CN101956090A - Method for preparing nano porous copper by adopting Cu-Zn alloy - Google Patents

Method for preparing nano porous copper by adopting Cu-Zn alloy Download PDF

Info

Publication number
CN101956090A
CN101956090A CN2010101056491A CN201010105649A CN101956090A CN 101956090 A CN101956090 A CN 101956090A CN 2010101056491 A CN2010101056491 A CN 2010101056491A CN 201010105649 A CN201010105649 A CN 201010105649A CN 101956090 A CN101956090 A CN 101956090A
Authority
CN
China
Prior art keywords
alloy
minutes
electrode
nano porous
porous copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010101056491A
Other languages
Chinese (zh)
Other versions
CN101956090B (en
Inventor
梁淑华
毛蓉
邹军涛
王献辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN2010101056491A priority Critical patent/CN101956090B/en
Publication of CN101956090A publication Critical patent/CN101956090A/en
Application granted granted Critical
Publication of CN101956090B publication Critical patent/CN101956090B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

The invention discloses a method for preparing nano porous copper by adopting Cu-Zn alloy. The method comprises the following steps of: preparing copper and zinc in a proportion that the copper is 60 weight percent or 70 weight percent or 80 weight percent of the zinc under the protection of nitrogen to obtain alloys by adopting a smelt technology; carrying out Tafel curve testing by taking a 1M NaCl solution as an electrolyte and utilizing a three-electrode method to obtain easies corrosion voltages of different alloys; carrying out water bath at 50-70 DEG C in the 1M NaCl solution under the condition that the volume ratio of corrosive liquid to the alloy volume is (1,000-1,500):1; carrying out electrochemical corrosion on the alloys under the easies corrosion voltages; dropwise adding 1-2ml of concentrated NH3.H2O solution every other 20 minutes to ensure that the electrolyte contains certain complex compounds to promote the reaction; and stopping the reaction until the cathode does not discharge obvious bubbles any more to obtain the nano porous copper. The nano porous copper prepared through the method has the advantages that the aperture is fine and small, the ligament outline is clear, the aperture is 50-200nm, and the ligament width is 70-100nm.

Description

A kind of Cu-Zn of employing alloy prepares the method for nano porous copper
Technical field
The invention belongs to the nano porous metal technical field of material, being specifically related to the Cu-Zn alloy is matrix, utilizes electrochemical method to prepare the method for nano porous copper.
Background technology
The metal nano porous material not only has the big internal surface area of nano material, high porosity and uniform nanoporous, and excellent properties such as high thermal conductivity, high conductivity with metallic substance are anticorrosive, antifatigue, thereby make it on catalysis and separation science, have important use.The surface effects and the dimensional effect that are shown of metal nano porous material makes it at aspects such as electronics, optics, microfluid and micromechanics great application prospect be arranged in addition.
The correlative study of nano porous copper at present mainly is by to Zr-Cu, Mn-Cu, Mg-Cu, binary alloy systems such as Al-Cu are taken off alloy treatment, all prepared nano porous copper, preparation is complicated but the defective of these methods is matrix alloy, and price is higher, aperture big or small inhomogeneous, tough belt profile is unintelligible.
Summary of the invention
The object of the invention provides a kind of preparation method of nano porous copper, can prepare that the aperture is tiny evenly, the nano porous copper of ligament clear-cut, reaches aperture 50~200nm, tough bandwidth 70~100nm.
The technical solution adopted in the present invention is, a kind of Cu-Zn of employing alloy prepares the method for nano porous copper, implement according to following steps,
Step 1 takes by weighing pure copper powder and pure spelter according to weight percent Cu-wt60%Zn or Cu-wt70%Zn or Cu-wt80%Zn;
Step 2, pure copper powder and pure spelter that step 1 is taken by weighing place plumbago crucible, carry out melting under the nitrogen protection, earlier be heated to 500~520 ℃ from room temperature through 20~30 minutes, and be incubated 30~40 minutes minutes, be heated to 920~950 ℃ through 30~40 minutes again, and be incubated 50~60 minutes, cooled to 330~350 ℃ through 100~120 minutes, and be incubated 100~120 minutes, cool to room temperature then with the furnace, obtain alloy Cu-wt60%Zn or alloy Cu-wt70%Zn or alloy Cu-wt80%Zn;
Step 3, the NaCl solution of preparation 1M is as electrolytic solution, in CHI660D type electrochemical workstation, with the mercurous chloride electrode is reference electrode, platinum electrode is a supporting electrode, utilize three-electrode method to carry out the test of Ta Feier curve, obtain the most perishable voltage of alloy Cu-wt60%Zn or alloy Cu-wt70%Zn or alloy Cu-wt80%Zn respectively;
Step 4, the most perishable voltage that utilizes step 3 to obtain in MCP-1 type potentiostat, is reference electrode with the mercurous chloride electrode, platinum electrode is a supporting electrode, the NaCl solution of 1M is as electrolytic solution, and bath temperature is 50~70 ℃, and corrosive fluid and alloy are 1000~1500: 1 by volume, adopt potentiostatic method, under the most perishable voltage, alloy is carried out galvanic corrosion,, in electrolytic solution, drip dense NH simultaneously every 20 minutes 3H 2O solution 1~2ml when negative electrode no longer includes tangible bubble and emits, promptly obtains nano porous copper.
Characteristics of the present invention also are,
The purity of pure copper powder is 99.9%.
The purity of pure spelter is 99.9%.
It is matrix that the inventive method adopts the Cu-Zn alloy of relatively economical, uses the NaCl and the NH of environmentally safe 3H 2O utilizes the method for galvanic corrosion as corrosive fluid, and the preparation aperture is tiny evenly, the nano porous copper of ligament clear-cut.
Description of drawings
Fig. 1 is a preparation method's of the present invention schema;
Fig. 2 is the surperficial SEM photo that obtains superfine foam copper after the Cu-wt80%Zn corrosion;
Fig. 3 is the section SEM photo that obtains superfine foam copper after the Cu-wt80%Zn corrosion.
Embodiment
The present invention is described in detail below in conjunction with the drawings and specific embodiments.
Embodiment 1
Cu-wt60%Zn takes by weighing copper powder 60g (purity 99.9%) and pure spelter 90g (purity 99.9%) by weight percentage, places plumbago crucible, carries out melting under nitrogen protection.The main technique of melting is: from room temperature, be heated to 520 ℃ through 20 minutes, 520 ℃ of insulations 40 minutes, be heated to 950 ℃ through 40 minutes again, 950 ℃ of insulations 60 minutes, cool to 350 ℃ through 120 minutes, 350 ℃ of insulations 120 minutes, cool to room temperature then with the furnace, obtain alloy Cu-wt60%Zn.
Preparation 1M NaCl solution is as electrolytic solution, in CHI660D type electrochemical workstation, be reference electrode with the mercurous chloride electrode, platinum electrode is a supporting electrode, utilize three-electrode method to carry out the test of Ta Feier curve, the most perishable voltage that obtains alloy Cu-wt60%Zn is 0.9V.
The most perishable voltage that the step obtains in the utilization, in MCP-1 type potentiostat, with the mercurous chloride electrode is reference electrode, and platinum electrode is a supporting electrode, and the NaCl solution of 1M is as electrolytic solution, bath temperature is 70 ℃, corrosive fluid and alloy Cu-wt60%Zn are 1500: 1 by volume, adopt potentiostatic method, under the voltage of the most perishable voltage 0.9V alloy are carried out galvanic corrosion, every 20 minutes, in electrolytic solution, drip dense NH simultaneously 3H 2O solution 1~2ml when negative electrode no longer includes tangible bubble and emits, promptly obtains nano porous copper.
Embodiment 2
Cu-wt70%Zn takes by weighing copper powder 45g (purity 99.9%) and pure spelter 105g (purity 99.9%) by weight percentage, places plumbago crucible, carries out melting under nitrogen protection.The main technique of melting is: from room temperature, be heated to 510 ℃ through 25 minutes, 510 ℃ of insulations 35 minutes, be heated to 940 ℃ through 35 minutes again, 940 ℃ of insulations 50 minutes, cool to 340 ℃ through 110 minutes, 340 ℃ of insulations 110 minutes, cool to room temperature then with the furnace, obtain alloy Cu-wt70%Zn.
Preparation 1M NaCl solution is as electrolytic solution, in CHI660D type electrochemical workstation, be reference electrode with the mercurous chloride electrode, platinum electrode is a supporting electrode, utilize three-electrode method to carry out the test of Ta Feier curve, the most perishable voltage that obtains alloy Cu-wt70%Zn is 1.0V.
The most perishable voltage that the step obtains in the utilization, in MCP-1 type potentiostat, with the mercurous chloride electrode is reference electrode, and platinum electrode is a supporting electrode, and the NaCl solution of 1M is as electrolytic solution, bath temperature is 60 ℃, corrosive fluid and alloy Cu-wt70%Zn are 1200: 1 by volume, adopt potentiostatic method, at the most perishable voltage are under the voltage of 1.0V alloy to be carried out galvanic corrosion, every 20 minutes, in electrolytic solution, drip dense NH simultaneously 3H 2O solution 1~2ml when negative electrode no longer includes tangible bubble and emits, promptly obtains nano porous copper.
Embodiment 3
Cu-wt80%Zn takes by weighing copper powder 30g (purity 99.9%) and pure spelter 120g (purity 99.9%) by weight percentage, places plumbago crucible, carries out melting under nitrogen protection.The main technique of melting is: from room temperature, be heated to 500 ℃ through 30 minutes, 500 ℃ of insulations 30 minutes, be heated to 920 ℃ through 30 minutes again, 920 ℃ of insulations 60 minutes, cool to 330 ℃ through 100 minutes, 330 ℃ of insulations 100 minutes, cool to room temperature then with the furnace, obtain alloy Cu-wt80%Zn.
Preparation 1M NaCl solution is as electrolytic solution, in CHI660D type electrochemical workstation, be reference electrode with the mercurous chloride electrode, platinum electrode is a supporting electrode, utilize three-electrode method to carry out the test of Ta Feier curve, the most perishable voltage that obtains alloy Cu-wt80%Zn is 1.25V.
The most perishable voltage that utilizes aforesaid method to obtain, in MCP-1 type potentiostat, with the mercurous chloride electrode is reference electrode, and platinum electrode is a supporting electrode, and 1M NaCl solution is as electrolytic solution, 50 ℃ of water-baths, corrosive fluid and alloy Cu-wt80%Zn are 1000: 1 by volume, adopt potentiostatic method, at the most perishable voltage are under the voltage of 1.25V alloy to be carried out galvanic corrosion, every 20 minutes, in electrolytic solution, drip dense NH simultaneously 3H 2O solution 1~2ml makes and contains certain title complex in the electrolytic solution, promotes reaction to carry out.To negative electrode not when having tangible bubble to emit, reaction stops, and promptly obtains nano porous copper.
The surperficial SEM photo of the nano porous copper that obtains and section SEM photo such as Fig. 2, shown in Figure 3, the preparation aperture is tiny evenly, the nano porous copper of ligament clear-cut, aperture 50~200nm, tough bandwidth 70~100nm.

Claims (3)

1. a method that adopts the Cu-Zn alloy to prepare nano porous copper is characterized in that, implement according to following steps,
Step 1 takes by weighing pure copper powder and pure spelter according to weight percent Cu-wt60%Zn or Cu-wt70%Zn or Cu-wt80%Zn;
Step 2, pure copper powder and pure spelter that step 1 is taken by weighing place plumbago crucible, carry out melting under the nitrogen protection, earlier be heated to 500~520 ℃ from room temperature through 20~30 minutes, and be incubated 30~40 minutes minutes, be heated to 920~950 ℃ through 30~40 minutes again, and be incubated 50~60 minutes, cooled to 330~350 ℃ through 100~120 minutes, and be incubated 100~120 minutes, cool to room temperature then with the furnace, obtain alloy Cu-wt60%Zn or alloy Cu-wt70%Zn or alloy Cu-wt80%Zn;
Step 3, the NaCl solution of preparation 1M is as electrolytic solution, in CHI660D type electrochemical workstation, with the mercurous chloride electrode is reference electrode, platinum electrode is a supporting electrode, utilize three-electrode method to carry out the test of Ta Feier curve, obtain the most perishable voltage of alloy Cu-wt60%Zn or alloy Cu-wt70%Zn or alloy Cu-wt80%Zn;
Step 4, the most perishable voltage that utilizes step 3 to obtain in MCP-1 type potentiostat, is reference electrode with the mercurous chloride electrode, platinum electrode is a supporting electrode, the NaCl solution of 1M is as electrolytic solution, and bath temperature is 50~70 ℃, and corrosive fluid and alloy are 1000~1500: 1 by volume, adopt potentiostatic method, under the most perishable voltage, alloy is carried out galvanic corrosion,, in electrolytic solution, drip dense NH simultaneously every 20 minutes 3H 2O solution 1~2ml when negative electrode no longer includes tangible bubble and emits, promptly obtains nano porous copper.
2. method according to claim 1 is characterized in that, the purity of described pure copper powder is 99.9%.
3. method according to claim 1 is characterized in that, the purity of described pure spelter is 99.9%.
CN2010101056491A 2010-02-04 2010-02-04 Method for preparing nano porous copper by adopting Cu-Zn alloy Expired - Fee Related CN101956090B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101056491A CN101956090B (en) 2010-02-04 2010-02-04 Method for preparing nano porous copper by adopting Cu-Zn alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101056491A CN101956090B (en) 2010-02-04 2010-02-04 Method for preparing nano porous copper by adopting Cu-Zn alloy

Publications (2)

Publication Number Publication Date
CN101956090A true CN101956090A (en) 2011-01-26
CN101956090B CN101956090B (en) 2012-01-11

Family

ID=43483674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101056491A Expired - Fee Related CN101956090B (en) 2010-02-04 2010-02-04 Method for preparing nano porous copper by adopting Cu-Zn alloy

Country Status (1)

Country Link
CN (1) CN101956090B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766893A (en) * 2012-07-24 2012-11-07 上海交通大学 Preparation method of nano porous copper capable of being patterned
CN103643065A (en) * 2013-12-31 2014-03-19 内蒙古蒙西高新技术集团有限公司 Novel preparation method of copper zinc alloy powder for preparing diethyl zinc
CN103695677A (en) * 2013-12-31 2014-04-02 内蒙古蒙西高新技术集团有限公司 Industrial preparation method of copper-zinc alloy powder for preparing diethyl zinc
CN108199003A (en) * 2017-12-27 2018-06-22 长安大学 A kind of big/mesoporous antimony cathode of three-dimensional, preparation method and applications
CN109468512A (en) * 2018-12-06 2019-03-15 太原理工大学 A kind of preparation method of porous surface magnesium alloy
CN110656297A (en) * 2019-10-17 2020-01-07 北京化工大学 Method for preparing high-conductivity porous copper foil based on brass strip
CN111485277A (en) * 2020-03-27 2020-08-04 绍兴市俱和环保科技有限公司 Method for preparing porous liquid absorption core
CN111736378A (en) * 2020-06-17 2020-10-02 Tcl华星光电技术有限公司 Substrate, preparation method thereof and display panel
TWI761099B (en) * 2021-02-05 2022-04-11 鴻海精密工業股份有限公司 Three-dimensional graded and layered porous copper and preparation method thereof
WO2023103292A1 (en) * 2021-12-10 2023-06-15 江阴纳力新材料科技有限公司 Composite current collector, manufacturing method, electrode sheet and lithium battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101590528A (en) * 2009-06-19 2009-12-02 山东大学 A kind of preparation method of nano porous copper
CN101596598B (en) * 2009-07-01 2011-06-22 济南大学 Preparation method of whole continuous nano-porous copper

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766893A (en) * 2012-07-24 2012-11-07 上海交通大学 Preparation method of nano porous copper capable of being patterned
CN102766893B (en) * 2012-07-24 2014-12-10 上海交通大学 Preparation method of nano porous copper capable of being patterned
CN103643065A (en) * 2013-12-31 2014-03-19 内蒙古蒙西高新技术集团有限公司 Novel preparation method of copper zinc alloy powder for preparing diethyl zinc
CN103695677A (en) * 2013-12-31 2014-04-02 内蒙古蒙西高新技术集团有限公司 Industrial preparation method of copper-zinc alloy powder for preparing diethyl zinc
CN108199003A (en) * 2017-12-27 2018-06-22 长安大学 A kind of big/mesoporous antimony cathode of three-dimensional, preparation method and applications
CN109468512A (en) * 2018-12-06 2019-03-15 太原理工大学 A kind of preparation method of porous surface magnesium alloy
CN110656297A (en) * 2019-10-17 2020-01-07 北京化工大学 Method for preparing high-conductivity porous copper foil based on brass strip
CN110656297B (en) * 2019-10-17 2021-01-12 北京化工大学 Method for preparing high-conductivity porous copper foil based on brass strip
CN111485277A (en) * 2020-03-27 2020-08-04 绍兴市俱和环保科技有限公司 Method for preparing porous liquid absorption core
CN111736378A (en) * 2020-06-17 2020-10-02 Tcl华星光电技术有限公司 Substrate, preparation method thereof and display panel
US11822173B2 (en) 2020-06-17 2023-11-21 Tcl China Star Optoelectronics Technology Co., Ltd. Substrate and manufacturing method thereof and display panel
TWI761099B (en) * 2021-02-05 2022-04-11 鴻海精密工業股份有限公司 Three-dimensional graded and layered porous copper and preparation method thereof
US11660839B2 (en) 2021-02-05 2023-05-30 Tsinghua University Three-dimensional hierarchical layered porous copper and method for making the same
WO2023103292A1 (en) * 2021-12-10 2023-06-15 江阴纳力新材料科技有限公司 Composite current collector, manufacturing method, electrode sheet and lithium battery

Also Published As

Publication number Publication date
CN101956090B (en) 2012-01-11

Similar Documents

Publication Publication Date Title
CN101956090B (en) Method for preparing nano porous copper by adopting Cu-Zn alloy
Wang et al. Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid
He et al. Electrochemical behavior of Co (II) reduction for preparing nanocrystalline Co catalyst for hydrogen evolution reaction from 1-ethyl-3-methylimidazolium bisulfate and ethylene glycol system
Guo et al. Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations
Snihirova et al. Synergistic mixture of electrolyte additives: A route to a high-efficiency Mg–Air battery
Nikitin et al. Features of hydrogen evolution during electrodeposition of loose deposits of copper, nickel and zinc
HK1143194A1 (en) Method to electrodeposit metals using ionic liquids in the presence of an additive
Guo et al. Characterization of highly corrosion-resistant nanocrystalline Ni coating electrodeposited on Mg–Nd–Zn–Zr alloy from a eutectic-based ionic liquid
CN105695826A (en) Magnesium alloy anode material and preparation method thereof
Bučko et al. The electrochemical deposition of Zn–Mn coating from choline chloride–urea deep eutectic solvent
Mubarok et al. Effects of anodizing parameters in tartaric-sulphuric acid on coating thickness and corrosion resistance of Al 2024 T3 alloy
Mech et al. Electrodeposition of catalytically active Ni-Mo alloys
Ghosh et al. Characterization of tin films synthesized from ethaline deep eutectic solvent
CN106498452B (en) It is a kind of based on glycine betaine-urea-water eutectic solvent electrogalvanizing method
Han et al. Electrochemical performance of aluminum anodes with different grain sizes for Al-air batteries
Wang et al. Corrosion mechanism of plasma electrolytic oxidation coated magnesium alloy with laser surface melting pretreatment
Yu et al. Incorporation mechanism of ZnO nanoparticles in PEO coating on 1060 Al alloy
Ostanina et al. Change in the physical characteristics of the dendritic zinc deposits in the stationary and pulsating electrolysis
Wang et al. Effect of manganese on discharge and corrosion performance of magnesium alloy AP65 as anode for seawater-activated battery
Darband et al. Zn–Ni Electrophosphating on galvanized steel using cathodic and anodic electrochemical methods
Jin et al. Electroless Ni-P plating on Mg-10Gd-4.8 Y-0.6 Zr magnesium alloy with a new pretreatment process
Cheon et al. The effect of bath conditions on the electroless nickel plating on the porous carbon substrate
JP2013189660A (en) Magnesium or magnesium alloy formed body, and method for manufacturing the same
CN106498461B (en) It is a kind of based on glycine betaine-urea-water eutectic solvent nickel-cobalt alloy plating method
Wang et al. Discharge and corrosion performance of AP65 magnesium alloy in simulated seawater: Effect of temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

Termination date: 20160204

CF01 Termination of patent right due to non-payment of annual fee