CN101955951B - 不动杆菌萘双加氧酶系统基因及其应用 - Google Patents

不动杆菌萘双加氧酶系统基因及其应用 Download PDF

Info

Publication number
CN101955951B
CN101955951B CN200910055020.8A CN200910055020A CN101955951B CN 101955951 B CN101955951 B CN 101955951B CN 200910055020 A CN200910055020 A CN 200910055020A CN 101955951 B CN101955951 B CN 101955951B
Authority
CN
China
Prior art keywords
empii
60mer
agg
cct
tcg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910055020.8A
Other languages
English (en)
Other versions
CN101955951A (zh
Inventor
彭日荷
姚泉洪
熊爱生
田永生
孙广东
高峰
付晓燕
赵伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Academy of Agricultural Sciences
Original Assignee
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Agricultural Sciences filed Critical Shanghai Academy of Agricultural Sciences
Priority to CN200910055020.8A priority Critical patent/CN101955951B/zh
Publication of CN101955951A publication Critical patent/CN101955951A/zh
Application granted granted Critical
Publication of CN101955951B publication Critical patent/CN101955951B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种不动杆菌萘双加氧酶系统,全长3682bp。通过培养、提取总DNA和功能互补法克隆得到的萘双加氧酶系统的序列为SEQ ID No1。该序列及其表达载体可应用于低分子量多环芳烃的降解。

Description

不动杆菌萘双加氧酶系统基因及其应用
技术领域
本发明涉及一种用于降解低分子量多环芳烃的萘双加氧酶系统基因,尤其涉及一种能降解低分子量多环芳烃的不动杆菌的萘双加氧酶系统基因,更具体的是涉及一种能降解萘和菲双加氧酶基因及其在环境污染修复中的应用。 
背景技术
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)是指分子中含有两个或两个以上苯环的碳氢化合物,可分为芳香稠环和非芳香稠环型,环境污染研究中的多环芳烃一般是指芳香稠环型,其中16种多环芳烃化合物已被美国环保局列入优先控制的污染物黑名单。多环芳烃大多是石油、煤等化石燃料以及木材、天然气、有机高分子化合物、纸张、作物秸秆、烟草等含碳氢化合物的物质经不完全燃烧或在还原性气氛中经热分解而生成的,PAHs环数相对丰度可以反映来自热解或石油类污染,通常4环及4环以上PAHs主要来源于化石燃料高温燃烧,而2环和3环PAHs则来源于石油类污染。一般而言2-3环的低分子量PAHs具有显著的急性毒性,而某些高分子量的PAHs则具有潜在的致癌性,有很强的致畸、致癌、致突变作用。 
随着煤、石油在工农业生产、交通运输以及生活中被广泛应用,由此而产生的多环芳烃已成为世界各国共同关注的有机污染物,多环芳烃的积累已经越来越严重地威胁着人类的健康。 
多环芳烃化合物(PAHs)由于水溶性差,辛醇-水分配系数高,常被吸附于土壤颗粒上。因此,该类化合物易于从水中分配到生物体内、沉积层中,土壤就成为PAHs的主要载体。多环芳烃在环境中不断积累,其半衰期少则2个月、多则几年。多环芳烃进入土壤后,由土壤表面污染进一步导致下层土壤污染,甚至地下水污染(Environ Sci Technol.,2004,15,5878)。 
治理多环芳烃化合物(PAHs)污染主要有物理修复、化学修复和生物修复。同其它有机污染物相比,多环芳烃化合物在土壤中比较稳定,利用促使其挥发和降解的物理化学方法很难去除,国内外正在筛选高效的吸附剂及臭氧化降解途径(Water Res.,1998,32,1231).。近年来,生物修复技术为PAHs的降解提供了新的途径,生物降解在污染物的迁移转化直至最终消失的过程中占重要地位。许多细菌、真菌、藻类都有降解PAHs的能力。在PAHs污染土壤中,经过自然驯化,存在大量的能降解多环芳烃的微生物。但是,由于微生物种类不同以及多环芳烃较难在环境中降解,所以降解PAHs的途径就有较大的差别。研究表明,微生物一般通过2种方式对PAHs进行代谢:(1)微生物在生长过程中以PAHs作为唯一的碳源和能源。适合于土壤中低分子量的3环和3环以下的多环芳烃类化合物。(2)微生物把PAHs与其他有机质共代谢(或共氧化)。由于来源于土壤中很少有能直接降解4环及4环以上高分子量的多环芳烃的微生物,所以高分子量的多环芳烃的降解要依赖共代谢作用和类似物。早在1964年,Davies和Evans在土壤中就分离到能够分解萘的假单胞菌(Biochem.J.,1964,91,251)。近年来人们对降解多环芳烃的微生物进行了广泛的研究,常见微生物有红球菌属(Rhodococcus)、假单胞菌属(Pseudomonas)、分枝杆菌(Mycobacterium)、芽孢杆菌属(Bacillus)、黄杆菌属(Flavobacterium)、气单胞菌属(Aeromonas)、拜叶林克氏菌属(Beijernckia)、棒状杆菌属(Corynebacterium)、蓝细菌(Cyanobacteria)、微球菌属(Micrococcus)、诺卡氏菌属(Nocardia)和弧菌属(Vibrio)等(Biosci.Biotech.Biochem.2003,67,225)。 
香港大学的梁佩芝等(生态科学,2003,22,97)研究了红树林厌氧环境对多环芳烃的降解,指出了厌氧的硫酸盐还原菌在降解多环芳烃方面有其独特的生化优势,并确定羰基化反应是开始的一个重要步骤。 
聂麦茜等(环境科学,2001,22,83)从焦化废水污染的污泥中分离出1株优势短杆菌,该菌株对菲、蒽、芘降解10h后,菲、蒽、芘浓度从起始40mg/L,分别降至15.2、19.8、28.0mg/L,Fe3+对这3种多环芳烃的降解有明显的促进作用,在相同实验条件加Fe3+反应10h后,反应瓶中菲的浓度降至5.0mg/L,蒽降至9.8mg/L,芘则降至15.8mg/L。 
Dan等(Chemosphere,1999,38,1313)研究发现,好氧条件下萘存在时可使菲的降解率提高5倍,芘提高2倍,同时发现菲存在时可抑制 芘的降解,厌氧条件也有同样结果。Michiei等(Microbio Ecol,2004,48,209)发现分枝杆菌菌株S65可利用芘、菲和荧蒽,苯并蒽,当苯并芘或菲作为芘的共代谢底物时,可以提高芘的降解率。 
张志杰等(水处理技术,2003,29,276)研究了1株芽孢杆菌对蒽、菲、芘在单基质及混合基质条件下降解性能的研究,发现在单基质条件下,起初的82h内,该菌株对蒽的降解转化效果最好,菲最差,反应进行到106h,各PAHs的浓度均接近于0;在混合基质条件下,菲的竞争代谢能力最强,芘最小。 
Robert等在生物反应器中使用白腐真菌处理受多环芳烃处理的土壤,36天后,包括萘等低分子量的多环芳烃降解率为70%-100%(Environ SciTechnol.,1997,31,2626)。Jee等用生物反应器修复河道底泥,在搅拌且曝气的条件下,多环芳烃的降解率达到40%(Water Res.,1998,32,1231)。 
微生物修复的关键是筛选具有很强分解能力的优势菌。多环芳烃的降解取决于微生物产生加氧酶的能力。多环芳烃的最初氧化,即苯环加氧是控制PAHs生物降解反应速度的关键步骤。在过去20年的时间里,对好氧细菌降解多环芳烃的研究主要集中在假单胞菌的萘降解途径的分析。同植物一样,假单胞菌也是通过羟基化作用分解萘,萘双加氧酶(naphthalenedioxygenase NDO)系统参与萘的羟基化。目前对该酶的研究结果主要来自恶臭假单胞菌Pseudomonas putida G7菌株,该菌中萘加氧酶系统含有三个组分:铁硫黄素蛋白还原酶NahAa;铁氧还蛋白NahAb和加氧酶,加氧酶由大亚基NahAc和小亚基NahAd组成四聚体,电子从NAD(P)H通过铁硫黄素蛋白还原酶和铁氧还蛋白向加氧酶传送,促进加氧酶将两个氧原子加到萘的一个苯环上。对很多细菌中的NDO基因结构分析发现,它们多由上述三个组份构成并且种间具有很高的同源性,说明萘双加氧酶系统普遍存在于自然界(J Bacteriol.,1992,174,7542)。 
不动杆菌(Acinetobacter)是一群不发酵糖类,氧化酶阴性的革兰阴性杆菌。绝大多数的种与人的疾病有关。不动杆菌广泛存在于自然界,主要在水体和土壤中,易在潮湿环境中生存,如浴盆、肥皂盒等处。该菌粘附力极强,易在各类医用材料上粘附,而可能成为贮菌源。此外,本菌还 存在于健康人皮肤(25%)、咽部(7%),也存在于结膜、唾液、胃肠道及阴道分泌物中。有些研究发现在石油污染区存在不动杆菌,它们可以以菲为惟一碳源和能源生长。 
发明内容
本发明的一个目的在于提供一种降解萘和菲的萘双加氧酶系统,该操纵子源自于不动杆菌属。 
本发明的另一个目的在于提供一种含有萘双加氧酶系统的表达载体。 
本发明的又一个目的在于提供一种萘双加氧酶系统及其表达载体,该双加氧酶系统与表达载体在低分子量多环芳烃降解中的应用。 
本发明的目的是通过如下技术方案实现的: 
萘双加氧酶系统源自于不动杆菌属,由4个基因组成,其核苷酸序列为SEQ ID No:1所示,在其序列中51-1413核苷酸为双加氧酶α亚基基因;1534-2097核苷酸为双加氧酶β亚基基因;2164-2429核苷酸为铁氧还蛋白基因;2428-3661核苷酸为铁硫黄素蛋白还原酶基因。 
SEQ ID No:1所示的萘双加氧酶系统的获取方法为:先将野生菌在含有萘为碳源的M9固体培养基中培养48小时,选择生长良好的菌落;再将选择出来的菌落置于LB液体培养基中培养24小时以上;之后提取总DNA,采用功能互补法(Microbiology,2007,153,787)克隆并得到萘双加氧酶系统的四个基因。 
一种SEQ ID No:1所示的萘双加氧酶系统的具体获取方法为: 
菌种分离 
从上海化学工业基地取污泥,稀释10-100倍后涂布在以萘为碳源的M9固体培养基上(15g/L琼脂,12.8g/L Na2HPO4,3.0g/L KH2PO4,0.5g/L NaCl,0.5g/L NH4Cl,1μg/ml维生素B1(单独灭菌),200mg/L萘,pH7.5),28℃培养48小时,挑取生长良好的菌株。 
总DNA提取 
将分离获得的细菌单株在10ml液体LB培养基(5g/L酵母提取物,5g/L NaCl,10g/L胰蛋白胨,磷酸缓冲液pH7.5)中培养24小时,菌体培养液离心5min,得到菌体沉淀。将这些沉淀在-20℃下冷冻1小时,之 后使用TE(10mM Tris-HCl,1mM EDTA,pH 8.0)溶液清洗一次。加入浓度为10mg/mL溶菌酶(Sigma-Aldrich)的无菌水悬浮,在37℃下摇床培养1hr。加入0.5M EDTA,10%(w/v)SDS和浓度为5M的NaCl轻轻振荡混匀。再加入浓度为20mg/mL蛋白激K(Takara日本),反应物在37℃下培养1hr。用与培养菌液液体体积相当(1倍体积)的苯酚∶氯仿∶异戊醇(25∶24∶1)提取DNA。水相用与相当水相体积1/2(0.5倍体积)的氯仿∶异戊醇(24∶1)萃取。振荡混匀后离心5min。水相中加入与水相体积相当(1倍体积)的异戊醇。振荡混匀后离心15min。取沉淀,用70%(v/v)酒精冲洗DNA,干燥,之后在TE缓冲液中重悬浮。所得总DNA储存于4℃下备用。 
萘双加氧酶系统获取 
用0.02-0.5u/μL浓度限制性核酸内切酶Sau3A(大连宝生物工程公司)酶切提取所得的细菌总DNA,时间20-60分钟,然后0.7%(w/v)琼脂糖凝胶电泳,切下长度为3-5kb的DNA片段,用胶试剂盒(上海生物工程公司)回收。选择pG251(CN1338515NCBI)作为表达载体,用限制性核酸内切酶BamHI(大连宝生物工程公司)酶切并进行胶回收。对酶切的载体质粒进行去磷酸化操作,以降低质粒自连,并对碱性磷酸酶进行失活操作后(Sambrook分子克隆手册1989),再与外源的DNA片段(即长度为3-5kb的细菌DNA片段)连接。反应温度16℃,连接时间为10-12h。连接产物用正丁醇沉淀后,用70%(v/v)的乙醇离心洗涤,最后用10μl的超纯水溶解,将连接物进行电击转化大肠杆菌DH5α感受态细胞,点击参数为:电脉冲为2.5μF,电压2.5kV,电阻200Ω,电击时间为4.5.S。复苏后,将菌液涂布于以萘为碳源的M9固体培养基(含有50μg/mL氨苄青霉素)平板上,37℃培养48h,筛选生长良好的菌落。 
萘双加氧酶系统工程菌种构建 
以PNap1:5’-ATGAACCAGACGGAGACGACCCCGATCAGA-3’和PNap2:5’-TCTTTAAGTTCATTTCTGCTTTCCATCG-3’为扩增引物对萘双加氧酶系统相关的基因进行PCR扩增。使用KOD FX taq酶(Toyobo公司,日本),扩增条件依次为:94℃30秒,68℃30秒,72℃600秒,扩增30个循环。加入2单位rtaq酶(大连宝生物工程公司),在72℃延 伸30分钟。PCR结束后,1%(w/v)琼脂糖凝胶回收,获得长度为3682bp的SEQ ID No 1序列。 
SEQ ID No 1序列转入原核生物细胞中一种方式为,将SEQ ID No 1序列直接与表达载体pBAD/TOPO ThioFusionTM(Invitrogen)相连,4℃连接2小时。然后将该载体转化感受态大肠杆菌TOP10(Invitrogen)。将菌液涂布于含有50μg/mL氨苄青霉素的以萘为碳源的M9固体培养基上,培养后挑取生长良好的菌落。 
然后将挑取的菌落转入LB液体培养基中,37℃振荡培养12小时。加入菲至终浓度100μg/mL,继续培养7天,培养液中加入二氯甲烷,在振荡摇床中摇至成乳状,以5000r/min离心10min,取下层萃取液,样液过0.22um微孔滤膜后进行HPLC分析,外标法定量。检测细菌对多环芳烃的降解效果。 
本发明技术方案实现的有益效果
多环芳烃是一类重要的环境污染有机物,大多数多环芳烃具有显著的毒性,某些高分子量的多环芳烃则具有潜在的致癌性。随着工业化进程的加快,多环芳烃对环境的污染显著提高。分离高效降解多环芳烃的菌株,提取总DNA和PCR扩增后得到的SEQ ID No:1的序列及其表达载体可以应用于环境中多环芳烃的降解。 
本发明所述的术语与其一般概念相同。 
所述的“核苷酸”和“引物”序列均为5’端至3’端。 
所述的“生物合成”指利用微生物、植物细胞或组织,以发酵或培养的方式合成目标产物,如:β-胡萝卜素。 
所述的“生物细胞”指微生物、植物细胞或组织。 
所述的“微生物”指原核微生物或真核微生物,原核微生物主要为细菌;真核微生物为真菌或藻类,真菌主要指酵母菌。 
附图说明
图1为PCR扩增所得序列为SEQ ID No:1的萘双加氧酶系统电泳图,其中泳道1为DNA分子量标记(Marker);泳道2为从不动杆菌中扩增的萘双加氧酶系统; 
图2工程菌对多环芳烃菲的降解;A,加样前,B培养168小时后。菲相应的色谱峰为472nm。 
具体实施方式
以下结合附图详细描述本发明的技术方案。实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。 
本发明所用的试剂若未经说明,均购自西格玛-奥德里奇(Sigma-Aldrich)公司。 
本发明涉及分子生物学实验,如没有特别注明,均参考自《分子克隆》一书(J.萨姆布鲁克、E.F.弗里奇、T.曼尼阿蒂斯著,科学出版社,1994)。该书及其后续出版版本是本领域技术人员在进行与分子生物学相关的实验操作时最常用的具有指导性的参考书籍。 
实施例1菌种分离 
从上海化学工业基地取污泥,稀释10-100倍后涂布在以萘为碳源的M9固体培养基上(15g/L琼脂,12.8g/L Na2HPO4,3.0g/L KH2PO4,0.5g/L NaCl,0.5g/L NH4Cl,1μg/ml维生素B1(单独灭菌),200mg/L萘,pH7.5),28℃培养48小时,挑取生长良好的菌株。该菌落呈圆形,隆起,表面光滑,湿润,边缘整齐,无色,革兰氏染色反应为阴性的菌株;进一步通过显微镜筛选无鞭毛,无芽孢的杆状菌株。将获得的菌株稀释104后反复2次在LB固体平板培养基上纯合。 
实施例2总DNA的提取 
将实施例1中分离获得的细菌单株在10ml LB液体培养基(5g/L酵母提取物,5g/L NaCl,10g/L胰蛋白胨,磷酸缓冲液pH7.5)中培养16 小时后,菌体培养液以6,000g速度离心5min,得到菌体沉淀。这些沉淀先在-20℃下冷冻1hr,之后使用TE缓冲液(10mM Tris-HCl,1mM EDTA,pH 8.0)清洗一次,再于20μl溶菌酶(Sigma-Aldrich)浓度为10mg/mL的无菌水中悬浮,并于37℃摇床培养1hr。 
接着加入50μl浓度为0.5M EDTA,50μl浓度为10%(w/v)SDS和50μl浓度为5M的NaCl并轻轻振荡混匀后,再加入10μl浓度为20mg/mL蛋白激酶K(Takara日本),于37℃下培养1hr。 
之后用与培养菌液液体体积相当(1倍体积)的苯酚∶氯仿∶异戊醇(25∶24∶1,体积比)提取DNA。水相用与相当水相体积1/2(0.5倍体积)的氯仿∶异戊醇(24∶1,体积比)萃取。振荡混匀后离心5min。水相中加入与水相体积相当(1倍体积)的异戊醇。振荡混匀后离心15min。取沉淀,用70%(v/v)酒精冲洗DNA,干燥,之后在TE缓冲液中重悬浮。 
所得总DNA于-20℃下保存。 
实施例3不动杆菌菌株同源性分析 
以实施例2抽提的总DNA为模板,利用16s rRNA两端引物进行扩增。扩增的引物为16SR1:5’CAGAGTTTGATCCTGGCTCAG3’和16SF:5’TACGGCTACCTTGTTACGACTTC3’。以KOD Plus(Toyobo日本)为Taq DNA聚合酶,扩增条件依次为:94℃30秒,55℃30秒,72℃120秒,扩增30个循环。循环结束后,加入2个单位的rtaq酶(宝生物工程(大连)有限公司),72℃延伸300秒,扩增片段长1503bp(如下)。PCR结束后,1%(w/v)琼脂糖凝胶回收,取10μl直接与T/A克隆载体相连(宝生物工程(大连)有限公司),4℃连接过夜。 
先将该载体转化入DH5α感受态中。再用ABI Prism Big Dye的ABI3700毛细管自动化测序仪测序,测得的序列通过Blast程序与GenBank中核酸数据进行对比分析,得到菌株与Acinetobacter属中的许多种菌的16s rRNA有99.5%的同源性(NCBI)。菌株系统发育地位上属于不动杆菌属(Acinetobacter)。 
 1 cagagtttga tcctggctca gattgaacgc tggcggcagg cctaacacat gcaagtcgag 
61 cggatgagtg gagcttgctc catgattcag cggcggacgg gtgagtaatg cctaggaatc 
 121 tgcctggtag tgggggacaa cgtttcgaaa ggaacgctaa taccgcatac gtcctacggg 
 181 agaaagtggg ggatcttcgg acctcacgct atcagatgag cctaggtcgg attagctagt 
 241 tggtgaggta aaggctcacc aaggcgacga tccgtaactg gtctgagagg atgatcagtc 
 301 acactggaac tgagacacgg tccagactcc tacgggaggc agcagtgggg aatattggac 
 361 aatgggcgaa agcctgatcc agccatgccg cgtgtgtgaa gaaggtcttc ggattgtaaa 
 421 gcactttaag ttgggaggaa gggcagtaag ttaatacctt gctgttttgc cgttccaaca 
 481 gaataagccc cggctatctt cgtgccagca gccgcggtaa tacgaagggt gcaagcgtta 
 541 atcggaatta ctgggcgtaa agcgcgcgta ggtggttcgt taagttggat gtgaaagccc 
 601 cgggctcaac ctgggaactg catccaaaac tggcgagcta gagtatggca gagggtggtg 
 661 gaatttcctg tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgaaggcg 
 721 accacctggg ctaatactga cactgaggtg cgaaagcgtg gggagcaaac aggattagat 
 781 accctggtag tccacgccgt aaacgatgtc gactagccgt tgggatcctt gagatcttag 
 841 tggcgcagct aacgcattaa gtcgaccgcc tggggagtac ggtcgcaaga ctaaaactca 
 901 aatgaattga cggcggcccg cacaagcgtt gacgcatgtg gtttaattcc aagcaacgcg 
 961 aagaacctta ccaggccttg acatcgcaga gaactttcca aagatggatt ggtgccttcg 
1021 gaacttttga cacaggtgct gcatggctgt cgtcagctcg tgtcgtcaga tgttgggtta 
1081 agtcccgtaa cgagcgcaac cctttgtcct tagctaccag cacgttaagg tgggcactct 
1141 aaggagactg ccggtgacaa accggaggaa ggtggggatg acgtcaagtc atcatggccc 
1201 ttacggcctg ggctacacac gtgctacaat ggtcggtaca aagggttgcc aagccgcgag 
1261 gtggagctaa tcccataaaa ccgatcgtag tccggatcgc agtctgcaac tcgactgcgt 
1321 gaagtcggaa tcgctagtaa tcgtgaatca gaatgtcacg gtgaatacgt tcccgggcct 
1381 tgtacacacc gcccgtcaca ccatgggagt gggttgctcc agaagtagct agtctaacct 
1441 tcggggggac ggttaccacg gagtgattca tgactggggt gaagtcgtaa caaggtagcc 
1501 gta 
实施例4不动杆菌中萘双加氧酶系统的获取 
通过功能互补方法获取萘双加氧酶系统相关基因,具体方法如下:用不同浓度(0.02-0.5u/μL)限制性核酸内切酶Sau3A(大连宝生物工程公司)酶切实施例2提取所得的不动杆菌总DNA,时间20-60分钟,然后0.7%(w/v)琼脂糖凝胶电泳,切下长度为3-5kb的DNA片段,用胶试剂盒(上海生物工程公司)回收。选择pG251(CN1338515NCBI)作为表达载体,用限制性核酸内切酶BamHI(大连宝生物工程公司)酶切并进行胶回收。对酶切的载体质粒进行去磷酸化操作,以降低质粒自连,并对碱性磷酸酶进行失活操作后(Sambrook分子克隆手册1989),再与外源的DNA片段(即长度为3-5kb的不动杆菌DNA片段)连接。连接前,将回收的部分酶解的细菌基因组DNA片段与pG251载体DNA,用琼脂糖凝胶电泳的方法估计浓度,确保连接反应中外源DNA的浓度至少是载体浓度3-5倍。反应温度16℃,连接时间为10-12h。连接产物用正丁醇沉淀后,用70%(v/v)的乙醇离心洗涤,最后用10μl的超纯水溶解,将连接物进行电击转化大肠杆菌DH5α感受态细胞,点击参数为: 电脉冲为2.5μF,电压2.5kV,电阻200Ω,电击时间为4.5.S。复苏后,将菌液涂布于以萘为碳源的M9固体培养基上(15g/L琼脂,12.8g/LNa2HPO4,3.0g/L KH2PO4,0.5g/L NaCl,0.5g/L NH4Cl,1μg/ml维生素B1(单独灭菌),200mg/L萘,pH7.5)(含有50μg/mL氨苄青霉素)平板上,37℃培养24-48h,筛选生长良好的菌落。 
利用逐步序列测定方法对筛选获得的重组子全序列进行DNA测序。测序的引物分别为: 
Pnah1:5’-GATGTTTGATGTTATGGAGCAG-3’ 
Pnah2:5’-AGCAGTTCTGCAGGGACATGTAC-3’ 
Pnah3:5’-GACTATGGATTTGAAATCTAC-3’ 
Pnah4:5’-CTATCAAGATAGAAGGTGATGAG-3’ 
Pnah5:5’-CATGGTCAATGAAGGCCGGAGGT-3’ 
测序结果表明重组子全序列为3682bp(SEQ ID No:1)。 
实施例5不动杆菌中萘双加氧酶系统基因的合成 
以基因合成方法(Nucleic Acids Research,2004,32,e98)将不动杆菌中萘双加氧酶系统(SEQ ID No:1)克隆。设计的引物如下: 
1.EMPII-1:Tm=54,60mer 
GTG,CCA,CCT,GTA,ATT,ACC,CGC,TAT,CCA,CTA,CTT,TAA,AAA,GTG,AGA,AGA,CAA,TGA,ACC,AGA 
2.EMPII-2:Tm=54,60mer 
TGT,TCC,AAT,TCT,TGC,GGA,CTC,TGA,TCG,GGG,TCG,TCT,CCG,TCT,GGT,TCA,TTG,TCT,TCT,CAC 
3.EMPII-3:Tm=54,60mer 
GAG,TCC,GCA,AGA,ATT,GGA,ACA,CCA,GGG,AGA,TCG,AGA,CGC,TCT,TCG,ATG,AGC,AGG,CTG,GAC 
4.EMPII-4:Tm=54,60mer 
GGT,ACA,GAT,CCT,CAT,CGG,TAT,GAA,TGC,GCG,GAT,CGA,TGC,GTC,CAG,CCT,GCT,CAT,CGA,AGA 
5.EMPII-5:Tm=54,60mer 
ATA,CCG,ATG,AGG,ATC,TGT,ACC,AGC,TCG,AAC,TGG,AGC,GTG,TGT,TCG,CTC,GGT,CCT,GGC,TCC 
6.EMPII-6:Tm=54,60mer 
ATC,GAC,CTG,GTT,TCC,GAA,TGT,GCG,TCT,CCT,GTC,CTA,ACA,GGA,GCC,AGG,ACC,GAG,CGA,ACA 
7.EMPII-7:Tm=54,60mer 
ACA,TTC,GGA,AAC,CAG,GTC,GAT,ACT,TCA,CGA,CCT,ACA,TGG,GTG,ACG,ATC,CTG,TCG,TGG,TCG 
8.EMPII-8:Tm=54,60mer 
GGT,TCG,GGA,AGA,CGG,CGA,TCC,TGG,CGT,CTT,TCT,GTC,TCA,CGA,CCA,CGA,CAG,GAT,CGT,CAC 
9.EMPII-9:Tm=54,60mer 
GGA,TCG,CCG,TCT,TCC,CGA,ACC,AGT,GCC,GCC,ATC,GTG,GCA,TGC,GGA,TCT,GCC,GTT,CGG,ATC 
10.EMPII-10:Tm=54,60mer 
ACC,CGT,GGT,CAC,TAC,AAG,TAA,ATG,CCT,TCG,CGT,TTC,CAG,GAT,CCG,AAC,GGC,AGA,TCC,GCA 
11.EMPII-11:Tm=54,60mer 
TTA,CTT,GTA,GTG,ACC,ACG,GGT,GGG,CGT,ACG,ACA,CTG,CTG,GCA,ACC,TTA,TCA,AGG,TGC,CTT 
12.EMPII-12:Tm=54,60mer 
ATT,CCT,TCT,TGT,CGA,AGC,ATG,CGA,AGG,ATT,CGG,CCT,CGT,AAG,GCA,CCT,TGA,TAA,GGT,TGC 
13.EMPII-13:Tm=54,60mer 
CAT,GCT,TCG,ACA,AGA,AGG,AAT,GGA,GTC,CAC,TGA,AGG,CTC,GAG,TGG,AGA,CCT,ACA,AGG,GTC 
14.EMPII-14:Tm=54,60mer 
CAA,GGT,CGA,TGG,CGT,TCT,CGT,CCC,AGT,TGG,CAA,AGA,TCA,GAC,CCT,TGT,AGG,TCT,CCA,CTC 
15.EMPII-15:Tm=54,60mer 
ACG,AGA,ACG,CCA,TCG,ACC,TTG,ACA,CAT,ACC,TCG,GCG,AGG,CGA,AGT,TCT,ACA,TGG,ACC,ACA 
16.EMPII-16:Tm=54,60mer 
CTG,GAA,TGA,CCT,CAG,TGC,CTG,GCT,CAG,TAC,GGT,CGA,GCA,TGT,GGT,CCA,TGT,AGA,ACT,TCG 
17.EMPII-17:Tm=54,60mer 
CAG,GCA,CTG,AGG,TCA,TTC,CAG,GCA,TCC,AGA,AGT,GGG,TTA,CTC,CCT,GTA,CCT,GGA,AGT,TCG 
18.EMPII-18:Tm=54,60mer 
TCC,CGG,CAT,GGT,ACA,TGT,CCC,TGC,AGA,ACT,GCT,CTG,CTG,CGA,ACT,TCC,AGG,TAC,AGG,GAG 
19.EMPII-19:Tm=54,60mer 
GGG,ACA,TGT,ACC,ATG,CCG,GGA,CTA,CAG,CAC,ACT,TCT,CAG,GCA,TCA,TCG,CTG,GTC,AGC,CAG 
20.EMPII-20:Tm=54,60mer 
CGA,AGT,TCG,GCG,GTG,CGA,GAT,CAG,CCA,ACT,CGA,GCT,CTT,CTG,GCT,GAC,CAG,CGA,TGA,TGC 
21.EMPII-21:Tm=54,60mer 
ATC,TCG,CAC,CGC,CGA,ACT,TCG,GCA,AGC,AGT,ACC,GCG,CAT,CAT,GGG,GTG,GTC,ACG,GAA,GTG 
22.EMPII-22:Tm=54,60mer 
TCA,TGG,CGA,GCA,TCA,TCT,TGC,GGT,CGC,CGA,TAG,AGA,AGC,CAC,TTC,CGT,GAC,CAC,CCC,ATG 
23.EMPII-23:Tm=54,60mer 
GCA,AGA,TGA,TGC,TCG,CCA,TGA,TGG,GAC,CGA,AAG,TCA,CCA,GCT,ACT,TGA,CCG,AAG,GCC,GTG 
24.EMPII-24:Tm=54,60mer 
GCT,CGA,TAC,TGC,CCA,GAC,GCT,CTG,CCG,CCG,TTT,CCG,CCG,CAC,GGC,CTT,CGG,TCA,AGT,AGC 
25.EMPII-25:Tm=54,60mer 
AGC,GTC,TGG,GCA,GTA,TCG,AGC,GCG,GCA,CGC,AAA,ACA,TGC,TTC,AGC,ACA,TCA,CTG,TCT,TGC 
26.EMPII-26:Tm=54,60mer 
TTC,GCA,TCG,TGT,TGA,CAC,CTG,GCA,GGA,AGA,AAG,ACG,TAG,GCA,AGA,CAG,TGA,TGT,GCT,GAA 
27.EMPII-27:Tm=54,60mer 
CAG,GTG,TCA,ACA,CGA,TGC,GAA,CAT,GGC,ATC,CAC,GCG,GGC,CGA,AGG,AGG,TCG,AAG,TGT,GGG 
28.EMPII-28:Tm=54,60mer 
TGA,TGT,CGG,CTG,GAG,CAT,CCG,TAT,GAC,TGA,CTG,TGA,ATG,CCC,ACA,CTT,CGA,CCT,CCT,TCG 
29.EMPII-29:Tm=54,60mer 
CGG,ATG,CTC,CAG,CCG,ACA,TCA,AGG,AGG,AGT,TCC,GTC,GTC,AGA,CAC,TAC,GTA,CCT,CCT,CTG 
30.EMPII-30:Tm=54,60mer 
CCC,AGG,TCT,CGC,CGT,GAT,CCT,GCT,CGA,GTA,CAC,GAA,CGG,CAG,AGG,AGG,TAC,GTA,GTG,TCT 
31.EMPII-31:Tm=54,60mer 
AGG,ATC,ACG,GCG,AGA,CCT,GGG,TCG,AGA,TCC,AGC,ATT,TCC,TGC,GAG,GTC,ATC,AGG,CAC,GTA 
32.EMPII-32:Tm=54,60mer 
CCC,TTT,GCC,CCA,TCC,TCA,TCT,CAG,CGT,TGA,ATC,GAC,GGG,TAC,GTG,CCT,GAT,GAC,CTC,GCA 
33.EMPII-33:Tm=54,60mer 
AGA,TGA,GGA,TGG,GGC,AAA,GGG,TTC,ACA,CCG,AAC,CAG,TTC,ACC,CTG,GTC,GTA,CAT,CCA,ACA 
34.EMPII-34:Tm=54,60mer 
GTG,GAG,AGA,GTC,CAC,GAG,CAG,CTT,CTT,CGC,TGT,ACA,CGT,TGT,TGG,ATG,TAC,GAC,CAG,GGT 
35.EMPII-35:Tm=54,60mer 
CTG,CTC,GTG,GAC,TCT,CTC,CAC,ATG,GGC,CGA,AAA,TCA,TCA,CCT,CGC,CAG,ACT,GGG,AAG,CAT 
36.EMPII-36:Tm=54,60mer 
GTT,TCC,CTA,GCT,GTC,GTT,AGG,TTT,AAG,GCG,TCG,CCT,TGA,ATG,CTT,CCC,AGT,CTG,GCG,AGG 
37.EMPII-37:Tm=54,60mer 
CCT,AAC,GAC,AGC,TAG,GGA,AAC,ATC,GTG,GCA,CCA,GTT,AGA,ATA,CGC,ATT,TGA,TTC,ATA,ATT 
38.EMPII-38:Tm=54,60mer 
CGT,GTA,GAT,TTC,AAA,TCC,ATA,GTC,CAC,CGC,ATC,CAA,TTA,AAT,TAT,GAA,TCA,AAT,GCG,TAT 
39.EMPII-39:Tm=54,60mer 
TAT,GGA,TTT,GAA,ATC,TAC,ACG,GCC,TGA,TTA,CGA,TTT,TAA,AAA,GGA,GTG,ACC,ATG,ATC,GAC 
40.EMPII-40:Tm=54,60mer 
TGC,AGG,CTT,GCG,AAC,GAA,GAG,GTC,TGG,TCT,GTC,GAC,TGA,GTC,GAT,CAT,GGT,CAC,TCC,TTT 
41.EMPII-41:Tm=54,60mer 
CTC,TTC,GTT,CGC,AAG,CCT,GCA,CCG,GTA,CCA,CTT,CAA,CTG,CAA,AAT,CAA,ATT,GGG,CAG,TGC 
42.EMPII-42:Tm=54,60mer 
GAA,GCG,GCG,ATA,ATT,GAG,AAG,GTT,AGC,TTC,CCA,GTA,GTA,GCA,CTG,CCC,AAT,TTG,ATT,TTG 
43.EMPI I-43:Tm=54,60mer 
CTT,CTC,AAT,TAT,CGC,CGC,TTC,GAT,GAA,TGC,TTC,GCA,CTA,TTT,GCC,AAG,GAC,ATC,CAC,TAC 
44.EMPII-44:Tm=54,60mer 
TGA,ATG,ACG,CAA,GAT,TCC,TGT,GCT,GCG,GAG,AGG,GAT,GAA,GTA,GTG,GAT,GTC,CTT,GGC,AAA 
45.EMPII-45:Tm=54,60mer 
ACA,GGA,ATC,TTG,CGT,CAT,TCA,CGC,CTC,GAA,TAT,TCG,GCC,TCG,CGA,GAT,TAT,CCA,CAT,CTC 
46.EMPII-46:Tm=54,60mer 
CTT,ACG,CGG,ACG,TCC,TTT,CAT,CAT,TGT,GGC,GTG,ATC,ATC,GAG,ATG,TGG,ATA,ATC,TCG,CGA 
47.EMPII-47:Tm=54,60mer 
ATG,AAA,GGA,CGT,CCG,CGT,AAG,ACT,ACT,CCT,GAC,GTA,AGT,CGC,TCC,GAG,ATT,CCT,GCG,TCA 
48.EMPII-48:Tm=54,60mer 
GGG,AAT,GAT,GAT,GAC,ATT,GCG,CAC,AGT,ATG,TGT,TGT,TGT,TGA,CGC,AGG,AAT,CTC,GGA,GCG 
49.EMPII-49:Tm=54,60mer 
CGC,AAT,GTC,ATC,ATC,ATT,CCC,ACA,GCA,GTA,CAA,GGA,GAA,AAC,GAA,ATC,TCC,AGG,ACC,TTC 
50.EMPII-50:Tm=54,60mer 
GAT,ATG,AGG,TTG,TCC,TTC,CGA,GCC,ATT,GCG,GTA,CAC,GAT,GAA,GGT,CCT,GGA,GAT,TTC,GTT 
51.EMPII-51:Tm=54,60mer 
TCG,GAA,GGA,CAA,CCT,CAT,ATC,TGT,GCT,GGA,GAG,CGT,CGC,GAC,AGA,TTG,CGT,CGT,ACC,AAG 
52.EMPII-52:Tm=54,60mer 
CAG,GAT,TGT,CCG,ATT,GAC,TAT,CTC,GCA,TCC,AGC,TTG,ACC,CTT,GGT,ACG,ACG,CAA,TCT,GTC 
53.EMPII-53:Tm=54,60mer 
ATA,GTC,AAT,CGG,ACA,ATC,CTG,CTG,GAC,CAA,AGC,ACC,ATC,CTA,GGC,AAT,CAC,CTC,AGT,TGC 
54.EMPII-54:Tm=54,60mer 
GCA,GCA,TAT,ACG,TCC,AGG,TCA,TGA,CAT,CTC,CTA,GAA,GTA,GCA,ACT,GAG,GTG,ATT,GCC,TAG 
55.EMPII-55:Tm=54,60mer 
TGA,CCT,GGA,CGT,ATA,TGC,TGC,GGC,AAA,GGG,ATT,TGC,CAC,CTG,GTG,AAA,TGC,AAC,GCT,ATG 
56.EMPII-56:Tm=54,60mer 
CGT,CGA,CGT,TAC,AGA,CCA,TCA,CGG,GTT,CTG,ATC,CAC,CGT,CAT,AGC,GTT,GCA,TTT,CAC,CAG 
57.EMPII-57:Tm=54,60mer 
TGA,TGG,TCT,GTA,ACG,TCG,ACG,GTG,AGT,TTT,CCG,CAG,TTC,AGG,ACA,CCT,GCA,CGC,ACG,GGG 
58.EMPII-58:Tm=54,60mer 
CGA,CAT,CAC,CAT,CAA,GGT,ATC,CCT,CTG,GTA,GTG,CCC,AAT,CCC,CGT,GCG,TGC,AGG,TGT,CCT 
59.EMPII-59:Tm=54,60mer 
GAT,ACC,TTG,ATG,GTG,ATG,TCG,TCG,AGT,GTA,CGT,TGC,ACT,TCG,GCA,AGT,TCT,GTG,TGC,GAA 
60.EMPII-60:Tm=54,60mer 
TGA,TAG,GTT,TAC,ATG,CAG,GCA,ACG,CTT,TCA,CTT,TCG,CAG,TTC,GCA,CAC,AGA,ACT,TGC,CGA 
61.EMPII-61:Tm=54,60mer 
TGC,CTG,CAT,GTA,AAC,CTA,TCA,AGG,TCT,ATC,CTA,TCA,AGA,TAG,AAG,GTG,ATG,AGG,TAC,ACG 
62.EMPII-62:Tm=54,60mer 
TGG,TTT,GCC,ATC,ATT,TGA,GTT,CCC,CAC,TGT,CAG,GAT,CAA,CGT,GTA,CCT,CAT,CAC,CTT,CTA 
63.EMPII-63:Tm=54,60mer 
AAC,TCA,AAT,GAT,GGC,AAA,CCA,GGT,AGC,GAT,GAT,CTG,TGA,TGG,GGT,AGC,GGG,CTT,TAC,GAC 
64.EMPII-64:Tm=54,60mer 
AAT,CGC,CCA,TCT,TAT,CCC,TCG,GCG,CGT,AGG,GCC,TGG,GCA,GTC,GTA,AAG,CCC,GCT,ACC,CCA 
65.EMPII-65:Tm=54,60mer 
CGA,GGG,ATA,AGA,TGG,GCG,ATT,CTT,CCT,GAT,GGG,TGA,TGA,GCA,TCA,ACT,GCC,GTA,GGA,GCG 
66.EMPII-66:Tm=54,60mer 
TCC,AAG,CTC,CCA,TCC,GGG,ACG,GCC,TTT,GAG,AAC,GAG,GGG,CGC,TCC,TAC,GGC,AGT,TGA,TGC 
67.EMPII-67:Tm=54,60mer 
CGT,CCC,GGA,TGG,GAG,CTT,GGA,GCA,CCC,TCC,AAG,CCT,CGC,CGA,CGC,CGA,GTG,CTA,GAG,GGA 
68.EMPII-68:Tm=54,60mer 
TCG,GTA,ACA,TCA,GAA,CCT,GTG,AGC,ATC,TCG,ATG,TTG,GGT,TCC,CTC,TAG,CAC,TCG,GCG,TCG 
69.EMPII-69:Tm=54,60mer 
CAC,AGG,TTC,TGA,TGT,TAC,CGA,GCT,CGA,CAC,GCA,CAA,AAA,CAT,GGT,CAC,TTT,GAA,AGA,AGG 
70.EMPII-70:Tm=54,60mer 
CCC,GTA,GCC,ATT,ACC,ATT,GCC,TCC,GCA,GAA,ATA,GTC,CTC,CCT,TCT,TTC,AAA,GTG,ACC,ATG 
71.EMPII-71:Tm=54,60mer 
GGC,AAT,GGT,AAT,GGC,TAC,GGG,CAG,TGG,AGG,CCG,GAT,TTT,TTC,TTT,GCC,GGG,GAG,TCA,TTT 
72.EMPII-72:Tm=54,60mer 
TGG,ACA,TCC,GCA,TTA,GTG,CGA,AAC,GTG,ACC,ACT,CCT,GGG,AAA,TGA,CTC,CCC,GGC,AAA,GAA 
73.EMPII-73:Tm=54,60mer 
TCG,CAC,TAA,TGC,GGA,TGT,CCA,TTT,CTT,ACG,GGA,TAG,CTG,AAC,TCC,GAA,AAC,ACG,GTT,CCT 
74.EMPII-74:Tm=54,60mer 
GTT,GCA,ACG,TCA,CAG,CCG,ATG,AAC,CCA,GCG,CTT,ACC,ATA,AGG,AAC,CGT,GTT,TTC,GGA,GTT 
75.EMPII-75:Tm=54,60mer 
CAT,CGG,CTG,TGA,CGT,TGC,AAC,CAC,TGC,CCG,TAA,CCT,CGG,TCT,TTC,AGT,CGC,GAA,CCT,TGA 
76.EMPII-76:Tm=54,60mer 
CGC,CGC,CCA,AGG,ACT,CGA,ACC,AAA,AGG,TCA,TCG,CCG,GCC,TCA,AGG,TTC,GCG,ACT,GAA,AGA 
77.EMPII-77:Tm=54,60mer 
GGT,TCG,AGT,CCT,TGG,GCG,GCG,TAT,TGG,CGC,TGG,GCT,ACG,TGG,GTT,CTT,TAC,GGA,CCA,AGG 
78.EMPII-78:Tm=54,60mer 
GAT,AAA,CGT,GAG,ACG,CCT,GTA,TTC,AGA,TCG,ACG,TGA,ACA,CCT,TGG,TCC,GTA,AAG,AAC,CCA 
79.EMPII-79:Tm=54,60mer 
TAC,AGG,CGT,CTC,ACG,TTT,ATC,AGG,GGA,GGG,TCA,GCT,GGA,AAA,AGT,CAT,GGT,CAA,TGA,AGG 
80.EMPII-80:Tm=54,60mer 
CCC,ACG,CAA,ATG,AGG,GCG,TTA,CCA,GGA,ATA,AAC,CTC,CGG,CCT,TCA,TTG,ACC,ATG,ACT,TTT 
81.EMPII-81:Tm=54,60mer 
TAA,CGC,CCT,CAT,TTG,CGT,GGG,GGC,AGA,CCC,AGC,GGA,CCA,CCT,GGC,ACG,CCA,TGC,CGG,TTC 
82.EMPII-82:Tm=54,60mer 
GCG,CCA,CTT,TGG,TCA,ACC,ACA,ACC,CCC,CGA,TCC,CAT,TCG,GAA,CCG,GCA,TGG,CGT,GCC,AGG 
83.EMPII-83:Tm=54,60mer 
TGT,GGT,TGA,CCA,AAG,TGG,CGC,CAC,CTC,GGC,AAA,AGG,CGT,ATT,CGC,GGT,CGG,GGA,TGT,GGC 
84.EMPII-84:Tm=54,60mer 
TCA,AGG,GAG,CGC,TTA,CCC,CCA,GAT,TGG,AGG,GGC,CAG,GTC,GCC,ACA,TCC,CCG,ACC,GCG,AAT 
85.EMPII-85:Tm=54,60mer 
TGG,GGG,TAA,GCG,CTC,CCT,TGA,AAG,TTA,TAT,TAA,AGC,TCA,ACG,GCA,GGC,CAC,TGC,GGT,CGC 
86.EMPII-86:Tm=54,60mer 
AAT,TGG,GGT,GCT,GAT,ACT,TCT,TTC,CCC,AGG,ATA,GCA,TTA,GCG,ACC,GCA,GTG,GCC,TGC,CGT 
87.EMPII-87:Tm=54,60mer 
AGA,AGT,ATC,AGC,ACC,CCA,ATT,GCC,CGT,TTC,ATG,TAC,AGA,CAT,AGC,AGG,CCA,TCG,GAT,TCA 
88.EMPII-88:Tm=54,60mer 
AAT,ACA,TAT,TCC,CCG,GGT,CCT,TCA,ATT,TCA,CCC,TCC,ACT,TGA,ATC,CGA,TGG,CCT,GCT,ATG 
89.EMPII-89:Tm=54,60mer 
AGG,ACC,CGG,GGA,ATA,TGT,ATT,GCG,GGG,TAC,TTT,CGG,GAT,TGG,CCC,TGG,TTT,ATT,CTT,TCG 
90.EMPII-90:Tm=54,60mer 
TCC,ACG,GCT,ACA,ACG,GCC,TGC,ATT,CGT,CCT,TCC,AGT,AGA,CGA,AAG,AAT,AAA,CCA,GGG,CCA 
91.EMPII-91:Tm=54,60mer 
GCA,GGC,CGT,TGT,AGC,CGT,GGA,CGC,CCC,TCG,TGA,TTT,GGC,CCT,CGC,GAA,ACG,ATT,GGT,CGA 
92.EMPII-92:Tm=54,60mer 
ACC,TCT,GCG,TGC,TTC,TCC,GGG,TCA,ATT,ATC,ACG,TGG,GCC,TCG,ACC,AAT,CGT,TTC,GCG,AGG 
93.EMPII-93:Tm=54,60mer 
CCC,GGA,GAA,GCA,CGC,AGA,GGT,TTC,AAA,AAA,CAT,CCG,AGA,CAT,GGT,CCG,CGC,CAA,CGA,TGG 
94.EMPII-94:Tm=54,55mer 
TGA,TCT,ACT,TGC,TCT,TTA,AGT,TCA,TTT,CTG,CTT,TCC,ATC,GTT,GGC,GCG,GAC,CAT,G 
利用PCR进行萘双加氧酶全长扩增,在100μl反应体系中,EMPII-2-EMPII-93共92个扩增引物的添加量为2ng,2个外侧引物EMPII-1和EMPII-161添加量为30ng。扩增条件依次为:94℃预热1min;94℃30秒,50℃30秒,72℃10min,共25个循环。扩增所使用的Taq DNA聚合酶为KODFX taq酶(Toyobo公司,日本)。 
PCR结束后,用0.8%(w/v)琼脂糖胶回收,取10μl直接与T/A克隆载体相连(宝生物工程(大连)有限公司),4℃连接过夜。之后高效转化大肠杆菌DH5α感受态细胞,获得阳性克隆。 
实施例6萘双加氧酶系统工程菌种构建 
以PNap 1:5’-ATGAACCAGACGGAGACGACCCCGATCAGA-3’和PNap2:5’-TCTTTAAGTTCATTTCTGCTTTCCATCG-3’为扩增引物对萘双加氧酶系统相关的基因进行PCR扩增。使用KOD FX taq酶(Toyobo公司,日本),扩增条件依次为:94℃30秒,68℃30秒,72℃600秒,扩增30个循环。加入2单位rtaq酶(大连宝生物工程公司),在72℃延伸30分钟。PCR结束后,1%(w/v)琼脂糖凝胶回收,获得长度为3620bp的萘双加氧酶基因序列。 
萘双加氧酶基因转入原核生物细胞中一种方式为,将SEQ ID No 1序列直接与表达载体pBAD/TOPO ThioFusionTM(Invitrogen)相连,4℃连接2小时。然后将该载体转化感受态大肠杆菌TOP10(Invitrogen)。将菌液涂布于含有50μg/mL氨苄青霉素的以萘为碳源的M9固体培养基上,培养后挑取生长良好的菌落。 
实施例7萘双加氧酶系统在大肠杆菌中表达对多环芳烃菲的降解 
挑取实施例6中生长良好的大肠杆菌菌落于20ml LB液体培养基(5g/L酵母提取物,5g/L NaCl,10g/L胰蛋白胨,pH7.5)中,37℃振荡培养12小时。加入20μl 100mg/mL菲后继续培养168小时。以5,000g离心10min,取上清液分析菲的降解。 
取5ml上述制备的样品于25ml玻璃离心管中,加入2g无水硫酸钠,充分混匀;加入10ml二氯甲烷,盖紧后超声萃取1h,离心;以5000r/min离心10min,取下层萃取液,重复三次合并二氯甲烷萃取液,用旋转蒸发仪浓缩至干用乙腈定容至2ml。过0.22μm孔径滤膜后,HPLC分析。 
图2可以看出,将含有萘双加氧酶系统的大肠杆菌中接种到含有菲的培养基中,168小时后,菲的浓度由原来的200μg/mL降解为29μg/mL,培养液中的浓度仅为原来的14.5%。 
Figure DEST_PATH_GDA0000466400440000021
Figure DEST_PATH_GDA0000466400440000031
Figure DEST_PATH_GDA0000466400440000041

Claims (5)

1.一种不动杆菌萘双加氧酶系统基因,其核苷酸序列如SEQ ID NO:2所示。
2.权利要求1所述的不动杆菌萘双加氧酶系统基因在菲降解中的应用。
3.一种包含权利要求1所述的不动杆菌萘双加氧酶系统基因的表达载体。
4.根据权利要求3所述的不动杆菌萘双加氧酶系统基因的表达载体,其特征在于,所述表达载体由pBAD/TOPO载体与如SEQ ID NO:2所示的序列连接形成。
5.权利要求3或4所述的含有不动杆菌萘双加氧酶系统基因的表达载体在菲降解中的应用。
CN200910055020.8A 2009-07-17 2009-07-17 不动杆菌萘双加氧酶系统基因及其应用 Expired - Fee Related CN101955951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910055020.8A CN101955951B (zh) 2009-07-17 2009-07-17 不动杆菌萘双加氧酶系统基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910055020.8A CN101955951B (zh) 2009-07-17 2009-07-17 不动杆菌萘双加氧酶系统基因及其应用

Publications (2)

Publication Number Publication Date
CN101955951A CN101955951A (zh) 2011-01-26
CN101955951B true CN101955951B (zh) 2014-06-25

Family

ID=43483537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910055020.8A Expired - Fee Related CN101955951B (zh) 2009-07-17 2009-07-17 不动杆菌萘双加氧酶系统基因及其应用

Country Status (1)

Country Link
CN (1) CN101955951B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897997B (zh) * 2012-12-25 2015-12-23 中国中化股份有限公司 一种生物增效菌剂及其应用
CN104611253B (zh) * 2014-12-15 2017-06-06 云南中烟工业有限责任公司 一种微生物菌株及其在降解烟草甾醇中的应用
CN105695360B (zh) * 2016-03-18 2019-03-05 中国科学院广州地球化学研究所 一种菲降解菌Acinetobacter tandoii LJ-5及其应用
CN116769806A (zh) * 2023-05-06 2023-09-19 上海市农业科学院 萘双加氧酶基因簇、过表达载体及其重组菌株在降解有机污染物中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002055A1 (en) * 1989-08-04 1991-02-21 Amgen Inc. Enhancement of naphthalene dioxygenase activity during microbial indigo production
WO2000037480A1 (en) * 1998-10-26 2000-06-29 University Of Iowa Research Foundation Novel naphthalene dioxygenase and methods for their use
WO2004050875A1 (ja) * 2002-11-29 2004-06-17 Marine Biotechnology Institute Co., Ltd. 新規な芳香環ジオキシゲナーゼ遺伝子群及びその用途
CN101333541A (zh) * 2008-07-28 2008-12-31 上海市农业科学院 萘双加氧酶植物表达载体及其构建方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002055A1 (en) * 1989-08-04 1991-02-21 Amgen Inc. Enhancement of naphthalene dioxygenase activity during microbial indigo production
WO2000037480A1 (en) * 1998-10-26 2000-06-29 University Of Iowa Research Foundation Novel naphthalene dioxygenase and methods for their use
WO2004050875A1 (ja) * 2002-11-29 2004-06-17 Marine Biotechnology Institute Co., Ltd. 新規な芳香環ジオキシゲナーゼ遺伝子群及びその用途
CN101333541A (zh) * 2008-07-28 2008-12-31 上海市农业科学院 萘双加氧酶植物表达载体及其构建方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一株菲降解细菌的分离鉴定及其特性;祝儒刚等;<应用生态学报>;20061130;第17卷(第11期);2117-2120 *
芳香族化合物的生物降解途径;饶佳家等;<化工环保>;20041231;第24卷(第5期);323-327 *

Also Published As

Publication number Publication date
CN101955951A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
Feng et al. Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition
Guarino et al. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation–Assistited Landfarming) for a petroleum hydrocarbons contaminated soil
Subashchandrabose et al. Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP
Kumar et al. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F
Balachandran et al. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp.(ERI-CPDA-1) isolated from oil contaminated soil
Kiamarsi et al. Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils
Usman et al. Anthracene degradation by Achromobacter xylosoxidans strain BUK_BTEG6 isolated from petrochemical contaminated soil
Koutny et al. Screening for phenol-degrading bacteria in the pristine soils of south Siberia
US20060275887A1 (en) Mycobacteria compositions and methods of use in bioremediation
Gielnik et al. Bacterial seeding potential of digestate in bioremediation of diesel contaminated soil
Emtiazi et al. Utilization of petroleum hydrocarbons by Pseudomonas sp. and transformed E. coli
Pathak et al. In vitro studies on degradation of synthetic dye mixture by Comamonas sp. VS-MH2 and evaluation of its efficacy using simulated microcosm
Al-Mailem et al. Enhanced bioremediation of oil-polluted, hypersaline, coastal areas in Kuwait via vitamin-fertilization
Abo-State et al. Biodegradation of naphthalene by Bordetella avium isolated from petroleum refinery wastewater in Egypt and its pathway
Gu et al. Isolation and transcriptome analysis of phenol-degrading bacterium from carbon–sand filters in a full-scale drinking water treatment plant
Pandey et al. Microbial decolorization and degradation of reactive red 198 azo dye by a newly isolated Alkaligenes species
Wang et al. Isolation and characteristics of a microbial consortium for effectively degrading phenanthrene
CN101955951B (zh) 不动杆菌萘双加氧酶系统基因及其应用
Barghoth et al. Characterizations of highly efficient moderately halophilic toluene degrading exiguobacterium mexicanum M7 strain isolated from Egyptian saline sediments
JP3208092B2 (ja) ポリ塩化ビフェニルの分解法と新規微生物
Sekkour et al. The diversity of cultivable hydrocarbon-degrading bacteria isolated from crude oil contaminated soil and sludge from Arzew refinery in Algeria
KR101471508B1 (ko) 다환방향족 탄화수소 분해 활성을 가지는 알테로모나스 속 sn2
CN104745515B (zh) 一种降解多环芳烃的不动杆菌及其应用
Vinay et al. Efficient degradation of dibutyl phthalate and utilization of phthalic acid esters (PAES) by Acinetobacter species isolated from MSW (municipal solid waste) leachate
Wang et al. Metabolic cross-feeding between the competent degrader Rhodococcus sp. strain p52 and an incompetent partner during catabolism of dibenzofuran: Understanding the leading and supporting roles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140625

Termination date: 20160717

CF01 Termination of patent right due to non-payment of annual fee