CN101957063B - All-weather solar and sewage energy mixed auxiliary heat pump water heater system - Google Patents
All-weather solar and sewage energy mixed auxiliary heat pump water heater system Download PDFInfo
- Publication number
- CN101957063B CN101957063B CN201010508928A CN201010508928A CN101957063B CN 101957063 B CN101957063 B CN 101957063B CN 201010508928 A CN201010508928 A CN 201010508928A CN 201010508928 A CN201010508928 A CN 201010508928A CN 101957063 B CN101957063 B CN 101957063B
- Authority
- CN
- China
- Prior art keywords
- solenoid valve
- energy
- valve
- sewage
- heat pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 239000010865 sewage Substances 0.000 title claims abstract description 55
- 238000001816 cooling Methods 0.000 abstract description 19
- 238000010438 heat treatment Methods 0.000 abstract description 12
- 230000008859 change Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000011010 flushing procedure Methods 0.000 abstract 1
- 230000002262 irrigation Effects 0.000 abstract 1
- 238000003973 irrigation Methods 0.000 abstract 1
- 230000005494 condensation Effects 0.000 description 10
- 238000009833 condensation Methods 0.000 description 10
- 238000010257 thawing Methods 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
本发明公开了一种全天候太阳能与污水能混合辅助热泵热水器系统,本发明能最大程度的利用太阳能和污水能,减少高品位能源的利用,有效解决热泵冬季结霜问题,有比较大的节能效果,全天候的提供热水和供热制冷等特点。通过收集家用优质杂排水,不仅可以有效节约冲厕、家用绿化灌溉用水,而且可以有效利用这些优质杂排水所蕴藏的丰富的冷量热量,提高热泵的制冷制热效率,并可以有效解决热泵冬季结霜。该系统能够完成传统太阳能热水器和热泵的供热水供热制冷的功能,并且相比传统的太阳能热水器和热泵系统,更节能,更能适应气候的变化。
The invention discloses an all-weather solar energy and sewage energy mixed auxiliary heat pump water heater system, which can maximize the utilization of solar energy and sewage energy, reduce the utilization of high-grade energy, effectively solve the problem of heat pump frosting in winter, and have a relatively large energy-saving effect , All-weather hot water and heating and cooling features. By collecting household high-quality miscellaneous drainage, not only can effectively save water for toilet flushing and household greening irrigation, but also can effectively use the abundant cooling and heat contained in these high-quality miscellaneous drainage, improve the cooling and heating efficiency of heat pumps, and can effectively solve the problem of heat pump cooling in winter. Frost. The system can complete the hot water heating and cooling functions of traditional solar water heaters and heat pumps, and compared with traditional solar water heaters and heat pump systems, it is more energy-efficient and more adaptable to climate change.
Description
技术领域 technical field
本发明涉及一种热泵热水器系统,尤其涉及全天候太阳能与污水能混合辅助热泵热水器系统。The invention relates to a heat pump water heater system, in particular to an all-weather solar energy and sewage energy mixed auxiliary heat pump water heater system.
背景技术 Background technique
目前在人们使用的常规能源中,化石能源占有主要地位。但是一方面化石能源属于不可再生能源,随着不断的消耗,可供人们使用的化石能源越来越少;另一方面,在使用化石能源的同时会产生大量二氧化碳和二氧化硫等对环境有害的物质。人类社会常年使用化石能源带来的危害,如能源的枯竭和环境恶化等问题已经相当严重。At present, among the conventional energy sources used by people, fossil energy occupies a dominant position. But on the one hand, fossil energy is a non-renewable energy source. With continuous consumption, there are less and less fossil energy available for people to use; on the other hand, a large amount of environmentally harmful substances such as carbon dioxide and sulfur dioxide will be produced while using fossil energy. . The harm caused by the use of fossil energy by human society all year round, such as the exhaustion of energy and the deterioration of the environment, has become quite serious.
在这种背景下,太阳能作为一种新型清洁的可再生能源越来越引起了人们的重视。太阳能总量巨大,自上世纪90年代以来世界各国都对太阳能利用进行了大量研究。我国也将太阳能作为能源发展的重要领域,投入了大量人力物力进行研究和开发,并且在十一五规划中明确提出要加快发展太阳能等可再生能源。但是太阳能的一些自身缺陷,如能流密度低、随气候变化大等问题大大限制了其利用价值。In this context, solar energy, as a new type of clean and renewable energy, has attracted more and more attention. The total amount of solar energy is huge. Since the 1990s, countries all over the world have conducted a lot of research on the utilization of solar energy. my country also regards solar energy as an important field of energy development, and has invested a lot of manpower and material resources in research and development, and clearly stated in the Eleventh Five-Year Plan that the development of renewable energy such as solar energy should be accelerated. However, some defects of solar energy, such as low energy flux density and large climate change, greatly limit its utilization value.
与此同时,根据建设部《城市居民生活用水量标准(GB/T50331-2002)》的公告,我国长江中下游人均日用水量120L至180L,其中绝大部分为优质杂排水,也就是平均大约有300L左右的污水直接排放到环境,如果能够充分利用这些生活污水余热蕴藏的可利用能,可以达到节水节电的目的。At the same time, according to the announcement of the Ministry of Construction's "Urban Residents' Domestic Water Consumption Standards (GB/T50331-2002)", the per capita daily water consumption in the middle and lower reaches of the Yangtze River in my country is 120L to 180L, most of which are high-quality miscellaneous drainage, which means about About 300L of sewage is directly discharged to the environment. If the available energy stored in the waste heat of these domestic sewage can be fully utilized, the purpose of saving water and electricity can be achieved.
目前普通的太阳能热水器如果想全天候提供所需热水,必须另加辅助电加热器,这样不仅增加了成本,而且降低了其节能效益。而普通的热泵在冬天供暖时,对于长江中下游,某一段时间由于室外气温较低会产生结霜而使制冷量不足,能效比(COP)下降。If the current common solar water heater wants to provide the required hot water around the clock, an auxiliary electric heater must be added, which not only increases the cost, but also reduces its energy-saving benefit. However, when ordinary heat pumps are used for heating in winter, for the middle and lower reaches of the Yangtze River, for a certain period of time, due to the low outdoor temperature, frost will occur, resulting in insufficient cooling capacity and a decrease in energy efficiency ratio (COP).
如能将所收集的污水、太阳能和热泵有机的结合起来,既可以利用污水所储藏的能量降低夏季的冷凝温度,提高制冷能力和COP,同时又可以提高蒸发温度,减缓冬季蒸发器结霜问题,并且和太阳能有机的结合,在不增加太阳能集热器面积、不增加成本的情况下全天候提供热水和根据需求供冷和供热,这对于长江中下游地区的节约用水及节能会起到非常积极的作用。If the collected sewage, solar energy and heat pump can be organically combined, the energy stored in the sewage can be used to reduce the condensation temperature in summer, improve the refrigeration capacity and COP, and at the same time increase the evaporation temperature to slow down the frosting problem of the evaporator in winter , and organically combined with solar energy, it can provide hot water around the clock and provide cooling and heating according to demand without increasing the area of solar collectors or increasing costs, which will play a role in saving water and energy in the middle and lower reaches of the Yangtze River Very positive effect.
发明内容 Contents of the invention
本发明的目的在于针对现有技术的不足,提供一种全天候太阳能与污水能混合辅助热泵热水器系统,它能够利用太阳能及污水等低品位热能源,并且将太阳能,污水能和热泵有机的结合起来,使得系统消耗最少的电能,达到全天候供应热水和根据需求供热制冷,具有较大的节能潜力、实用性和推广性。The purpose of the present invention is to address the deficiencies of the prior art, to provide an all-weather solar energy and sewage energy mixed auxiliary heat pump water heater system, which can utilize low-grade thermal energy such as solar energy and sewage, and organically combine solar energy, sewage energy and heat pump , so that the system consumes the least amount of electric energy to achieve hot water supply around the clock and heating and cooling according to demand, which has great energy-saving potential, practicability and popularization.
本发明的目的是通过以下技术方案来实现的:一种全天候太阳能与污水能混合辅助热泵热水器系统,它包括:压缩机、四通换向阀、冷凝器、三套管换热器、第一节流元件、蒸发器、太阳能集热器、第一水泵、水箱、第二水泵、第一电磁阀、第二电磁阀、污水水箱、第三水泵、第三电磁阀、第四电磁阀、第五电磁阀、第六电磁阀、第七电磁阀、第八电磁阀、第九电磁阀、第十电磁阀、第十一电磁阀、第二节流元件、第十二电磁阀,压缩机的出口通过四通换向阀与冷凝器相连,冷凝器的另一端依次通过第十电磁阀、第九电磁阀与三套管换热器中间通道的入口相连,冷凝器的另一端同时还依次通过第十二电磁阀、第二节流元件、第十一电磁阀与三套管换热器中间通道的入口相连。三套管换热器中间通道的出口分为两路,一路依次通过第六电磁阀、第七电磁阀、四通换向阀与压缩机的入口相连,另一路依次通过第五电磁阀、第一节流元件、蒸发器、第八电磁阀、四通换向阀与压缩机的入口相连。The object of the present invention is achieved through the following technical solutions: an all-weather solar energy and sewage energy mixed auxiliary heat pump water heater system, which includes: a compressor, a four-way reversing valve, a condenser, a three-pipe heat exchanger, a first Throttling element, evaporator, solar collector, first water pump, water tank, second water pump, first solenoid valve, second solenoid valve, sewage water tank, third water pump, third solenoid valve, fourth solenoid valve, first The fifth solenoid valve, the sixth solenoid valve, the seventh solenoid valve, the eighth solenoid valve, the ninth solenoid valve, the tenth solenoid valve, the eleventh solenoid valve, the second throttling element, the twelfth solenoid valve, the compressor The outlet is connected to the condenser through a four-way reversing valve, and the other end of the condenser is connected to the entrance of the middle channel of the three-tube heat exchanger through the tenth solenoid valve and the ninth solenoid valve in turn, and the other end of the condenser is also passed through in turn. The twelfth solenoid valve, the second throttling element, and the eleventh solenoid valve are connected with the inlet of the middle channel of the three-pipe heat exchanger. The outlet of the middle channel of the three-tube heat exchanger is divided into two routes, one route is connected to the inlet of the compressor through the sixth solenoid valve, the seventh solenoid valve, and the four-way reversing valve in sequence, and the other route is connected to the inlet of the compressor through the fifth solenoid valve and the fourth solenoid valve in sequence. A throttling element, an evaporator, an eighth electromagnetic valve, and a four-way reversing valve are connected with the inlet of the compressor.
污水水箱、第三水泵、第三电磁阀、三套管换热器的内层通道、第四电磁阀依次串联成一个回路。水箱、第二电磁阀、三套管换热器外层通道、第二水泵、第一电磁阀依次串联成一个回路。水箱、太阳能集热器和第一水泵依次串联成一个回路。The sewage water tank, the third water pump, the third electromagnetic valve, the inner channel of the three-pipe heat exchanger, and the fourth electromagnetic valve are connected in series to form a circuit. The water tank, the second solenoid valve, the outer channel of the three-pipe heat exchanger, the second water pump, and the first solenoid valve are sequentially connected in series to form a loop. The water tank, the solar heat collector and the first water pump are sequentially connected in series to form a circuit.
本发明与现有技术相比,具有的有益效果:Compared with the prior art, the present invention has the beneficial effects:
1)节能性:本发明通过将污水收集起来,可以在室外气候恶劣的时候,回收其中的部分冷量和热量,夏季降低热泵的冷凝温度,冬季升高热泵的蒸发温度,从而使热泵始终保持在高效运行。1) Energy saving: By collecting the sewage, the present invention can recover part of the cooling capacity and heat when the outdoor climate is bad, reduce the condensation temperature of the heat pump in summer, and increase the evaporation temperature of the heat pump in winter, so that the heat pump can always maintain running efficiently.
2)环保性:充分再利用污水及其余热资源,节约了水资源。2) Environmental protection: Fully reuse sewage and waste heat resources, saving water resources.
3)舒适性:除霜逆向运转时,并不从室内空气取能,而是从污水和热水中取能,可以加快除霜,并且保证室内供热的舒适性。3) Comfort: When defrosting is reversed, energy is not obtained from indoor air, but from sewage and hot water, which can speed up defrosting and ensure the comfort of indoor heating.
4)全天候性:太阳能和污水能的加入,使得可以省去热泵和太阳能的辅助加热器,并且保证热泵冬季的供热量,和太阳能在阴雨季节的集热不足的问题。4) All-weather: The addition of solar energy and sewage energy makes it possible to save the auxiliary heater of the heat pump and solar energy, and ensure the heat supply of the heat pump in winter, and the problem of insufficient heat collection of solar energy in the rainy season.
附图说明 Description of drawings
图1是全天候太阳能与污水能混合辅助热泵热水器系统流程图;Figure 1 is a flow chart of the all-weather solar energy and sewage energy mixed auxiliary heat pump water heater system;
图中:压缩机1、四通换向阀2、冷凝器3、三套管换热器4、第一节流元件5、蒸发器6、太阳能集热器7、第一水泵8、水箱9、第二水泵10、第一电磁阀11、第一截断阀12、第二电磁阀13、第二截断阀14、污水水箱15、第三截断阀16、第三水泵17、第三电磁阀18、第四电磁阀19、第四截断阀20、第五电磁阀21、第六电磁阀22、第七电磁阀23、第八电磁阀24、第九电磁阀25、第十电磁阀26、第十一电磁阀27、第二节流元件28、第十二电磁阀29。In the figure:
具体实施方式 Detailed ways
如图1所示,本发明全天候太阳能与污水能混合辅助热泵热水器系统,它包括:压缩机1、四通换向阀2、冷凝器3、三套管换热器4、第一节流元件5、蒸发器6、太阳能集热器7、第一水泵8、水箱9、第二水泵10、第一电磁阀11、第二电磁阀13、污水水箱15、第三水泵17、第三电磁阀18、第四电磁阀19、第五电磁阀21、第六电磁阀22、第七电磁阀23、第八电磁阀24、第九电磁阀25、第十电磁阀26、第十一电磁阀27、第二节流元件28、第十二电磁阀29。As shown in Figure 1, the all-weather solar energy and sewage energy mixed auxiliary heat pump water heater system of the present invention includes: a
压缩机1的出口通过四通换向阀2与冷凝器3相连,冷凝器3的另一端依次通过第十电磁阀26、第九电磁阀25与三套管换热器4中间通道的入口相连,冷凝器3的另一端同时还依次通过第十二电磁阀29、第二节流元件28、第十一电磁阀27与三套管换热器4中间通道的入口相连。三套管换热器4中间通道的出口分为两路,一路依次通过第六电磁阀22、第七电磁阀23、四通换向阀2与压缩机1的入口相连,另一路依次通过第五电磁阀21、第一节流元件5、蒸发器6、第八电磁阀24、四通换向阀2与压缩机1的入口相连。The outlet of the
污水水箱15、第三水泵17、第三电磁阀18、三套管换热器4内层通道、第四电磁阀19依次串联成一个回路。The
水箱9、第二电磁阀13、三套管换热器4外层通道、第二水泵10、第一电磁阀11依次串联成一个回路。The water tank 9 , the second
水箱9、太阳能集热器7和第一水泵8依次串联成一个回路。The water tank 9, the solar heat collector 7 and the first water pump 8 are sequentially connected in series to form a circuit.
本发明的全天候太阳能与污水能混合辅助热泵热水器系统还包括第二截断阀14、第三截断阀16、第四截断阀20和第一截断阀12。第二截断阀14用于补充污水水箱15的水,第三截断阀16用于排出污水水箱15的水,第四截断阀20用于补充水箱9的水,第一截断阀12用于排出水箱9的水。但这四个部件并不是必须的。The all-weather solar energy and sewage energy hybrid auxiliary heat pump water heater system of the present invention also includes a second cut-off valve 14 , a third cut-off
本发明的工作过程为:Working process of the present invention is:
它有七种工作模式:①夏季晴天工作模式。热水由太阳能集热器提供。热泵制冷运行,白天当检测到有污水时,第三电磁阀18和第四电磁阀19打开,当污水温度超过35度时,关闭第三电磁阀18和第四电磁阀19,打开第三截断阀16,排掉污水,这时冷凝器3风扇开启,采用风冷。夜晚当检测到水箱温度低于30度时,第一电磁阀11和第二电磁阀13开启,当水温高于45度时,关闭第一电磁阀11和第二电磁阀13,这时冷凝器3风扇开启,采用风冷。②夏季阴雨天工作模式。热水先由冷凝器加热至45度。热泵制冷运行,白天当检测到有污水时,第四电磁阀18和第五电磁阀19打开,当污水温度超过35度时,关闭第四电磁阀18和第五电磁阀19,打开第三截断阀16,排掉污水,这时冷凝器3风扇开启,采用风冷。夜晚当检测到水箱温度低于30度时,第一电磁阀11和第二电磁阀13开启,当水温高于45度时,关闭第一电磁阀11和第二电磁阀13,这时冷凝器3风扇开启,用风冷。③过渡季晴天。热水由太阳能集热器提供。④过渡季阴雨天。热水由热泵提供。热泵运行时,第六电磁阀22、第七电磁阀23、第十一电磁阀27、第十二电磁阀29开启,第五电磁阀21、第八电磁阀24、第九电磁阀25、第十电磁阀26关闭⑤冬季晴天。热水由太阳能集热器提供。热泵供热运行,第五电磁阀21、第八电磁阀24、第九电磁阀25、第十电磁阀26开启,第六电磁阀22、第七电磁阀23、第十一电磁阀27、第十二电磁阀29关闭。当检测到冷凝蒸发器3结霜到一定厚度时,第三电磁阀18、第四电磁阀19开启,冷凝蒸发器3风扇停止运行。⑥冬季阴雨天。热水由白天不供热时,热泵提供,第一电磁阀11、第二电磁阀13开启,第二水泵10运行,第六电磁阀22、第七电磁阀23、第十一电磁阀27、第十二电磁阀29开启,第五电磁阀21、第八电磁阀24、第九电磁阀25、第十电磁阀26关闭。需要供热时,第一电磁阀11、第二电磁阀13关闭,第五电磁阀21、第八电磁阀24、第九电磁阀25、第十电磁阀26开启,第六电磁阀22、第七电磁阀23、第十一电磁阀27、第十二电磁阀29关闭。当检测到冷凝蒸发器3结霜到一定厚度时,第三电磁阀18、第四电磁阀19开启,冷凝蒸发器3风扇停止运行。⑦除霜运行模式。当传感器检测到需要除霜时,第五电磁阀21、第八电磁阀24、第九电磁阀25、第十电磁阀26关闭,第六电磁阀22、第七电磁阀23、第十一电磁阀27、第十二电磁阀29开启,第三电磁阀18、第四电磁阀19开启,第三水泵17开启。热泵制冷运行。It has seven working modes: ① summer sunny working mode. Hot water is provided by solar collectors. The heat pump operates in cooling mode. When sewage is detected during the day, the
该系统运行可行性分析:The system operation feasibility analysis:
根据住房与城乡建设部提供的数据,长江中下游日人均用水量为120L到180L,那么平均每个家庭每日可回收生活污水300L左右,这里就按每天收集污水300L计算。取收集污水温度,空调季节(6、7、8月)平均温度25度,供热季节(12、1、2月)平均温度12度。According to the data provided by the Ministry of Housing and Urban-Rural Development, the daily water consumption per capita in the middle and lower reaches of the Yangtze River is 120L to 180L, so the average household can recycle about 300L of domestic sewage per day. The collected sewage temperature is taken, the average temperature is 25 degrees in the air-conditioning season (June, July and August), and the average temperature in the heating season (December, January and February) is 12 degrees.
夏季用污水来冷却冷凝器,当量冷凝温度约30度,而采用风冷时当量冷凝温度约35度,这样如果利用污水,有利于降低冷凝温度,进而提高热泵运行的经济性。如按夏季2kW制冷量总开机时间10小时计算,利用污水冷却冷凝器可以持续运行1.75小时,风冷和热水冷却占8.25小时。经计算得到,理想情况下,日平均能效比(COP)提高约6%以上。In summer, sewage is used to cool the condenser, and the equivalent condensation temperature is about 30 degrees, while the equivalent condensation temperature is about 35 degrees when air cooling is used, so if sewage is used, it is beneficial to reduce the condensation temperature and improve the economy of heat pump operation. For example, based on the total start-up time of 10 hours for 2kW cooling capacity in summer, the condenser can be continuously operated for 1.75 hours by using sewage cooling, and 8.25 hours for air cooling and hot water cooling. It is calculated that, ideally, the daily average energy efficiency ratio (COP) is increased by more than 6%.
冬季当室外温度比较低的时候,利用所收集的污水来除霜,假设开始除霜时,霜层厚度0.5mm,霜层厚度300kg/m3(由于霜层密度是室外气象参数,霜层厚度的函数,是一个变化的参数,这里根据文献给出结霜2小时后的密度作为参考)。冷凝换热器全换热面积3.6m2,那么霜层质量0.54kg,一次除霜消耗能量大约180.9kJ。如果按照热泵COP为3计算,每除霜一次需要从污水里取用能量大约120kJ,而除霜十次(一小时除霜一次)需要能耗1200kJ。300L污水从12℃度降低到6℃所能提供的能量7560kJ。对于长江中下游,所收集的300L污水,已足够除霜用。In winter, when the outdoor temperature is relatively low, use the collected sewage to defrost. Assume that when the defrosting starts, the thickness of the frost layer is 0.5mm, and the thickness of the frost layer is 300kg/ m3 (since the density of the frost layer is an outdoor meteorological parameter, the thickness of the frost layer The function of is a variable parameter, and the density after 2 hours of frosting is given as a reference according to the literature). The total heat exchange area of the condensing heat exchanger is 3.6m 2 , so the mass of the frost layer is 0.54kg, and the energy consumed by one defrosting is about 180.9kJ. If the heat pump COP is calculated as 3, about 120kJ of energy needs to be taken from the sewage for each defrost, and 1200kJ of energy is required for ten defrosts (one defrost per hour). 300L of sewage can provide 7560kJ of energy when the temperature is lowered from 12°C to 6°C. For the middle and lower reaches of the Yangtze River, 300L of sewage collected is enough for defrosting.
当冬季室外温度不太低,不需除霜的时候,可以充分利用污水中的热能,当室外气温低于污水冬季季平均温度的时候,利用污水源,可以提高蒸发温度,进而提高热泵的能效。经计算,理想情况下,日平均COP可以提高约9%以上。When the outdoor temperature is not too low in winter and no defrosting is required, the heat energy in the sewage can be fully utilized. When the outdoor temperature is lower than the average temperature of the sewage in winter, the evaporation temperature can be increased by using the sewage source, thereby improving the energy efficiency of the heat pump. . According to calculations, ideally, the daily average COP can be increased by more than 9%.
过渡季时候,假设过渡季6个月,有一个月需用热泵加热热水,其余5各月由太阳能集热器提供,传统太阳能加电加热的COP为6(即消耗一份电产生了6份热),而此系统在过渡季理想情况下能节约电能约65%以上,有明显节能优势。During the transitional season, assuming that the transitional season is 6 months, a heat pump is required to heat hot water for one month, and solar collectors are used for the remaining 5 months. The COP of traditional solar power heating is 6 (that is, consuming a share of electricity produces 6 Partial heat), and this system can save more than 65% of electric energy under ideal conditions in the transition season, which has obvious energy-saving advantages.
所述发明全天候太阳能与污水能混合辅助热泵热水器系统通过将污水收集起来,可以在室外气候恶劣的时候,回收其中的部分冷量和热量,夏季降低热泵的冷凝温度,冬季升高热泵的蒸发温度,从而使热泵始终保持在高效运行。The all-weather solar energy and sewage energy mixed auxiliary heat pump water heater system of the invention can recover part of the cold and heat when the outdoor climate is bad by collecting sewage, reducing the condensation temperature of the heat pump in summer and increasing the evaporation temperature of the heat pump in winter , so that the heat pump is always running efficiently.
所述发明全天候太阳能与污水能混合辅助热泵热水器系统充分再利用污水及其余热资源,节约了水资源。Said invention mixes all-weather solar energy and sewage energy to assist the heat pump water heater system to fully reuse sewage and waste heat resources, saving water resources.
所述发明全天候太阳能与污水能混合辅助热泵热水器系统除霜逆向运转时,并不从室内空气取能,而是从污水和热水中取能,可以加快除霜,并且保证室内供热的舒适性。Said invention mixes all-weather solar energy and sewage energy to assist the defrosting and reverse operation of the heat pump water heater system. It does not take energy from indoor air, but from sewage and hot water, which can speed up defrosting and ensure the comfort of indoor heating. sex.
所述发明全天候太阳能与污水能混合辅助热泵热水器系统太阳能和污水能的加入,使得可以省去热泵和太阳能的辅助加热器,并且保证热泵冬季的供热量,和太阳能在阴雨季节的集热不足的问题。Said invention mixes all-weather solar energy and sewage energy to assist the heat pump water heater system. The addition of solar energy and sewage energy makes it possible to omit the auxiliary heater of the heat pump and solar energy, and ensure the heat supply of the heat pump in winter, and the insufficient heat collection of solar energy in the rainy season The problem.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010508928A CN101957063B (en) | 2010-10-15 | 2010-10-15 | All-weather solar and sewage energy mixed auxiliary heat pump water heater system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010508928A CN101957063B (en) | 2010-10-15 | 2010-10-15 | All-weather solar and sewage energy mixed auxiliary heat pump water heater system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101957063A CN101957063A (en) | 2011-01-26 |
CN101957063B true CN101957063B (en) | 2012-10-03 |
Family
ID=43484546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010508928A Expired - Fee Related CN101957063B (en) | 2010-10-15 | 2010-10-15 | All-weather solar and sewage energy mixed auxiliary heat pump water heater system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101957063B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102563866A (en) * | 2012-02-03 | 2012-07-11 | 广东纽恩泰新能源科技发展有限公司 | Commercial air-source heat pump water heating device with stepping adjustable power |
CN105402803A (en) * | 2015-12-18 | 2016-03-16 | 山东力诺瑞特新能源有限公司 | Multi-energy household heating system |
CN110307673B (en) * | 2019-06-22 | 2021-09-28 | 太原理工大学 | Solar energy synergistic heat pump system |
CN110307669B (en) * | 2019-06-22 | 2021-09-28 | 太原理工大学 | Solar energy synergy multi-mode heating device based on compression heat pump circulation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1865783A (en) * | 2006-06-15 | 2006-11-22 | 康树人 | Bathing waste water heat -reclaiming and solar-heating bathing device |
JP2007170690A (en) * | 2005-12-19 | 2007-07-05 | Sharp Corp | Heat pump water heater and control method of the heat pump water heater |
KR100903765B1 (en) * | 2008-07-11 | 2009-06-18 | 박정식 | Central cooling and heating supply system using solar heat and shrinkage heat pump |
CN101504190A (en) * | 2009-03-11 | 2009-08-12 | 黄邦兴 | Waste hot water waste heat recovery type heat pump water heating system |
-
2010
- 2010-10-15 CN CN201010508928A patent/CN101957063B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007170690A (en) * | 2005-12-19 | 2007-07-05 | Sharp Corp | Heat pump water heater and control method of the heat pump water heater |
CN1865783A (en) * | 2006-06-15 | 2006-11-22 | 康树人 | Bathing waste water heat -reclaiming and solar-heating bathing device |
KR100903765B1 (en) * | 2008-07-11 | 2009-06-18 | 박정식 | Central cooling and heating supply system using solar heat and shrinkage heat pump |
CN101504190A (en) * | 2009-03-11 | 2009-08-12 | 黄邦兴 | Waste hot water waste heat recovery type heat pump water heating system |
Also Published As
Publication number | Publication date |
---|---|
CN101957063A (en) | 2011-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104006574B (en) | A kind of composite solar air source heat pump | |
CN102494437B (en) | Cross-season energy storage cooling and heating system | |
US10260763B2 (en) | Method and apparatus for retrofitting an air conditioning system using all-weather solar heating | |
CN107270580B (en) | An energy-storage composite solar collector and heat pump combined cooling and heating system | |
CN100420902C (en) | Total heat recovery fresh air energy-saving system using solar phase change heat storage | |
CN204084946U (en) | A kind of single evaporator type solar air source combined heat-pump | |
CN103335454A (en) | Air source heat pump device with solar hot water auxiliary defrosting function and use method thereof | |
CN202485071U (en) | Solar phase change heat storage and capillary network radiant heating device | |
CN105783278B (en) | A kind of fluorine pump and heat pump composite heat storage type direct expanding solar heating water system | |
CN102313329A (en) | Solar energy and air energy ground source air conditioning plant with geothermy balance and energy storage device | |
CN104251573A (en) | Single-evaporator-type solar energy and air source combined heat pump and running method thereof | |
CN206131520U (en) | Complemental confession warm air conditioner system in multipotency source | |
CN107036155B (en) | Double-heat source heat pump-solar energy combined heating system and method | |
CN106247681A (en) | A kind of self energizing mixed type double heat source heat pump heating air-conditioner system of wind light mutual complementing | |
CN106016825A (en) | Solar and air source heat pump dual heat source tri-generation system | |
CN101957063B (en) | All-weather solar and sewage energy mixed auxiliary heat pump water heater system | |
CN100467964C (en) | An air-conditioning device utilizing a variety of natural and environmentally friendly energy sources | |
CN203364507U (en) | Air source heat pump device with solar hot water assisting in defrosting | |
CN203757910U (en) | Solar seasonal soil heat storage and heat pump combined heating and air conditioning system | |
CN203223971U (en) | Multi-energy intelligent coupling system | |
CN202254045U (en) | Air-conditioning unit utilizing solar energy, air energy and geothermal energy | |
CN202304087U (en) | Energy-saving multifunctional air-conditioning water heater all-in-one machine | |
CN201582985U (en) | Air-source heat-pump water heater | |
CN103644616A (en) | Heat pump heating and air conditioning hybrid system with solar seasonal soil heat storage | |
CN219103112U (en) | Multi-energy coupled low-carbon energy supply system in existing communities in cold regions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121003 Termination date: 20151015 |
|
EXPY | Termination of patent right or utility model |