CN101952691A - 用于在层流区、过渡区、湍流区中操作的装置和方法 - Google Patents

用于在层流区、过渡区、湍流区中操作的装置和方法 Download PDF

Info

Publication number
CN101952691A
CN101952691A CN2009801062549A CN200980106254A CN101952691A CN 101952691 A CN101952691 A CN 101952691A CN 2009801062549 A CN2009801062549 A CN 2009801062549A CN 200980106254 A CN200980106254 A CN 200980106254A CN 101952691 A CN101952691 A CN 101952691A
Authority
CN
China
Prior art keywords
fluid
tip
flow
fluid tip
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801062549A
Other languages
English (en)
Inventor
赫伯特·埃斯特拉达
格雷戈尔·J·布朗
唐纳德·R·奥根斯坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cameron International Corp
Original Assignee
Cameron International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cameron International Corp filed Critical Cameron International Corp
Publication of CN101952691A publication Critical patent/CN101952691A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Abstract

本发明公开一种用于测定管道中的流体流量的装置,所述装置包括与管道相接触的流体喷嘴,该流体喷嘴具有如下的轮廓,该轮廓使流体流经该流体喷嘴时不会沿喷嘴表面产生负压力梯度。所述装置包括时差式超声波流量计,该流量计设置在所述喷嘴的下游并且采用至少一条与管道中的流体相连的声路。本发明公开一种用于测定管道中的流体流量的装置。所述装置包括与管道相接触的流体喷嘴,该流体喷嘴具有由复合立方面限定的轮廓。本发明包括时差式超声波流量计,该流量计设置在喷嘴的下游并且采用至少一条与管道中的流体相连的声路。本发明还公开了一种管道的流体喷嘴。本发明还公开一种用于测定管道中的流体流量的方法。

Description

用于在层流区、过渡区、湍流区中操作的装置和方法
技术领域
本发明涉及一种用于测定管道内的流体流量的装置(在本文中,术语“本发明”或“发明”涉及示例性实施例,但不必涉及所附权利要求书所涵盖的每个实施例)。举例而言,本发明提供如下一种流体喷嘴,该流体喷嘴与管道进行流体连通,并且喷嘴的轮廓选择为能够在组织流速廓线的同时避免流体分离。具体地说,本发明涉及一种用于测定管道内的流体流量的测量装置。该示例性的测量装置包括喷嘴,该喷嘴的内表面的轮廓由复合旋转立方面(compound cubic body of revolution)限定,或可选择地由两个旋转椭球体的复合面(compound of two ellipsoidal bodies of revolution)所限定,并且该测量装置具有时差式超声波流量计。
背景技术
这部分意图向读者介绍本领域可能与本发明的各方面相关的各方面。下述讨论意在提供有助于更好地理解本发明的信息。相应地,应当理解到,应考虑到上述目的来阅读以下论述,并不应将该论述作为对背景技术的认可。
石油工业通常采用例如,涡轮式流量计和超声波流量计来测量流量和其它流体特性。这些流量计的精确度通常依赖于流量计所在处的轴向流体流速廓线的连续性和稳定性。例如,空间不连续的廓线或随时间变化很大的廓线将导致这些流量计的校准出现不可预测的从而是不可接受的变化。
与如管道等完全封闭的导管中的流动流体相关联的轴向流速廓线取决于作用在流体上的力的相对大小,该力通常可以归类为惯性力或者摩擦力。惯性力倾向于使流体质点以恒定流速朝着恒定方向移动,而相邻流体流之间的以流体粘度为特征的摩擦力倾向于使流体减速。在某些情况下,流体粘度可以使管道壁处的流体的流量降至零。在流体动力学中,经常用惯性力与粘性力的比值来表征流速廓线,该比值被称为雷诺数并且是无量纲的。
在许多工业应用中,惯性力占优势。在该情况下,雷诺数超过5000并且该流体流动被表征为“湍流”。平行流体流的动量借助于小的随机涡流而进行自由交换;并且在该廓线在空间和时间上仅以较小的程度发生改变的情况下,平均而言,廓线是变化缓慢的、稳定的并且可以由涡轮式流量计和超声波流量计容易地且精确地进行测量。然而,近年来,一些应用需要测量特重质石油的流量,特重质石油的雷诺数在500至5000的范围内且在测定廓线的特性时粘性力起到重要的作用。当雷诺数小于约1000时,流体状态被表征为“层流”;在长且直的管道中,流速廓线接近抛物线形形状,但在任何情况下,流速廓线都非常稳定且没有涡流。在这种状态下,温度梯度可能造成测量问题,但是对于恒温产品,用超声波仪器进行流量测量不会出现不可克服的问题。然而,因为涡轮自身与流动流体相互作用,所以在这种状态下使用涡轮式流量计会造成更多问题。
当雷诺数大于1000但小于5000时,该流体状态被表征为“过渡状态”。在该范围内,流动可能会倾向于层流,但是流速、管道壁的形貌、或者测量仪器自身的物理构造中的小扰动可能会触发大的漩涡,并伴随有轴向流速廓线的突然并且显著的变化。参考文献描述了过渡流类似于散布有湍动的“胀泡(puff)”和“弹状流(slug)”的层流,该过渡流的存在及频率取决于雷诺数和管道的其它特征(几何结构、震动等)。胀泡或弹状流之前的时间平均流速廓线基本上与层流廓线相同,而在胀泡或弹状流的中间,时间平均流速廓线基本上与湍流廓线相同。在胀泡或弹状流的前缘或尾缘处,廓线从一种形状转变为另一种形状,并且该转变伴随有大涡流的产生。
在过渡区域,涡轮式流量计和超声波流量计均不能令人满意地进行操作,它们难以进行校准,并且校准的变化太大以至于不能用于要求精确度的石油应用中,例如密闭输送及产品分配等。目前,唯一适用于过渡区域的仪器为容积式流量计,但容积式流量计价格昂贵并需要频繁的维护。本发明提供如下一种技术,其中超声波流量计可以制造为能在过渡区域中稳定且可靠地进行操作,并且不会牺牲该超声波流量计在下方的层流状态或上方的湍流状态中的性能。
就本发明人所知,不存在如下在先申请:即用于实现使用超声波流量计测量过渡状态(区域,regime)中的流速廓线的特定目的。用压差仪测量质量流量的现有技术喷嘴--例如所谓的ASME喷嘴--具有非流线形入口并通常以单个椭球面为特征,而不使用本发明所描述的复合立方面或复合椭球面。图5示出典型的传统流体喷嘴的轮廓。
发明内容
本发明涉及一种利用与时差式超声波流量计结合的流体喷嘴(fluid nozzle)来测定管道内的流体流量的方法和装置。所述流体喷嘴具有呈期望轮廓的内表面,以使流体从管道转移到流量计中,以便流量计分析流体流量。
附图说明
在附图中示出本发明的优选实施例以及实施本发明的优选方法,其中:
图1是本发明的装置的示意剖视图;
图2是渐缩式喷嘴的复合椭球面轮廓;
图3是在雷诺数100000以内的层流状态、过渡状态和湍流状态中全通径式流量计的线性度的曲线图;
图4是在雷诺数100000以内的层流状态、过渡状态和湍流状态中根据本发明的缩孔式(6×4)流量计的线性度的曲线图;以及
图5是现有技术中借助于压差进行流量测量的典型流体喷嘴的轮廓。
具体实施方式
下面参考附图,其中,在各个附图中用相似的附图标记表示相似或相同的部件。更具体地参考图1,图1示出用于测定管道12中的流体流量的装置10。装置10包括与管道12进行流体连通的流体喷嘴14。该喷嘴14的表面16轮廓构成为可避免因流体流动而产生的负压力梯度。该装置10包括时差式超声波流量计18,该时差式超声波流量计18采用至少一条与管道12中的流体相连的声路并且设置在喷嘴14的下游。换句话说,装置10设置有用于测量管道内的流体的流动特性的缩孔式超声波流量计。
流体喷嘴14通常包括具有凹形轮廓部分和凸形轮廓部分的环形内表面。该凹形部分或凸形部分或它们的任意组合可以呈例如椭球形、或立方形、或正弦形。该凹形轮廓部分和凸形轮廓部分可以为椭球形、立方形或正弦形。
为避免负压力梯度,喷嘴14的表面16可示例性地构成为复合椭球面。例如,该表面轮廓可描述为两个旋转椭球体的复合面。这两个旋转椭球体由{(X-X0)2/a2+(Y-Y0)2/b2=1}形式的椭圆经旋转而成,其中,a和b为赤道半径(equatorial radii)(沿X和Y轴),并且X、Y、X0及Y0为与对应的轴线相关的数,后文将进行详细说明。
在一个实施例中,喷嘴14的喉部20的直径与位于喷嘴14上游的管道12的直径的比值为0.7或更小。具体地说,该比值可以为约0.67。喷嘴14的长度可以介于管道12的直径的1/2倍至3倍之间。流量计18的上游孔24可以设置在距喷嘴14的下游端26介于管道直径的1/2倍至3倍之间的距离处。
装置10可以包括在流量计18的下游位置与管道12流体连通的扩散器22。该流量计18可以测量管道12中的雷诺数为1000至5000的流体。
本发明涉及管道12的流体喷嘴14。喷嘴14包括内表面16,该内表面16的轮廓可以避免在流体流过喷嘴14时沿着内表面16在流体中产生负压力梯度。喷嘴14包括喉部20,其中,喉部20的直径与喉部20上游的管道12的直径的比值为0.7或更小。
本发明涉及一种用于测定管道12内的流体流量的方法。该方法包括使流体流过流体喷嘴14的步骤,该流体喷嘴14具有由复合立方面或复合椭球面限定的轮廓并与管道12相接触。存在用时差式超声波流量计18测量管道12内的流体的步骤,该时差式超声波流量计18设置在喷嘴14的下游并且采用至少一条与管道12中的流体相连的声路。
上述使流体流过流体喷嘴14的步骤可以包括使流体流过轮廓为两个旋转椭球体的复合面的流体喷嘴14的步骤。使流体流过流体喷嘴14的步骤可以包括使流体流过两个旋转椭球体均具有{(X-X0)2/a2+(Y-Y0)2/b2=1}形式的流体喷嘴14的步骤。使流体流过流体喷嘴14的步骤包括使流体流过如下流体喷嘴14的步骤,该流体喷嘴14的喉部20的直径与位于流体喷嘴14上游的管道12的直径的比值为0.7或更小。使流体流过流体喷嘴14的步骤包括使流体流过上述比值为约0.67的流体喷嘴14的步骤。使流体流过流体喷嘴14的步骤可以包括使雷诺数在1000至5000之间的流体流经喷嘴14的步骤。可以存在使流体流过在流量计18的下游与管道12相接触的扩散器22的步骤。
在本发明的操作中,装置10利用由具有特定特性的渐缩式喷嘴14所产生的惯性力来控制流场,否则流场可能变混乱。该混乱在流体处于粘性力和惯性力均不占优势的过渡区域时发生,在过渡区域中,粘性力控制低速、高粘度下的流速廓线,惯性力控制高速、低粘度下的流速廓线。过渡区域中的流速廓线的稳定性对于使时差式超声波流量计18在过渡区域中进行令人满意的操作而言是重要的。该稳定性保证了能精确且可重复地进行超声波流量计18的校准(流量计校正系数),因此使超声波流量计能够在流场特性迄今为止始终不能得到精确测量的场合中进行精确的流量测量。
装置10包括渐缩式喷嘴14和采用了一条或多条声路的时差式超声波流量计18。该流量计18利用超声波能量脉冲顺着与逆着流体流动方向传播的时间差来计算流速。通过测量流速来确定体积流量。在本发明的剖视图图1中,流量计18采用了八条弦向布置的声路,该流量计18允许四组独立的轴向流速测量进行数值积分,而不会产生来自横向流速分量的误差,从而与例如单声路的情况相比,有助于提高体积流量的测量精确度。然而,如上所述,本发明可以应用于采用少至一条声路的时差式超声波流量计。该构造采用beta比为0.63的渐缩式喷嘴、以及用于恢复压力损失的锥形扩散器。(beta比为喷嘴14在出口处的直径与在入口处的直径的比值。)
图2示出用于本发明的流体喷嘴14的轮廓的剖面。该轮廓为均具有{(X-X0)2/a2+(Y-Y0)2/b2=1}形式的两个椭球体的复合面,其中,a和b为赤道半径(沿X和Y轴),X、Y、X0及Y0为与对应的轴线相关的数。流体从左侧流入。表面16的椭球面轮廓可以避免沿表面16在流体中产生负压力梯度。避免负梯度是有利的,这是因为这样可以防止产生边界层分离,继而防止产生湍流。在图2中,喷嘴14在出口处的直径与在入口处的直径的比值(所谓的beta比或β比)为0.67。该比值使得喉部20中的平均轴向流速等于管道12中的平均轴向流速的(l/β2)倍或约2.2倍。作用于喉部20中的流体的惯性力与轴向流速的平方相关,因此,该惯性力是管道12内的惯性力的大约5倍。(由于内径减小,粘性力也有所增加;但在喷嘴14的喉部20中,惯性力与粘性力的总比值大约增加了1.5。)
喷嘴14的β比的选择受到两个对抗因素控制:
·用于测量上游龙头与喉部20龙头之间的压力差并测量质量流量的流体喷嘴14的经验表明:更小的β比产生更高的可重复性(见例如ASME出版物“Fluid Meters(流体计量器)”中的例子)。β比大于0.75的喷嘴14的校准有时候缺乏可重复性。
·超声波流量计18的可实施性及成本效率随着半径的减小而减小。很少提供并销售直径小于4英寸的这种流量计18。因此,运输重油的6英寸管线的最低可用β比为大约0.67。
无论流体为层流、过渡流还是湍流,缩孔式流量计18中的喷嘴14不仅提高了流速,而且还将轴向流速廓线平坦化。流速廓线的平坦化意味着湍流和层流廓线更为相似,并且因此减少了过渡区域中的流速廓线的变化。此外,可以实现轴向流速的增加而不必使涡流流速随之增加,且因此可以降低涡流的影响。流速廓线的平坦化是利用相对突然的收缩而获得的益处--极大的收缩量估计会增加流速/惯性力,而不会显著地使流速廓线平坦化。
图3和图4提供了由本发明的超声波流量计18所带来的对线性度和可重复性的改进的实验性证据。图3绘出了用于常规的6英寸四路超声波流量计18(其中管道12的内径在整个流量计18中为常数而没有采用直径渐缩式喷嘴)的校准数据与管道内的流体雷诺数的关系。如图所示,为使雷诺数跨越层流至整个湍流的范围--1000至100000--在校准过程中需要两种不同粘性的流体。较低雷诺数状态被运动粘度约为220厘沲的流体覆盖,较高雷诺数状态被运动粘度约为20厘沲的流体覆盖。从图3中可以看出,在过渡区域(典型地位于2000至5000的雷诺数范围中--取决于例如管道12的光滑度和流动的稳定性等装置特性,过渡流也可能在低至1500或高至7000的雷诺数处产生)以上,流量计18校正系数数据紧密聚集并容易与雷诺数相关联。但在该过渡区域以下,该校正系数数据跨越几乎1%的区域,而与雷诺数或任意其它变量无明显的关联。这一特征使得6英寸通径式流量计18不适用于雷诺数低于5000的过渡区域的密闭输送操作。
图4示出本发明的优点。与图3相似,图4中绘出了6英寸管线中流量计18校正系数与该管线中的流体的雷诺数的对应关系,但该数据是从与图1相似的流量计18得到的:如图1所示,4英寸四路流量计18设置在喷嘴14的下游,该喷嘴14为6英寸乘4英寸的渐缩式喷嘴,且该喷嘴14的轮廓与图2中的轮廓一致并具有位于下游的头部恢复膨胀锥。在雷诺数大于5000的湍流区域中,图4的缩孔式流量计18的校准数据与图3的通径式流量计18的校准数据相似,图4的流量计18校正系数是随着雷诺数的增大而逐步增大的。可以通过向基于雷诺数的原始流量计18校正系数应用增量校准容易地将两种流量计18的校准线性化--流量计18校正系数在宽的雷诺数范围内保持恒定。可以通过用流量计18测量产品的声速与温度,或借助其它手段来测定雷诺数。
然而,在过渡区域--雷诺数低于5000并且高于1000--图3和图4中的流量计18特征具有显著差异。如上所述,图3的通径式流量计18的校准数据是混乱且无关联的;该流量计18在过渡区域内的校准对该区域中的密闭输送或其它高价值的应用来说过于不确定。另一方面,图4的缩孔式流量计18的校准数据,在1000-5000的雷诺数范围内紧密聚集并且几乎是恒定的。流量计18在该区域内的校准是容易表征的;流量计18校正系数为0.9770±0.15%,其性能是相当恒定的从而能应用于过渡区域中的密闭输送及其它高价值的应用。图1是缩孔式流量计18的剖视图。该构造采用了beta比为0.63的渐缩式喷嘴14、以及用于利用8路弦向流量计18恢复压力损失的锥形扩散器22。图2是渐缩式喷嘴14的复合椭球面轮廓。对于该喷嘴14,采用了0.67的beta比。流体从左侧流入。
尽管出于说明目的在上述实施例中对本发明进行了详细描述,然而应当理解的是,这些详细描述仅是为了上述说明目的,并且除了权利要求书限定的内容之外,本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改。

Claims (18)

1.一种用于测定管道中的流体流量的装置,所述装置包括:
流体喷嘴,其与所述管道流体连通并且具有如下的表面,所述表面的轮廓避免当流体流过所述流体喷嘴时沿着所述流体喷嘴表面在流体中产生负压力梯度,以及
时差式超声波流量计,其设置在所述流体喷嘴的下游并且采用至少一条与所述管道中的流体相连的声路。
2.一种用于测定管道中的流体流量的装置,所述装置包括:
流体喷嘴,其与所述管道接触并且具有如下轮廓,所述轮廓基本上由复合立方面或复合椭球面所限定;以及
时差式超声波流量计,其设置在所述流体喷嘴的下游并且采用至少一条与所述管道中的流体相连的声路。
3.如权利要求2所述的装置,其中,所述轮廓基本上由两个旋转椭球体的复合面所限定。
4.如权利要求3所述的装置,其中,所述两个旋转椭球体由{(X-X0)2/a2+(Y-Y0)2/b2=1}形式的椭圆经旋转而成,a和b为赤道半径(沿X和Y轴),X、Y、X0及Y0为与对应的轴线相关的数。
5.如权利要求4所述的装置,其中,所述流体喷嘴的喉部的直径与位于所述喷嘴上游的所述管道的直径的比值为0.7或更小。
6.如权利要求5所述的装置,其中,所述比值为约0.67。
7.如权利要求6所述的装置,包括:
扩散器,所述扩散器在所述流量计的下游与所述管道流体连通。
8.如权利要求7所述的装置,其中,所述流量计构造为测量所述管道中的雷诺数为1000至5000的流体。
9.如权利要求8所述的装置,其中,所述流体喷嘴的长度在所述管道的直径的1/2倍至3倍之间。
10.如权利要求9所述的装置,其中,所述流量计具有上游孔,所述上游孔设置在距所述流体喷嘴的下游端的距离介于所述管道的直径的1/2倍至3倍之间的位置处。
11.一种管道的流体喷嘴,包括:
内表面,其具有如下轮廓,所述轮廓避免当流体流过所述流体喷嘴时沿所述流体喷嘴内表面在流体中产生负压力梯度;以及
喉部,所述喉部的直径与位于所述喉部上游的所述管道的直径的比值为0.7或更小。
12.一种用于测定管道中的流体流量的方法,所述方法包括以下步骤:
使流体流过与所述管道流体连通的流体喷嘴,所述流体喷嘴的轮廓由复合立方面或复合椭球面所限定;以及
利用时差式超声波流量计测量所述管道中的流体,所述时差式超声波流量计设置在所述流体喷嘴的下游并且采用至少一条与所述管道中的流体相连的声路。
13.如权利要求12所述的方法,其中,使流体流过所述流体喷嘴的步骤包括使流体流过轮廓为两个旋转椭球体的复合面的所述流体喷嘴的步骤。
14.如权利要求13所述的方法,其中,使流体流过所述流体喷嘴的步骤包括使流体流过所述流体喷嘴的步骤,所述两个旋转椭球体中的每一个椭球体具有{(X-X0)2/a2+(Y-Y0)2/b2=1}的形式,a和b为赤道半径(沿X和Y轴),X、Y、X0及Y0为与对应的轴线相关的数。
15.如权利要求14所述的方法,其中,使流体流过所述流体喷嘴的步骤包括使流体流过如下流体喷嘴的步骤,所述流体喷嘴的喉部的直径与位于所述喉部上游的所述管道的直径的比值为0.7或更小。
16.如权利要求15所述的方法,其中,使流体流过所述流体喷嘴的步骤包括使流体流过比值为0.67的所述流体喷嘴的步骤。
17.如权利要求16所述的方法,包括:使所述流体流过扩散器的步骤,所述扩散器在所述流量计的下游与所述管道流体连通。
18.如权利要求17所述的方法,其中,使流体流过所述流体喷嘴的步骤包括使雷诺数在1000至5000之间的所述流体流过所述流体喷嘴的步骤。
CN2009801062549A 2008-03-07 2009-02-18 用于在层流区、过渡区、湍流区中操作的装置和方法 Pending CN101952691A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/074,843 US7810401B2 (en) 2008-03-07 2008-03-07 Apparatus and method for operation in the laminar, transition, and turbulent flow regimes
US12/074,843 2008-03-07
PCT/US2009/001007 WO2009114062A2 (en) 2008-03-07 2009-02-18 Apparatus and method for operation in the laminar, transition, and turbulent flow regimes

Publications (1)

Publication Number Publication Date
CN101952691A true CN101952691A (zh) 2011-01-19

Family

ID=41052227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801062549A Pending CN101952691A (zh) 2008-03-07 2009-02-18 用于在层流区、过渡区、湍流区中操作的装置和方法

Country Status (8)

Country Link
US (2) US7810401B2 (zh)
EP (1) EP2250470B1 (zh)
KR (1) KR101271264B1 (zh)
CN (1) CN101952691A (zh)
BR (1) BRPI0909110A2 (zh)
CA (2) CA2857032A1 (zh)
MX (1) MX2010009858A (zh)
WO (1) WO2009114062A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829895A (zh) * 2012-04-25 2012-12-19 合肥瑞纳表计有限公司 超声波热量表稳流装置
CN103868625A (zh) * 2012-12-18 2014-06-18 杭州三花研究院有限公司 一种超声波热量表
CN103868628A (zh) * 2012-12-18 2014-06-18 杭州三花研究院有限公司 一种超声波热量表
CN105403266A (zh) * 2015-12-16 2016-03-16 宁波水表股份有限公司 一种自动校正的大口径超声水表及其校正方法
CN108732379A (zh) * 2017-04-13 2018-11-02 西克工程有限公司 用于测量流体的流速的测量装置
CN110462302A (zh) * 2017-01-17 2019-11-15 Itt制边企业有限责任公司 流体拉直连接单元

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810401B2 (en) * 2008-03-07 2010-10-12 Cameron International Corporation Apparatus and method for operation in the laminar, transition, and turbulent flow regimes
US8347733B2 (en) 2010-10-25 2013-01-08 Cameron International Corporation Conditioner, apparatus and method
US9170140B2 (en) 2012-05-04 2015-10-27 Cameron International Corporation Ultrasonic flowmeter with internal surface coating and method
DE102012013916A1 (de) 2012-07-16 2014-01-16 Endress + Hauser Flowtec Ag Ultraschall-Durchflussmessgerät
WO2014070781A2 (en) 2012-10-29 2014-05-08 Hospira, Inc. Fluid flow passage to improve air-in-line detection
US9068870B2 (en) 2013-02-27 2015-06-30 Daniel Measurement And Control, Inc. Ultrasonic flow metering with laminar to turbulent transition flow control
US20150133861A1 (en) 2013-11-11 2015-05-14 Kevin P. McLennan Thermal management system and method for medical devices
US9297679B2 (en) * 2014-01-14 2016-03-29 General Electric Company Flowmeter with a flow conditioner formed by a protrusion having restriction provided upstream of the measurement section
US10143795B2 (en) 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
US11383349B2 (en) * 2014-08-20 2022-07-12 Oceanit Laboratories, Inc. Reduced noise abrasive blasting systems
US9599493B2 (en) * 2014-10-31 2017-03-21 Invensys Systems, Inc. Split flow vortex flowmeter
US9714855B2 (en) 2015-01-26 2017-07-25 Arad Ltd. Ultrasonic water meter
ES2809505T3 (es) 2015-05-26 2021-03-04 Icu Medical Inc Dispositivo de administración de fluido de infusión desechable para la administración programable de fármacos de gran volumen
US10619656B1 (en) * 2017-05-31 2020-04-14 Daniel A. Handley Fluid turbulence inducement apparatus and system
US20200282517A1 (en) * 2018-12-11 2020-09-10 Oceanit Laboratories, Inc. Method and design for productive quiet abrasive blasting nozzles
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
WO2021118625A1 (en) * 2019-12-11 2021-06-17 Oceanit Laboratories, Inc. Method and design for productive quiet abrasive blasting nozzles
US11874150B2 (en) * 2020-04-28 2024-01-16 Neptune Technology Group Inc. Water meter assembly with taper for minimizing head loss
US20230064317A1 (en) * 2021-08-25 2023-03-02 Donn Scott Terry Damper device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1366522A (en) * 1919-03-14 1921-01-25 Jr William J Crowell Flow-meter
US1744842A (en) * 1926-07-14 1930-01-28 Suverkrop Lew Flow nipple
US2863318A (en) * 1953-06-15 1958-12-09 Bopp & Reuther G M B H Fa Differential pressure producer
US3142960A (en) * 1961-07-06 1964-08-04 Thompson Ramo Wooldridge Inc Multi-material refractory rocket parts and fabrication methods
US3686946A (en) * 1970-06-22 1972-08-29 Gen Signal Corp Flow metering devices of the pressure differential producing type
US3774645A (en) * 1971-12-06 1973-11-27 Universal Oil Prod Co Flange-free venturi nozzle insert
US3788140A (en) * 1972-02-25 1974-01-29 Gen Signal Corp Electroacoustical flow metering apparatus
US3889537A (en) * 1973-10-11 1975-06-17 Gen Electric Venturi arrangement
US4174734A (en) * 1978-03-13 1979-11-20 First Wisconsin National Bank Of Wisconsin Fluid flow metering tube with minimum pressure energy loss
US4452277A (en) * 1981-02-04 1984-06-05 United Technologies Corporation Automatic, fluid tight coupling
BR9300292A (pt) * 1993-01-27 1994-08-16 Petroleo Brasileiro Sa Aperfeiçoamento em sede de válvulas de orifício
US5918637A (en) * 1993-08-16 1999-07-06 Fleischman; William H. Plates perforated with venturi-like orifices
CN1134651C (zh) * 1996-01-17 2004-01-14 微动公司 分流型流量计
US6330831B1 (en) * 1998-10-20 2001-12-18 Panametrics, Inc. Stream-cleaned differential reflection coefficient sensor
US6276397B1 (en) * 2000-06-12 2001-08-21 Flow Design, Inc. Apparatus and method for shaping fluid flow
US6647806B1 (en) * 2000-07-14 2003-11-18 Caldon, Inc. Turbulence conditioner for use with transit time ultrasonic flowmeters
US6308740B1 (en) * 2000-08-15 2001-10-30 Lockheed Martin Corporation Method and system of pulsed or unsteady ejector
US6681641B2 (en) * 2001-09-10 2004-01-27 Joseph Baumoel Clamp-on gas flowmeter
US6895825B1 (en) * 2004-01-29 2005-05-24 The Boeing Company Ultrasonic transducer assembly for monitoring a fluid flowing through a duct
EP2044392B1 (de) * 2006-07-21 2019-05-08 Endress + Hauser Flowtec AG MESSSYSTEM FÜR EIN IN EINER PROZEßLEITUNG STRÖMENDES MEDIUM
US7810401B2 (en) * 2008-03-07 2010-10-12 Cameron International Corporation Apparatus and method for operation in the laminar, transition, and turbulent flow regimes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829895A (zh) * 2012-04-25 2012-12-19 合肥瑞纳表计有限公司 超声波热量表稳流装置
CN103868625A (zh) * 2012-12-18 2014-06-18 杭州三花研究院有限公司 一种超声波热量表
CN103868628A (zh) * 2012-12-18 2014-06-18 杭州三花研究院有限公司 一种超声波热量表
CN105403266A (zh) * 2015-12-16 2016-03-16 宁波水表股份有限公司 一种自动校正的大口径超声水表及其校正方法
CN105403266B (zh) * 2015-12-16 2019-03-01 宁波水表股份有限公司 一种自动校正的大口径超声水表及其校正方法
CN110462302A (zh) * 2017-01-17 2019-11-15 Itt制边企业有限责任公司 流体拉直连接单元
US10829228B2 (en) 2017-01-17 2020-11-10 Itt Manufacturing Enterprises, Llc Fluid straightening connection unit
CN110462302B (zh) * 2017-01-17 2022-03-29 Itt制边企业有限责任公司 流体拉直连接单元
US11946475B2 (en) 2017-01-17 2024-04-02 Itt Manufacturing Enterprises, Llc Fluid straightening connection unit
CN108732379A (zh) * 2017-04-13 2018-11-02 西克工程有限公司 用于测量流体的流速的测量装置
CN108732379B (zh) * 2017-04-13 2020-10-02 西克工程有限公司 用于测量流体的流速的测量装置

Also Published As

Publication number Publication date
US7810401B2 (en) 2010-10-12
CA2713158A1 (en) 2009-09-17
US20090223306A1 (en) 2009-09-10
BRPI0909110A2 (pt) 2015-08-25
EP2250470A4 (en) 2015-08-12
WO2009114062A3 (en) 2009-12-30
EP2250470A2 (en) 2010-11-17
EP2250470B1 (en) 2018-04-11
KR20100124809A (ko) 2010-11-29
CA2857032A1 (en) 2009-09-17
WO2009114062A2 (en) 2009-09-17
US20110005336A1 (en) 2011-01-13
MX2010009858A (es) 2010-09-30
CA2713158C (en) 2015-01-20
KR101271264B1 (ko) 2013-06-07
US8578971B2 (en) 2013-11-12

Similar Documents

Publication Publication Date Title
CN101952691A (zh) 用于在层流区、过渡区、湍流区中操作的装置和方法
US9297489B2 (en) Extended length flow conditioner
JP4991836B2 (ja) 流体流量計および流体ミキサ
CN206583495U (zh) 一种用于气体超声波流量计的内置整流器
US3736797A (en) Venturi device
Morrison et al. Comparison of orifice and slotted plate flowmeters
WO2014134021A4 (en) Ultrasonic flow metering with laminar to turbulent transition flow control
CN101881640A (zh) 涡街质量流量计
EP2615427A3 (en) Device and method enabling fluid characteristic measurement utilizing fluid acceleration
WO2019161716A1 (zh) 节流组件、整流及流量测量装置
CA2911900C (en) Throttling block for flow meter
CN100359292C (zh) 内藏式锥体节流装置
CN2935097Y (zh) 多相计量装置用槽式孔板
CN106323533A (zh) 用于测量流体流总压的装置
CN201707087U (zh) 涡街质量流量计
CN109443458A (zh) 一种凹弧形双流向均速管流量计
CN213842270U (zh) 宽粘度型液体涡轮流量传感器
CN202109941U (zh) 水滴预整流差压流量计
CN205861133U (zh) 文丘里双差压超声流量测量装置
Nasiruddin et al. Flow characteristics of back supported V-cone flowmeter (wafer cone) using PIV
CN114812708B (zh) 一种自带整流的测量管结构及超声波计量表
Dushin et al. Flow Conditioners for Pipelines with Sources of Acoustic Noise
CN211085356U (zh) 一种流量计
JP7329882B2 (ja) 特に超音波ガスメータ用の流れ湾曲部内ガス流れ調整器
Sun et al. Numerical simulation and experiment on averaging pitot tube with flow conditioning wing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110119