CN101949652B - Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization - Google Patents
Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization Download PDFInfo
- Publication number
- CN101949652B CN101949652B CN2010102951094A CN201010295109A CN101949652B CN 101949652 B CN101949652 B CN 101949652B CN 2010102951094 A CN2010102951094 A CN 2010102951094A CN 201010295109 A CN201010295109 A CN 201010295109A CN 101949652 B CN101949652 B CN 101949652B
- Authority
- CN
- China
- Prior art keywords
- msub
- mrow
- mtd
- mtr
- max
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005245 sintering Methods 0.000 title claims abstract description 186
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000005457 optimization Methods 0.000 title claims abstract description 25
- 230000008569 process Effects 0.000 claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 241000592718 Ibla Species 0.000 claims description 75
- 238000001514 detection method Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010219 correlation analysis Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
The invention discloses a hot air temperature and sintering trough point temperature coordinated control method based on satisfactory optimization, comprising the following steps of, firstly, establishing a hot air temperature feedforward-feedback controller and a sintering trough point temperature feedforward-feedback controller, obtaining a hot air temperature operation parameter interval Vbla through the hot air temperature feedforward-feedback controller, and obtaining a sintering trough point temperature operation parameter interval Vbtp through the sintering trough point temperature feedforward-feedback controller; secondly, taking the Vbla and the Vbtp as an input and taking a parameter comprehensive satisfactory optimal solution interval Vbest as an output to establish a comprehensive satisfaction model; thirdly, solving the Vbest; fourthly, sending a middle value Vbestmid of the Vbest to a sintering process to realize intelligent coordinated control of hot air temperature and sintering trough point temperature. By adopting the control technology, the invention can efficiently stabilize the sintering process, enhance the control accuracy of a sintering state and lower the production cost.
Description
Technical Field
The invention belongs to the field of iron ore sintering process control, and particularly relates to a hot air temperature and sintering end point temperature coordinated control method based on satisfactory optimization.
Technical Field
The iron and steel industry is the basic industry of national economy in China, the sintering process is an indispensable process in iron and steel smelting, and hot air sintering is an important sintering production mode.
According to the sintering process, the key factor for achieving the hot air sintering effect is to stabilize the temperature of hot air at an optimal value, and the value can be obtained through a hot air temperature optimization control model. Meanwhile, the sintering end point position and the sintering end point temperature have close relation with the quality yield and the energy consumption of the sintering ore, and the optimized set value can be obtained by an intelligent sintering end point temperature control model.
However, in the hot air sintering process, the temperature of hot air and the sintering end point temperature are correlated and influenced with each other, and comprehensive optimization is difficult to achieve. If the temperature of the hot air rises, the temperature of the flue gas and the sintering end point temperature inevitably rise, so that the temperature of the hot air further rises; if the sintering end point temperature is increased, the flue gas temperature and the hot air temperature are inevitably increased, so that the sintering end point temperature is further increased; and vice versa.
Therefore, the hot air temperature and the sintering end point temperature need to be intelligently and coordinately controlled according to the cycle correlation between the hot air temperature and the sintering end point temperature, so that the control precision of the sintering state in the sintering process is improved, the sintering process is stabilized, and the heat energy utilization rate in the sintering process and the energy-saving and emission-reduction level of steel production are improved.
Disclosure of Invention
The invention aims to provide a satisfactory optimization-based hot air temperature and sintering end point temperature coordinated control method, which is used for improving the control precision of a sintering state in a sintering process, stabilizing the sintering process, improving the heat energy utilization rate in the sintering process and improving the energy-saving and emission-reducing level of steel production.
The technical solution of the invention is as follows:
a hot air temperature and sintering end point temperature coordinated control method based on satisfactory optimization comprises the following steps: step 1: constructing a hot air temperature feedforward-feedback controller and a sintering end point temperature feedforward-feedback controller;
wherein, the given value of the hot air temperature feedforward-feedback controller is a hot air temperature set value, the feedback signal of the hot air temperature feedforward-feedback controller is a hot air temperature detection value in the sintering process, and the output of the hot air temperature feedforward-feedback controller is a hot air temperature operation parameter interval VblaIs [ V ]blamin,Vblamax];
The setting of the sintering end point temperature feedforward-feedback controller is a sintering end point temperature set value, and a feedback signal of the sintering end point temperature feedforward-feedback controller is a sintering end point temperature detection value in the sintering process; the output of the feedforward-feedback controller of the sintering end point temperature is an operation parameter interval V of the sintering end point temperaturebtpIs [ V ]btpmin,Vbtpmax];
Wherein the operating parameter V ═ V1,v2,v3]=[FD,U,IGN],FD∈[0,1]Represents the ratio of fresh air volume to air draft volume, U is the [0, 4.0 ]]Representing the speed of the trolley, IGN ∈ [1100, 1300 ∈ ]]Represents the ignition temperature;
step 2: establishing a comprehensive satisfaction model with VblaAnd VbtpFor input, the optimal solution interval V is synthesized by parametersbestFor output, synthesizing satisfied optimal solution interval V from parametersbestAnd selecting a value and issuing the value to the sintering process so as to realize the coordination control of the hot air temperature and the sintering end point temperature based on satisfactory optimization.
The hot air temperature operation parameter interval V in the step 1blaFeedforward control interval vibla0And the sintering end point temperature operation parameter interval VbtpFeedforward control interval vibtp0Characterized by the formula:
vibla0=kiblagTblas+Cibla=[kiblaga+Cibla,kiblagb+Cibla]
vibtp0=kibtpgTbtps+Cibtp=[kibtpgc+Cibtp,kibtpgd+Cibtp]
wherein T isblaAnd TbtpRespectively shows the temperature of hot air and the sintering end point temperature, Tblas∈[a,b],Tbtps∈[c,d]The values of a, b, c and d are set as given values, wherein a is 200, b is 300, c is 350 and d is 440. KiblaAs an operating parameter viTemperature proportional coefficient of hot air of (C)iblaAs an operating parameter viTemperature constant of hot air, KibtpAs an operating parameter viSintering end point temperature proportionality coefficient of (C)iblaAs an operating parameter viTemperature constant of sintering end point. According to the analysis of actual data, K is taken1bla=0.0023,K2bla=0.014,K3bla=5.64,K1btp=0.0012,K2btp=0.057,K3btp=2.78,C1bla=0.13,C2bla=0.83,C3bla=67.3,C1btp=0.093,C2btp=0.46,C3btp=86.4。
The operating parameter viThe feedback control quantity of the hot air temperature and the sintering end point temperature is respectively as follows:
Δvibla=kiblagΔTbla
Δvibtp=kibtpgΔTbtp
videnotes the ith operating parameter, i ═ 1, 2, 3; wherein,
wherein, tblam,tbtpmAre respectively TblaAnd TbtpThe detection value of (1);
the operating parameter viThe feedforward-feedback control quantity interval of the hot air temperature and the sintering end point temperature is as follows: <math>
<mrow>
<mfenced open='' close=''>
<mtable>
<mtr>
<mtd>
<msub>
<mi>v</mi>
<mi>ibla</mi>
</msub>
<mo>=</mo>
<msub>
<mi>v</mi>
<mrow>
<mi>ibla</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>Δv</mi>
<mi>ibla</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>v</mi>
<mi>ibtp</mi>
</msub>
<mo>=</mo>
<msub>
<mi>v</mi>
<mrow>
<mi>ibtp</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>Δv</mi>
<mi>ibtp</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>.</mo>
</mrow>
</math>
the specific steps for establishing the comprehensive satisfaction degree model are as follows:
vithe hot air temperature satisfaction function is as follows:
wherein v isiminAnd vimaxRespectively, shows the normal productioniMinimum and maximum allowed, [ v ]iblamin,viblamax]Representing operating parameters viThe temperature of the hot air is satisfied with the solution interval;
operating parameter viThe sintering end point temperature satisfaction function of (1) is:
wherein v isiminAnd vimaxRespectively represent v under normal productioniMinimum and maximum allowed, [ v ]ibtpmin,vibtpmax]Representing operating parameters viThe sintering end point temperature of the sintering furnace is satisfied with a solution interval;
establishing the operating parameter v of the hot air temperature and the sintering end point temperature by adopting a linear weighted sum methodiThe comprehensive satisfaction model is as follows:
Si=γSibla+(1-γ)Sibtp;
wherein, the calculation formula of gamma is as follows:
wherein, tbtpmIs TbtpDetected value of (2), Tbtps∈[c,d]C and d are set values, wherein c is 350, and d is 440;
because the satisfaction function of the hot air temperature and the satisfaction function of the sintering end point are both trapezoidal functions, the comprehensive satisfaction function S is enabled to beiMaximum value of the operating parameter vibestIs an interval (e.g., case 1), which is the operating parameter viThe output of the comprehensive satisfaction degree model and the operation parameter comprehensive satisfaction optimal solution interval VbestCorresponding to 3 sub-intervals v1best,V2best,v3best。
The solution of the comprehensive satisfaction model is divided into the following six cases:
case 1: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfactory solution interval v at sintering end point temperatureibtpInternal time, operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]iblamin,viblamax];
Case 2: when the operating parameter viSintering end point temperature vibtpIn a satisfactory solution interval v of the hot blast temperatureiblaInternal time, operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]ibtpmin,vibtpmax];
Case 3: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperatureibtpHas intersection and satisfactory solution interval v at sintering end point temperatureibtpOn the left side of (d), operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]ibtpmin,viblamax];
Case 4: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied with sintering end point temperatureInterval vibtpHas intersection and satisfactory solution interval v at sintering end point temperatureibtpOn the right hand side of (c), operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]iblamin,vibtpmax];
Case 5: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperatureibtpHas no intersection and satisfies solution interval v at sintering end point temperatureibtpOn the left side of (A), there are
The comprehensive satisfaction function S is solved through the formulaiOperating parameter interval v up to a maximum valueibestI.e. operating parameter viThe output of the comprehensive satisfaction model;
case 6: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperatureibtpHas no intersection and satisfies solution interval v at sintering end point temperatureibtpOn the right side of (1), there are
The comprehensive satisfaction function S is solved through the formulaiUp to the maximum operating parameter interval vibestI.e. operating parameter viThe output of the comprehensive satisfaction model;
selection of VbestIntermediate value of (V)bestmidWill VbestmidAnd issuing the temperature data to a sintering process, and adjusting the operation of the sintering machine so as to realize the coordination control of the hot air temperature and the sintering end point temperature based on satisfactory optimization.
The technical conception of the invention is as follows:
and performing mechanism analysis on the relationship among the elements of the operation parameter V, the hot air temperature and the sintering end point temperature, and performing grey correlation analysis on the elements of the operation parameter V. On the basis, a hot air temperature feedforward-return controller and a sintering end point temperature feedforward-feedback controller are established.
Obtaining a hot air temperature operating parameter interval V by a hot air temperature feedforward-feedback controllerbla∈[Vblamin,Vblamax]And obtaining the sintering end point temperature operation parameter interval V by a sintering end point temperature feedforward-feedback controllerbtp∈[Vbtpmin,Vbtpmax]。
Wherein the operating parameter V ═ V1,v2,v3]=[FD,U,IGN],FD∈[0,1]Represents the ratio of fresh air volume to air draft volume, U is the [0, 4.0 ]]Representing the speed of the trolley, IGN ∈ [1100, 1300 ∈ ]]Indicating the ignition temperature.
V is used for overcoming the circulation correlation between the hot air temperature and the sintering end point temperature to ensure that the hot air temperature and the sintering end point temperature are comprehensively optimalblaAnd VbtpFor input, the optimal solution interval V is synthesized by parametersbestAnd establishing a comprehensive satisfaction model for output.
Solving a comprehensive satisfaction degree model in six conditions to obtain Vbest。
To ensure the upper and lower margins of the operating parameters, V is selectedbestIntermediate value of (V)bestmidWill VbestmidAnd issuing the hot air to a sintering process, and adjusting the air draft volume, the trolley speed and the ignition temperature of the sintering machine to realize intelligent coordination control of the hot air temperature and the sintering end point temperature.
Has the advantages that:
due to the circulation correlation between the hot air temperature and the sintering end point temperature, the existing single sintering end point position control and the hot air temperature control are difficult to achieve comprehensive optimization, and malignant circulation is easy to form, so that large fluctuation is caused to the sintering process.
According to the intelligent coordination control method, the comprehensive satisfaction degree model of the hot air temperature and the sintering end point temperature on each control variable is established according to the single satisfaction degree model of the hot air temperature and the sintering end point temperature on each control variable, namely the single optimization performance index, so that the comprehensive optimization performance index is obtained. Based on the comprehensive satisfaction model, solving the comprehensive satisfaction model in six conditions to obtain Vbest. And according to VbestAnd adjusting the operation of the trolley. Therefore, the intelligent coordination control of the hot air temperature and the sintering end point temperature can be realized, and the problems that the circulation correlation exists between the hot air temperature and the sintering end point temperature in the sintering process and the comprehensive optimization is difficult to achieve are solved. Meanwhile, the fluctuation of the hot air temperature is reduced by 3.1%, the fluctuation of the sintering end point temperature is reduced by 2.8%, and the stable operation of the sintering process is ensured; provides a stable environment for the control of the sintering thermal state, effectively improves the control precision of the thermal state in the sintering process, and controls the position of the sintering end pointThe deviation is controlled within +/-0.5 air bellow, and the deviation is controlled within 22.5-23.5. In addition, the consumption of the coke powder is reduced, and an effective way is provided for improving the heat energy utilization rate in the sintering process and the energy-saving and emission-reducing level of steel production.
Drawings
FIG. 1 is a block diagram of a hot air temperature and sintering end point temperature intelligent coordination control structure based on satisfactory optimization;
FIG. 2 is a flow chart of intelligent coordination control of hot air temperature and sintering end point temperature based on satisfactory optimization;
FIG. 3 is a hot air temperature satisfaction function;
FIG. 4 is a sintering end point temperature satisfaction function;
FIG. 5 is a satisfactory solution interval of the hot air temperature within a satisfactory solution interval of the sintering end point temperature;
FIG. 6 is a satisfactory solution interval of the sintering end point temperature within a satisfactory solution interval of the hot air temperature;
FIG. 7 is a graph showing the intersection (left side) of the satisfactory solution interval of the hot air temperature and the satisfactory solution interval of the sintering end point temperature;
FIG. 8 is a graph showing the intersection (right side) of the satisfactory solution interval of the hot air temperature and the satisfactory solution interval of the sintering end point temperature;
FIG. 9 is a graph showing the lack of intersection (left side) of the satisfactory solution interval of the hot air temperature and the satisfactory solution interval of the sintering end point temperature;
fig. 10 shows that the satisfactory solution range of the hot air temperature and the satisfactory solution range of the sintering end point temperature do not intersect (right side).
Detailed Description
The present invention will be described in further detail below with reference to the drawings and specific embodiments.
Example 1:
because of the circulation correlation between the hot air temperature and the sintering end point temperature, the current single sintering end point temperature control and the hot air temperature control cannot meet the requirement of improving the comprehensive utilization rate of heat energy.
Referring to fig. 1, a structural block diagram of a satisfactory optimization and coordination control technique of the present invention is shown, and the technique specifically includes: and grey correlation analysis is introduced, and a hot air temperature feedforward-feedback controller and a sintering end point temperature feedforward-feedback controller are established. Obtaining a hot air temperature operating parameter interval V according to a hot air temperature feedforward-feedback controllerblaIs [ V ]blamin,Vblamax]Obtaining the operation parameter interval V of the sintering end point temperature by a feedforward-feedback controller of the sintering end point temperaturebtpIs [ V ]btpmin,Vbtpmax]. On the basis, a satisfaction optimization technology is introduced, a comprehensive satisfaction model is established, the comprehensive satisfaction model is solved in six conditions, and V is obtainedbest. To ensure the upper and lower margins of the operating parameters, V is selectedbestIntermediate value of (V)bestmidWill VbestmidAnd issuing the temperature data to a sintering process, adjusting the operation of the sintering machine, and realizing intelligent coordination control of the hot air temperature and the sintering end point temperature.
Referring to fig. 2, which is a flow chart of the satisfactory optimization and coordination control technique of the present invention, the method specifically includes the following steps:
step S01: and analyzing the mechanism among each element of the operation parameter V, the hot air temperature and the sintering end point temperature.
Since the proportion of oxygen in the fresh air is substantially constant, when the ratio FD of the fresh air volume to the ventilation volume increases, the ratio of the oxygen volume to the ventilation volume also increases accordingly. The heat release amount of the sintering ore combustion is in direct proportion to the amount of oxygen, so that under the condition of no change of other conditions, the temperature of hot air and the sintering end point temperature are in a positive linear relation with FD.
When the trolley speed U is increased, the sintering end point is delayed, the average burning time of the sintering ore is reduced, and the heat release is correspondingly reduced. Therefore, the hot air temperature and the sintering end point temperature are approximately in a negative linear relationship with U under the condition that other conditions are not changed.
As the ignition temperature IGN increases, the temperature of the sintered ore increases accordingly. Therefore, the hot air temperature and the sintering end point temperature are approximately in a positive linear relationship with IGN under otherwise constant conditions.
Step S02: and analyzing the grey correlation between the elements of the operation parameter V.
And analyzing the correlation among the elements of the operation parameter V by using a grey correlation analysis method to determine the type of the satisfaction model. The system row sequence of the system is as follows:
v1=(v1(1),v1(2),L,v1(n))
v2=(v2(1),v2(2),L,v2(n))
v3=(v3(1),v3(2),L,v3(n))
where k is the time number, vi(k) As an operating parameter viObservation data at time k, now with operating parameter viAnd (i is 1, 2 and 3) calculating the correlation degree for the system characteristic sequence.
Firstly, solving an initial value image of the system:
v1′=v1/v1(1)=(v1′(1),v1′(2),L,v1′(n))
v2′=v2/v2(1)=(v2′(1),v2′(2),L,v2′(n))
v3′=v3/v3(1)=(v3′(1),v3′(2),L,v3′(n))
second, find the difference sequence
Δ1(k)=|vi′(k)-v1′(k)|
Δ2(k)=|vi′(k)-v2′(k)|
Δ3(k)=|vi′(k)-v3′(k)|
Thirdly, calculating the difference between the two poles
j=1,2,3
Fourthly, solving an operation parameter vjFor operating parameter viThe correlation coefficient of (2):
k=1,2,L,n;i=1,2,3
where ξ is the number of gray in the interval [0, 1], here taken to be 0.5.
The fifth step, solving the operation parameter vjFor operating parameter viThe degree of association of (a):
step S03: establishing a hot air temperature feedforward-feedback controller and a sintering end point temperature feedforward-feedback controller.
And the sintering theory mechanism analysis shows that the elements of the operation parameter V have obvious linear correlation with the hot air temperature and the sintering end point temperature. Meanwhile, the correlation among the elements of the operation parameter V is less than 0.01 through grey correlation analysis. The operation parameters are considered to be independent and not influenced mutually. Therefore, there are:
vibla=kiblagTbla+Cibla
vibtp=kibtpgTbtp+Cibtp
wherein T isblaAnd TbtpRespectively shows the temperature of hot air and the sintering end point temperature,
first, with TblaAnd TbtpThe set value of (a) is input and the operating parameter is output, establishing a feedforward controller. The operating parameter viThe feedforward control quantity intervals of the hot air temperature and the sintering end point temperature are respectively as follows:
vibla0=kiblagTblas+Cibla=[kiblaga+Cibla,kiblagb+Cibla]
vibtp0=kibtpgTbtps+Cibtp=[kibtpgc+Cibtp,kibtpgd+Cibtp]
wherein, Tblas=[a,b],Tbtps=[c,d]Respectively represents TblaAnd TbtpThe set value of (a) is 200, b is 300, c is 350, and d is 440. KiblaAs an operating parameter viTemperature proportional coefficient of hot air of (C)iblaAs an operating parameter viTemperature constant of hot air, KibtpAs an operating parameter viSintering end point temperature proportionality coefficient of (C)iblaAs an operating parameter viTemperature constant of sintering end point. According to the analysis of actual data, K is taken1bla=0.0023,K2bla=0.014,K3bla=5.64,K1btp=0.0012,K2btp=0.057,K3btp=2.78,C1bla=0.13,C2bla=0.83,C3bla=67.3,C1btp=0.093,C2btp=0.46,C3btp=86.4。
Then, according to TblaAnd TbtpError of the detected value and the set value, establishing a feedback controller, and operating the parameter viThe feedback control quantity of the hot air temperature and the sintering end point temperature is respectively as follows:
Δvibla=kiblagΔTbla
Δvibtp=kibtpgΔTbtp
wherein,
wherein, tblam,tbtpmAre respectively TblaAnd TbtpThe detection value of (3).
Finally, the feedforward control quantity and the feedback control quantity are superposed to form a feedforward-feedback controller, and the operation parameter v is obtainediThe interval of feedforward-feedback control quantity of hot air temperature and sintering end point temperature is as follows:
vibla=vibla0+Δvibla
vibtp=vibtp0+Δvibtp
step S04: and modeling the comprehensive satisfaction degree.
Because the operation parameters are independent, a single-dimensional satisfaction function is adopted to carry out on the operation parameter viAnd establishing a sintering end point temperature satisfaction model and a hot air temperature satisfaction model.
When the operating parameter viIn the interval ViblaInternal time, viThe requirement of actual production on the temperature of hot air is met, viHas a value of 1, thus adoptingUsing a trapezoidal satisfaction function, as shown in fig. 3. Operating parameter interval V with hot air temperatureblaFor input, V is setiblaSubstitution of operating parameter viThe hot air temperature satisfaction function of (2) is as follows:
wherein v isiminAnd vimaxRespectively, shows the normal productioniMinimum and maximum allowed, vibla=[viblamin,viblamax]Representing operating parameters viThe temperature of the hot air is satisfied with the solution interval.
When the operating parameter viIn the interval viblaInternal time, viMeet the requirement of actual production on the sintering end point temperature viThe value of the sintering end point temperature satisfaction function of (1) is 1, and thus a trapezoidal satisfaction function is employed, as shown in fig. 4. Will VibtpSubstitution of operating parameter viAs shown below:
wherein v isiminAnd vimaxRespectively represent v under normal productioniMinimum and maximum allowed, vibtp=[vibtpmin,vibtpmax]Representing operating parameters viThe sintering end point temperature of (2) satisfies the solution interval.
Establishing the operating parameter v of the hot air temperature and the sintering end point temperature by adopting a linear weighted sum methodiThe comprehensive satisfaction model of (2):
Si=γSibla+(1-γ)Sibtp
the formula for γ is:
wherein, tbtpmIs TbtpDetected value of (2), Tbtps∈[c,d]C and d are set values, wherein c is 350, and d is 440; because the satisfaction function of the hot air temperature and the satisfaction function of the sintering end point are both trapezoidal functions, the comprehensive satisfaction function S is enabled to beiMaximum value of the operating parameter vibestIs an interval, which is the operating parameter viThe output of the comprehensive satisfaction degree model and the comprehensive satisfaction optimization of the operating parametersSolution interval VbestCorresponding to 3 sub-intervals v1best,v2best,v3best。
Step S05: and (5) solving the comprehensive satisfaction degree model.
Dividing the solution of the comprehensive satisfaction model into the following six conditions, and deducing a solution formula of the comprehensive satisfaction of the system under the six conditions:
(1) when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfactory solution interval v at sintering end point temperatureibtpInternal time, as shown in FIG. 5, operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]iblamin,viblamax]。
(2) When the operating parameter viSintering end point temperature vibtpIn a satisfactory solution interval v of the hot blast temperatureiblaInternal time, as shown in FIG. 6, operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]ibtpmin,vibtpmax]。
(3) When the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperaturebt feed forward-feedbackHas intersection and satisfactory solution interval v at sintering end point temperatureibtpOn the left side of (2), as shown in FIG. 7, operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]ibtpmin,viblamax]。
(4) When the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperaturebt feed forward-feedbackHas intersection and satisfactory solution interval v at sintering end point temperatureibtpOn the right hand side of (c), as shown in fig. 8, operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]iblamin,vibtpmax]。
(5) When the operating parameter viSatisfied hot air temperature solution interval viblaAnd sintering end point temperatureSatisfied solution interval vibtpHas no intersection and satisfies solution interval v at sintering end point temperatureibtpOn the left side, as shown in FIG. 9, there are
The comprehensive satisfaction function S is solved through the formulaiReaches the maximum valueOperating parameter interval vibestI.e. operating parameter viThe output of the comprehensive satisfaction model.
(6) When the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperatureibtpHas no intersection and satisfies solution interval v at sintering end point temperatureibtpOn the right side, as shown in FIG. 10, there are
The comprehensive satisfaction function S is solved through the formulaiUp to the maximum operating parameter interval vibestI.e. operating parameter viThe output of the comprehensive satisfaction model.
Step S06: and (5) issuing the control quantity.
To ensure the upper and lower margins of the operating parameters, V is selectedbestIntermediate value of (V)bestmidWill VbestmidAnd issuing the hot air to a sintering process, and adjusting the air draft volume, the trolley speed and the ignition temperature of the sintering machine to realize intelligent coordination control of the hot air temperature and the sintering end point temperature.
Claims (3)
1. A hot air temperature and sintering end point temperature coordinated control method based on satisfactory optimization is characterized by comprising the following steps:
step 1: constructing a hot air temperature feedforward-feedback controller and a sintering end point temperature feedforward-feedback controller;
wherein, the given value of the hot air temperature feedforward-feedback controller is a hot air temperature set value, the feedback signal of the hot air temperature feedforward-feedback controller is a hot air temperature detection value in the sintering process, and the output of the hot air temperature feedforward-feedback controller is a hot air temperature operation parameter interval VblaIs [ V ]blamin,Vblamax];
The setting of the sintering end point temperature feedforward-feedback controller is a sintering end point temperature set value, and a feedback signal of the sintering end point temperature feedforward-feedback controller is a sintering end point temperature detection value in the sintering process; the output of the feedforward-feedback controller of the sintering end point temperature is an operation parameter interval V of the sintering end point temperaturebtpIs [ V ]btpmin,Vbtpmax];
Wherein the operating parameter V = [ V =1,v2,v3]=[FD,U,IGN],FD∈[0,1]Represents the ratio of fresh air volume to air draft volume, U is the [0, 4.0 ]]Representing the speed of the trolley, IGN ∈ [1100, 1300 ∈ ]]Represents the ignition temperature;
step 2: establishing a comprehensive satisfaction model with VblaAnd VbtpFor input, the optimal solution interval V is synthesized by parametersbestFor output, synthesizing satisfied optimal solution interval V from parametersbestSelecting a value and issuing the value to the sintering process so as to realize the coordination control of the hot air temperature and the sintering end point temperature based on satisfactory optimization;
the specific steps for establishing the comprehensive satisfaction degree model are as follows:
vithe hot air temperature satisfaction function is as follows:
wherein v isiminAnd vimaxRespectively, shows the normal productioniMinimum and maximum allowed, [ v ]iblamin,viblamax]Representing operating parameters viThe temperature of the hot air is satisfied with the solution interval;
operating parameter viThe sintering end point temperature satisfaction function of (1) is:
wherein v isiminAnd vimaxRespectively represent v under normal productioniMinimum and maximum allowed, [ v ]ibtpmin,vibtpmax]Representing operating parameters viThe sintering end point temperature of the sintering furnace is satisfied with a solution interval;
establishing the operating parameter v of the hot air temperature and the sintering end point temperature by adopting a linear weighted sum methodiThe comprehensive satisfaction model is as follows:
Si=γSibla+(1-γ)Sibtp;
wherein, the calculation formula of gamma is as follows:
wherein, tbtpmIs TbtpDetected value of (2), Tbtps∈[c,d]C and d are set values, and c =350 and d =440 are generally set;
because the satisfaction function of the hot air temperature and the satisfaction function of the sintering end point are both trapezoidal functions, the comprehensive satisfaction function S is enabled to beiMaximum value of the operating parameter vibestIs an interval, which is the operating parameter viThe output of the comprehensive satisfaction degree model and the operation parameter comprehensive satisfaction optimal solution interval VbestCorresponding to 3 sub-intervals v1best,v2best,v3best。
2. The method for the coordinated control of the hot blast temperature and the sintering end point temperature based on the satisfactory optimization of the claim 1, wherein the hot blast temperature operation parameter interval V in the step 1blaFeedforward control interval vibla0And the sintering end point temperature operation parameter interval VbtpFeedforward control interval vibtp0Characterized by the formula:
vibla0=kibla·Tblas+Cibla=[kibla·a+Cibla,kibla·b+Cibla]
vibtp0=kibtp·Tbtps+Cibtp=[kibtp·c+Cibtp,kibtp·d+Cibtp]
wherein T isblaAnd TbtpRespectively shows the temperature of hot air and the sintering end point temperature, Tblas∈[a,b],Tbtps∈[c,d]A, b, c, d are set values, KiblaAs an operating parameter viTemperature proportional coefficient of hot air of (C)iblaAs an operating parameter viTemperature constant of hot air, kibtpAs an operating parameter viSintering end point temperature proportionality coefficient of (C)ibtpAs an operating parameter viThe temperature constant of the sintering end point;
the operating parameter viThe feedback control quantity of the hot air temperature and the sintering end point temperature is respectively as follows:
Δvibla=kibla·ΔTbla
Δvibtp=kibtp·ΔTbtp
videnotes the ith operating parameter, i ═ 1, 2, 3; wherein,
wherein, tblam,tbtpmAre respectively TblaAnd TbtpThe detection value of (1);
the operating parameter viThe feedforward-feedback control quantity interval of the hot air temperature and the sintering end point temperature is as follows: <math>
<mrow>
<mfenced open='' close=''>
<mtable>
<mtr>
<mtd>
<msub>
<mi>v</mi>
<mi>ibla</mi>
</msub>
<mo>=</mo>
<msub>
<mi>v</mi>
<mrow>
<mi>ibla</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<mi>Δ</mi>
<msub>
<mi>v</mi>
<mi>ibla</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>v</mi>
<mi>ibtp</mi>
</msub>
<mo>=</mo>
<msub>
<mi>v</mi>
<mrow>
<mi>ibtp</mi>
<mn>0</mn>
</mrow>
</msub>
<mo>+</mo>
<mi>Δ</mi>
<msub>
<mi>v</mi>
<mi>ibtp</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>.</mo>
</mrow>
</math>
3. the hot air temperature and sintering end point temperature coordinated control method based on satisfactory optimization according to any one of claims 1-2, characterized in that the solution of the comprehensive satisfactory degree model is divided into the following six cases:
case 1: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfactory solution interval v at sintering end point temperatureibtpInternal time, operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]iblamin,viblamax];
Case 2: when the operating parameter viSintering end point temperature vibtpIn a satisfactory solution interval v of the hot blast temperatureiblaInternal time, operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]ibtpmin,vibtpmax];
Case 3: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperatureibtpHas intersection and satisfactory solution interval v at sintering end point temperatureibtpOn the left side of (d), operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]ibtpmin,viblamax];
Case 4: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperatureibtpHas intersection and satisfactory solution interval v at sintering end point temperatureibtpOn the right hand side of (c), operating parameter viIs comprehensively satisfied with the optimal solution interval vibestIs [ v ]iblamin,vibtpmax];
Case 5: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperatureibtpWithout intersectionAnd a satisfactory solution interval v at the sintering end point temperatureibtpOn the left side of (A), there are
The comprehensive satisfaction function S is solved through the formulaiOperating parameter interval v up to a maximum valueibestI.e. operating parameter viThe output of the comprehensive satisfaction model;
case 6: when the operating parameter viSatisfied hot air temperature solution interval viblaSatisfied solution interval v from sintering end point temperatureibtpHas no intersection and satisfies solution interval v at sintering end point temperatureibtpOn the right side of (1), there are
By passingSolving the formula results in a comprehensive satisfaction function SiUp to the maximum operating parameter interval vibestI.e. operating parameter viThe output of the comprehensive satisfaction model;
selection of VbestIntermediate value of (V)bestmidWill VbestmidAnd issuing the temperature data to a sintering process, and adjusting the operation of the sintering machine so as to realize the coordination control of the hot air temperature and the sintering end point temperature based on satisfactory optimization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102951094A CN101949652B (en) | 2010-09-28 | 2010-09-28 | Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102951094A CN101949652B (en) | 2010-09-28 | 2010-09-28 | Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101949652A CN101949652A (en) | 2011-01-19 |
CN101949652B true CN101949652B (en) | 2012-11-07 |
Family
ID=43453234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102951094A Expired - Fee Related CN101949652B (en) | 2010-09-28 | 2010-09-28 | Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101949652B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102354109B (en) * | 2011-06-22 | 2014-06-11 | 中南大学 | Sintering hot air temperature and hot air oxygen content intelligent coordination optimization control method |
CN103375997B (en) * | 2012-04-28 | 2014-10-29 | 宝山钢铁股份有限公司 | Method for regulating and controlling circulating flue-gas temperature and oxygen content |
CN104266500A (en) * | 2014-09-25 | 2015-01-07 | 河北联合大学 | Cooler heat source parameter forecasting and regulation method based on heat condition in sintering process |
CN108170176B (en) * | 2017-12-21 | 2021-02-12 | 北京首钢自动化信息技术有限公司 | SiO in finished ball2Content control method |
CN109669353B (en) * | 2018-11-16 | 2021-09-07 | 台州旭日环境科技有限公司 | Product robustness analysis method based on parameter range matching |
CN111026189B (en) * | 2019-12-10 | 2021-02-26 | 山东科技大学 | Smoking temperature rising device and method, smoking temperature rising detection method, control device and system |
CN118192211B (en) * | 2024-04-16 | 2024-10-01 | 重庆大学 | Cable fire resistance detection furnace temperature control method, system and device based on reinforcement learning and PID strategy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0688085A1 (en) * | 1994-06-17 | 1995-12-20 | Schlumberger Industries S.A. | Temperature control system with tariff change optimization |
EP1218812B1 (en) * | 1999-09-23 | 2003-04-23 | Kic Thermal Profiling, Inc. | Method and apparatus for controlling temperature response of a part in a conveyorized thermal processor |
CN101363689A (en) * | 2008-09-18 | 2009-02-11 | 中冶长天国际工程有限责任公司 | Sintering bench section temperature control method, device and system |
CN101424484A (en) * | 2008-11-12 | 2009-05-06 | 昆明阳光基业股份有限公司 | Control method for stabilizing and enhancing sintered ring cooling wind temperature while smelting steel |
-
2010
- 2010-09-28 CN CN2010102951094A patent/CN101949652B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0688085A1 (en) * | 1994-06-17 | 1995-12-20 | Schlumberger Industries S.A. | Temperature control system with tariff change optimization |
EP1218812B1 (en) * | 1999-09-23 | 2003-04-23 | Kic Thermal Profiling, Inc. | Method and apparatus for controlling temperature response of a part in a conveyorized thermal processor |
CN101363689A (en) * | 2008-09-18 | 2009-02-11 | 中冶长天国际工程有限责任公司 | Sintering bench section temperature control method, device and system |
CN101424484A (en) * | 2008-11-12 | 2009-05-06 | 昆明阳光基业股份有限公司 | Control method for stabilizing and enhancing sintered ring cooling wind temperature while smelting steel |
Non-Patent Citations (1)
Title |
---|
向婕,吴敏,曹卫华, 段平.基于模糊满意度的烧结过程多目标优化控制.《化工学报》.2010,第61卷(第8期),2138-2143. * |
Also Published As
Publication number | Publication date |
---|---|
CN101949652A (en) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101949652B (en) | Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization | |
CN102540889B (en) | Burning through point forecasting method and system | |
CN103194553A (en) | Oxygen usage amount control method for steel smelting blast furnace based on least square support vector machine | |
CN107368125B (en) | A kind of blast furnace temperature control system and method based on CBR Yu the parallel mixed inference of RBR | |
RU2635590C2 (en) | Method and system to control amount of air of agglomeration car air box | |
CN110205427B (en) | Intelligent hot blast stove optimization control system and method | |
CN110427715B (en) | Method for predicting furnace hearth thermal state trend based on time sequence and multiple dimensions of blast furnace | |
CN103939938B (en) | The combustion gas of pulse-combustion formula and combustion-supporting atmospheric pressure feedforward optimal control method | |
CN102181592A (en) | Bell-less blast furnace top distribution closed-loop control method based on multipoint radar data | |
CN106957935B (en) | A kind of flexible measurement method of blast furnace inside soft heat belt shape | |
CN103293955A (en) | Method for hybrid system modeling and coordinated optimization control of blast-furnace hot blast stove | |
CN112359159B (en) | Hot blast stove automatic burning method and system based on deep reinforcement learning | |
CN116127760A (en) | Heating furnace temperature optimization method based on hybrid modeling and improved sand dune cat swarm algorithm | |
CN114968997A (en) | Sintering end point forecasting method based on space-time feature extraction | |
CN103031435A (en) | Control method and system for sintering end point position | |
CN109519957A (en) | A kind of ultra-supercritical boiler closed loop optimized control method of combustion | |
CN111047103A (en) | Sintering process carbon effect online prediction method and device based on multi-working-condition mode identification | |
CN109654897B (en) | Intelligent sintering end point control method for improving carbon efficiency | |
CN109631607A (en) | A kind of sintering ignition temperature intelligent control method considering gas pressure fluctuation | |
CN103160629B (en) | Method for forecasting heat tendency of blast furnace | |
CN102021312A (en) | Scheduling method of hot rolling heating furnace energy based on heat balance | |
Shnayder et al. | Data mining and model-predictive approach for blast furnace thermal control | |
WO2014101789A1 (en) | Method and system for controlling main exhaust fan | |
CN103017529A (en) | Method and system for controlling air quantity of main draft fan of sintering machine | |
CN110619931A (en) | Sintering process carbon efficiency optimization method based on multi-time scale optimization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121107 |
|
CF01 | Termination of patent right due to non-payment of annual fee |