963761 A CN 101963761A CN 2009100600902 A CN2009100600902 A CN 2009100600902A CN 200910060090 A CN200910060090 A CN 200910060090A CN 101963761 A CN101963761 A CN 101963761A
Authority
CN
China
Prior art keywords
spp
technology
refractive index
kretschmann
graph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009100600902A
Other languages
English (en)
Inventor
郭小伟
刘永智
于全福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2009100600902A priority Critical patent/CN101963761A/zh
Publication of CN101963761A publication Critical patent/CN101963761A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明提供了一种基于表面等离子体激元(SPP)的大面积干涉光刻技术,它是用两宽束光源照射高折射率的介质层,通过衰减全内反射耦合模式激发金属表面的SPP,SPP之间发生相互干涉,从而在抗蚀剂中形成大面积周期性的纳米图形。由于SPP具有近场增强的作用,因此图形具有良好的对比度;与此同时,SPP具有波长短的特点,所以能获得非常高的空间分辨率,能实现超衍射极限的纳米线条。相对于传统纳米光刻技术,本发明技术光刻成本低、可大面积曝光、不需要复杂昂贵的高数值孔径光学成像系统,在极大规模集成电路和新型光、电子纳米结构器件制作上具有广阔的应用前景。

Description

一种基于SPP的大面积干涉光刻技术
所属技术领域
本发明属于微纳加工领域,涉及一种用于制作高分辨率周期性纳米图形的光刻技术。
背景技术
当前,纳米器件集成与应用技术已成为世界各国尤其是工业发达国家高新技术发展和研究的主要方向。从2000年以来,美国用于纳米科技研发基金高达60亿美元,欧盟从2002年到2006年也投入了13亿欧元来开发纳米技术。纳米技术将成为影响人类未来生活的三大科技之一。
然而,无论是极大规模集成电路,还是新型光、电子纳米结构器件都要求使用高分辨、高效率、低成本的纳米级加工技术。随着纳米器件尺寸不断缩小,进入到亚波长尺寸,现有的一些加工技术如:投影光刻技术、无掩模光刻技术,纳米压印等各有其优缺点和适用范围,越来越难以适应新的纳米尺度加工需求。
众所周知,投影光刻技术是目前主流的微纳结构加工技术。它是通过缩短曝光波长和增大成像系统的数值孔径来提高系统的分辨力。自上世纪80年代末以来,通过投影光刻能实现的光刻线条特征尺寸从2.5μm步入到65nm,投影光刻创造了无数的奇迹。然而,通过缩短波长来提高分辨力的方法,使得成像系统非常复杂,光刻成本极其昂贵,而且短波长所对应的光学材料可供选择的范围不大,想进一步提高投影光刻的分辨力遭遇到很大的挑战。
无掩模光刻技术包括电子束直写、离子束曝光、扫描探针光刻等,它们都能获得很高的分辨率,有的甚至达到原子尺度的分辨率,如探针光刻。但除干涉光刻外都是利用扫描的方式来加工光刻图案。显而易见,其缺点就是效率低,加工时间周期长,无法大规模生产。
纳米压印技术虽然能做到高分辨、低成本的纳米加工,但是它需要在高温高压下进行,压印过程中的温度和压力都需要一定时间升高或降低,从而降低了压印的加工效率。此外,该技术还存在多层图形压印对准的问题。
众所周知,传统的干涉光刻技术由于其无需掩模加工便能大面积、低成本、快速曝光,可用于微电子器件、平板显示器件和光子晶体等器件加工。不过,普通的双光束干涉光刻所能加工的最小特征尺寸大于照明光波长的1/4,对于可见光波段的光子晶体的制作,存在实际困难。要提高传统干涉光刻的分辨率,以满足全波段的纳米光子器件的加工的要求,必须采用短波长照明光和浸润技术,而事实上应用新的短波长照明光源尚有许多问题等待解决。本世纪初,有人采用光照射到亚波长周期结构产生的隐失波实现接触式干涉光刻,以突破光学分辨率限制。然而理论分析和实验表明,光通过亚波长结构掩模的透射能量小,在抗蚀剂内的穿透距离短且形成图形的对比度较差,这会导致隐失波干涉光刻过程的曝光效率低、工艺控制难度大。
近年来,国际上表面等离子激元(Surface Plasmon Polaritons,SPP)研究十分活跃,发展迅速,研究表明其在近场增强方面有独特作用,并可用于高分辨成像和光刻领域。2004年,一些学者提出一种有掩模的SPP干涉实现纳米级图形制作的技术,为解决隐失波近场光刻曝光场较弱的问题提供了可能性。不过这种方法需要先用其它纳米级光刻工具加工出周期性金属结构掩模,而有掩模光刻的致命缺陷是对不同的应用需求要加工不同的掩模图形,应用电子束直写不仅费时而且难以实现大面积纳米图形掩模制作。此外,设计和加工多种纳米级掩模会导致实验(或产品)的成本大幅上升,这些有着纳米结构的掩模在接触式曝光过程中容易被污染和损伤,会影响再次光刻图形的质量,造成新的问题。
发明内容
本发明是为了克服目前基于SPP干涉光刻技术需要掩模的缺点,而提供了一种无掩模SPP干涉光刻技术来实现超衍射分辨的纳米图形加工。此技术相对于传统的纳米加工技术来说结构简单、成本低;相对于隐失波干涉光刻技术来说曝光深度大、对比度高;相对于有掩模的SPP干涉光刻技术来说,无须制作精细的掩模。
其特征是包含以下内容:
参照图1,是本发明光刻技术的工作原理示意图。原理示意结构图分为四层:第一层为高折射率介质层,在介质层的下面涂有薄金属层,第三层是抗蚀剂,最后一层是基底。
当两束的TM光以一个特殊角度对称入射到高折射率介质层与金属的界面上时,若满足光与SPP的动量匹配条件(入射光的波矢在水平方向上的分量kx必须和金属表面SPP的波矢kSP相等),金属上下表面的等离子体将发生共振。动量匹配条件为:
kx=k0 np sinθsp=kSP           (1)
其中,np为介质层的折射率,θsp为光波在平板介质下表面的入射角,对应共振的θsp也称为共振角。
共振时入射光能量将绝大部分传输到下表面,每束TM光将在金属下表面激发SPP,SPP的色散关系由下式决定,
kSP=k0mεd/(εmd)]1/2     (2)
其中,kSP为SPP的波矢,k0为入射光在自由空间中的波矢。εd为光刻胶的介电常数。εm为金属在入射光频率下的复介电常数,是一个与频率相关的物理量,常按Drude模型来处理,计算式为:
εm=1-ωp 2/(ω2+iωγ)                                (3)
这里ω为入射光角频率;γ为自由电子的撞击频率,等于驰豫时间的倒数;ωp为表面等离子体的共振频率。
由于两束对称光覆盖整个介质层,将在金属下表面将激发多个相应的SPP波,它们之间发生干涉,引起光场重新排列。由于表面等离子体具有近场增强的能力,在抗蚀剂中形成穿透深度大的周期性干涉条纹。干涉条纹的周期由下式确定:
Λ=λSP/2=π/kSP=π/kx=λ/2(np sinθsp)            (4)
线条的特征尺寸为:
R=Λ/2=λSP/4=π/(2kSP)=π/kx=λ/4(np sinθsp)    (5)
从(4)或(5)式可以看出,图形分辨率与入射波长、介质层的折射率和共振角,以此来估算需要制作的纳米图形的分辨率。在入射波长固定时,介质层折射率与共振角正弦的乘积变化不明显,因此若要获得更高的图形分辨率,可以通过改变入射波长来实现。
本发明光刻技术可通过传统的Kretschmann结构装置来实现,如图2所示。传统的Kretschmann结构常用于生化传感领域。在本发明光刻技术中,用它来实现SPP的干涉,在抗蚀剂中形成干涉条纹。在图2中,高折射率介质是等边或等腰直角三角形棱镜,棱镜的下表面覆着一金属薄层。金属层下面为一层薄光刻胶,最下面一层是基底。光源以一个特殊的角度入射到棱镜上,棱镜两边各有一束,每束都覆盖满棱镜的半边。由于是棱镜两边都有光源照射,整个金属下表面都有SPP干涉,因此能实现大面积SPP干涉光刻。
实际制作纳米线条时,可先设定好结构参数,由(1)、(2)和(3)式计算出共振角θsp,然后通过(4)或(5)式估算纳米线条的尺寸R是否满足需要。若没达到要求,则改变结构参数和入射波长;若满足,再根据角度之间的关系和光学折射定律确定入射光在棱镜表面的入射角θi
附图说明
图1是本发明方法工作原理示意图。
图2是本发明方法实现装置结构1示意图。该结构中的高折射率介质层是一个等边三角形,其余与工作原理示意图一样。
图3是本发明方法实现装臂结构2示意图。该结构中的高折射率介质层是一个等腰直角三角形。在此结构中,光直接垂直入射到棱镜表面,共振时的入射角就是共振角。
图4是本发明方法实现装置结构1计算光源入射角的示意图。
图5是在入射光源波长为436nm,等边三角形棱镜的折射率为1.94325;金属银的复介电常数为-8.9170+0.2320i,厚度为40nm;抗蚀剂的折射率为1.53的条件下,利用多层膜传输矩阵法计算得出金属膜上反射能量与入射角的关系曲线,从中可以看出在共振角66°下,约有90%的能量被传递到金属下表面。
图6是在与图5一样参数条件下,在抗蚀剂中形成的干涉密集线条,线条周期约为122nm。
图7是在入射光源波长为436nm,等边三角形棱镜的折射率为1.90138;金属银的复介电常数为-8.9170+0.2320i,厚度为40nm;抗蚀剂的折射率为1.53的条件下,利用多层膜传输矩阵法计算得出金属膜上反射能量与入射角的关系曲线,从中可以看出在共振角86.6°下,约有73%的能量被传递到金属下表面。
图8是在与图7一样参数条件下,在抗蚀剂中形成的干涉密集线条,线条周期约为96nm。
具体的实施方式
以下结合实施例对照附图对本发明方法制作周期性的纳米线条作进一步详细说明:
(1)以图4为例,制作亚65nm以下的光刻密集线条。
设入射光源波长为436nm,设等边三角形棱镜的折射率为1.94325(NLAF36玻璃);金属采用银,其复介电常数为-8.9170+0.2320i,厚度为40nm;抗蚀剂的折射率为1.53(AZ9200)。
计算步骤为:
1.根据公式(1)和(2),可算出共振角θsp约为66°;
2.根据公式(4),可推算出干涉条纹的周期Λ=122nm;
3.由公式(5)得出线条特征尺寸R=61nm,满足需要;
4.根据三角形角度之间关系可得出入射光在棱镜中的折射角θr=6°;
5.根据光学折射定律推算出入射光的入射角θi=12°,此角度确定了入射光在棱镜表面的入射方向;
从而获得亚65nm以下的光刻线条,实现了近λ/7的超分辨极限光刻线条。
(2)以图4为例,通过改变入射波长制作亚50nm以下的光刻密集线条。
设入射光源波长为365nm,设等边三角形棱镜的折射率为1.90138(NLASF46玻璃);金属采用银,其复介电常数为-5.7948+0.1265i,厚度为40nm;抗蚀剂的折射率为1.53(AZ9200)。
计算步骤为:
1.根据公式(1)和(2),可算出共振角θsp约为86.6°;
2.根据公式(4),可推算出干涉条纹的周期Λ=96nm;
3.由公式(5)线条特征尺寸R=48nm,满足需要;
4.根据三角形角度之间关系可得出入射光在棱镜中的折射角θr=26.6°;
5.根据光学折射定律推算出入射光的入射角θi=58.4°,此角度确定了入射光在棱镜表面的入射方向;
从而获得亚50nm以下的光刻线条,实现了近λ/9的超分辨极限光刻线条。

Claims (4)

1.一种基于SPP的大面积干涉光刻技术,通过传统衰减全内反射耦合模式的Kretschmann结构装置来加以实现。两宽束TM光对称地入射到高射率棱镜的表面,进入到棱镜里面后,满足动量匹配条件下,在金属下表面产生SPP干涉,形成高分辨率的周期性纳米图形。
2.如权利要求1所述的基于SPP干涉的周期性纳米图形制作方法,其特征在于通过衰减全内反射耦合模式引起SPP干涉来实现制作高分辨率的纳米图形。
3.如权利要求1所述的通过Kretschmann结构来实现SPP干涉的方法,其特征在于利用两束光入射到Kretschmann结构来实现金属下表面两SPP干涉。
4.如权利要求1所述的通过Kretschmann结构来实现SPP大面积干涉的方法,其特征在于利用两束宽入射光入射到Kretschmann结构来实现SPP大面积干涉,从而获得大面积的纳米图形。
CN2009100600902A 2009-07-22 2009-07-22 一种基于spp的大面积干涉光刻技术 Pending CN101963761A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100600902A CN101963761A (zh) 2009-07-22 2009-07-22 一种基于spp的大面积干涉光刻技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100600902A CN101963761A (zh) 2009-07-22 2009-07-22 一种基于spp的大面积干涉光刻技术

Publications (1)

Publication Number Publication Date
CN101963761A true CN101963761A (zh) 2011-02-02

Family

ID=43516685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100600902A Pending CN101963761A (zh) 2009-07-22 2009-07-22 一种基于spp的大面积干涉光刻技术

Country Status (1)

Country Link
CN (1) CN101963761A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354085A (zh) * 2011-09-21 2012-02-15 中国科学技术大学 一种基于导模干涉的超分辨直写光刻机及其光刻方法
CN102621821A (zh) * 2012-04-13 2012-08-01 中国科学院光电技术研究所 一种超长工作距表面等离子体超衍射光刻装置及方法
CN102866580A (zh) * 2012-09-26 2013-01-09 清华大学 一种纳米光刻方法及装置
CN102981371A (zh) * 2012-11-01 2013-03-20 中国科学技术大学 一种基于表面等离子体干涉的可重构亚波长光栅光刻机
CN103048893A (zh) * 2013-01-14 2013-04-17 中国科学技术大学 一种基于导模干涉的偶氮苯聚合物表面起伏光栅光刻机
CN103135358A (zh) * 2011-12-02 2013-06-05 上海微电子装备有限公司 一种多光源的干涉曝光装置
CN103488059A (zh) * 2013-09-25 2014-01-01 中国科学院光电技术研究所 表面等离子体功能结构器件及低能电子的纳米光刻方法
CN111381435A (zh) * 2018-12-28 2020-07-07 国家纳米科学中心 一种表面等离激元掩模板
CN112525859A (zh) * 2020-10-19 2021-03-19 中国科学院微电子研究所 表面等离激元共振传感测量方法、装置及系统
CN112596139A (zh) * 2020-12-18 2021-04-02 中国科学院上海光学精密机械研究所 一种短波范围反射式体光栅的光栅结构写入方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354085A (zh) * 2011-09-21 2012-02-15 中国科学技术大学 一种基于导模干涉的超分辨直写光刻机及其光刻方法
CN103135358B (zh) * 2011-12-02 2015-01-21 上海微电子装备有限公司 一种多光源的干涉曝光装置
CN103135358A (zh) * 2011-12-02 2013-06-05 上海微电子装备有限公司 一种多光源的干涉曝光装置
CN102621821A (zh) * 2012-04-13 2012-08-01 中国科学院光电技术研究所 一种超长工作距表面等离子体超衍射光刻装置及方法
CN102866580A (zh) * 2012-09-26 2013-01-09 清华大学 一种纳米光刻方法及装置
CN102981371A (zh) * 2012-11-01 2013-03-20 中国科学技术大学 一种基于表面等离子体干涉的可重构亚波长光栅光刻机
CN103048893A (zh) * 2013-01-14 2013-04-17 中国科学技术大学 一种基于导模干涉的偶氮苯聚合物表面起伏光栅光刻机
CN103048893B (zh) * 2013-01-14 2014-12-10 中国科学技术大学 一种基于导模干涉的偶氮苯聚合物表面起伏光栅光刻机
CN103488059A (zh) * 2013-09-25 2014-01-01 中国科学院光电技术研究所 表面等离子体功能结构器件及低能电子的纳米光刻方法
CN111381435A (zh) * 2018-12-28 2020-07-07 国家纳米科学中心 一种表面等离激元掩模板
CN112525859A (zh) * 2020-10-19 2021-03-19 中国科学院微电子研究所 表面等离激元共振传感测量方法、装置及系统
CN112525859B (zh) * 2020-10-19 2022-07-01 中国科学院微电子研究所 表面等离激元共振传感测量方法、装置及系统
CN112596139A (zh) * 2020-12-18 2021-04-02 中国科学院上海光学精密机械研究所 一种短波范围反射式体光栅的光栅结构写入方法

Similar Documents

Publication Publication Date Title
CN101963761A (zh) 一种基于spp的大面积干涉光刻技术
Zhu et al. Ultrafine and smooth full metal nanostructures for plasmonics
Wang et al. The investigation of an LSPR refractive index sensor based on periodic gold nanorings array
CN102053491B (zh) 基于表面等离子体共振腔的超深亚波长可调谐纳米光刻结构与方法
CN102636967B (zh) 表面等离子体纳米光刻结构及方法
CN107209293A (zh) 使用远紫外线辐射光刻的材料、组件和方法,及其它应用
Wang et al. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering
Tarun et al. Apertureless optical near-field fabrication using an atomic force microscope on photoresists
Berthod et al. Colloidal photolithography applied to functional microstructure on cylinder based on photopatternable TiO2 sol-gel
Geng et al. Precise tailoring of multiple nanostructures based on atomic layer assembly via versatile soft-templates
Dong et al. Surface plasmon interference lithography with a surface relief metal grating
Chen et al. 16 nm-resolution lithography using ultra-small-gap bowtie apertures
Kim et al. Exploring SERS from complex patterns fabricated by multi-exposure laser interference lithography
Kim et al. Surface plasmon-assisted nano-lithography with a perfect contact aluminum mask of a hexagonal dot array
Ren et al. Theoretical study on fabrication of sub-wavelength structures via combining low-order guided mode interference lithography with sample rotation
Wang et al. Asymmetric angular dependence for multicolor display based on plasmonic inclined-nanopillar array
CN101846880B (zh) 激发表面等离子体的纳米光刻方法
CN101217062A (zh) 一种金属膜及其制造方法
Yu et al. Broadband metallic planar microlenses in an array: the focusing coupling effect
König et al. Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer
Mu et al. Hollow metallic pyramid plasmonic structures fabricated by direct laser writing and electron beam evaporation
US20130208254A1 (en) Nano-photolithographic superlens device and method for fabricating same
CN102866594B (zh) 一种光栅辅助纳米成像的光刻方法
McNab et al. Analytic study of gratings patterned by evanescent near field optical lithography
Yang et al. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110202