CN101949652A - Hot air temperature and sintering trough point temperature coordinated control method based on satisfactory optimization - Google Patents

Hot air temperature and sintering trough point temperature coordinated control method based on satisfactory optimization Download PDF

Info

Publication number
CN101949652A
CN101949652A CN 201010295109 CN201010295109A CN101949652A CN 101949652 A CN101949652 A CN 101949652A CN 201010295109 CN201010295109 CN 201010295109 CN 201010295109 A CN201010295109 A CN 201010295109A CN 101949652 A CN101949652 A CN 101949652A
Authority
CN
China
Prior art keywords
max
ibtp
ibla
interval
end point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010295109
Other languages
Chinese (zh)
Other versions
CN101949652B (en
Inventor
吴敏
曹卫华
王春生
陈鑫
曾羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN2010102951094A priority Critical patent/CN101949652B/en
Publication of CN101949652A publication Critical patent/CN101949652A/en
Application granted granted Critical
Publication of CN101949652B publication Critical patent/CN101949652B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a hot air temperature and sintering trough point temperature coordinated control method based on satisfactory optimization, comprising the following steps of, firstly, establishing a hot air temperature feedforward-feedback controller and a sintering trough point temperature feedforward-feedback controller, obtaining a hot air temperature operation parameter interval Vbla through the hot air temperature feedforward-feedback controller, and obtaining a sintering trough point temperature operation parameter interval Vbtp through the sintering trough point temperature feedforward-feedback controller; secondly, taking the Vbla and the Vbtp as an input and taking a parameter comprehensive satisfactory optimal solution interval Vbest as an output to establish a comprehensive satisfaction model; thirdly, solving the Vbest; fourthly, sending a middle value Vbestmid of the Vbest to a sintering process to realize intelligent coordinated control of hot air temperature and sintering trough point temperature. By adopting the control technology, the invention can efficiently stabilize the sintering process, enhance the control accuracy of a sintering state and lower the production cost.

Description

Hot blast temperature and sintering end point temperature control method for coordinating based on satisfactory optimization
Technical field
The invention belongs to iron ore sintering process control field, be specifically related to a kind of hot blast temperature and sintering end point temperature control method for coordinating based on satisfactory optimization.
Technical background
Steel and iron industry is the basic industry of Chinese national economy, and sintering process is one indispensable operation in the smelting iron and steel, and hot gas sintering is a kind of important SINTERING PRODUCTION mode.
By sintering process as can be known, the key factor that reaches the hot gas sintering effect is that hot blast temperature is stabilized in optimum value, and this value can be tried to achieve by the hot blast temperature optimizing control models.Simultaneously, sintering end point position and sintering end point temperature and sinter quality output and energy resource consumption have substantial connection, and it is optimized setting value and can be tried to achieve by sintering end point temperature intelligent control model.
Yet, interrelated between hot blast temperature and the sintering end point temperature, influence each other in hot gas sintering technology, be difficult to reach comprehensive optimum.If hot blast temperature raises, then flue-gas temperature and sintering end point temperature must raise, from and cause hot blast temperature further to raise; If the sintering end point temperature raises, flue-gas temperature and hot blast temperature must increase, from and cause the sintering end point temperature further to raise; Vice versa.
Therefore, need be at the circular dependency between hot blast temperature and the sintering end point temperature, hot blast temperature and sintering end point temperature are carried out intelligent coordinated control, to improve the control accuracy of sintering process sintering state, the stable sintering process improves sintering process heat energy utilization rate and iron and steel production energy-saving and emission-reduction level.
Summary of the invention
The objective of the invention is to propose a kind of hot blast temperature and sintering end point temperature control method for coordinating based on satisfactory optimization, the control accuracy that should be used to improve the sintering process sintering state based on the hot blast temperature and the sintering end point temperature control method for coordinating of satisfactory optimization, the stable sintering process improves sintering process heat energy utilization rate and iron and steel production energy-saving and emission-reduction level.
Technical solution of the present invention is as follows:
A kind of hot blast temperature and sintering end point temperature control method for coordinating based on satisfactory optimization may further comprise the steps: step 1: structure hot blast temperature feed-forward and feedback controller and sintering end point temperature feed-forward-feedback controller;
Wherein, the hot blast temperature that is given as of hot blast temperature feed-forward and feedback controller sets value, the feedback signal of hot blast temperature feed-forward and feedback controller is the hot blast temperature detected value in the sintering process, and hot blast temperature feed-forward and feedback controller is output as the interval V of hot blast temperature operating parameter BlaBe [V Blamin, V Blamax];
Sintering end point temperature feed-forward-feedback controller be given as the sintering end point desired temperature, the feedback signal of sintering end point temperature feed-forward-feedback controller is the sintering end point temperature detection value in the sintering process; Sintering end point temperature feed-forward-feedback controller is output as V between sintering end point temperature operation parameter region BtpBe [V Btpmin, V Btpmax];
Wherein, operating parameter V=[v 1, v 2, v 3]=[FD, U, IGN], ratio, the U ∈ [0,4.0] of FD ∈ [0,1] expression fresh air air quantity and exhausting air quantity represent that chassis speed, IGN ∈ [1100,1300] represent firing temperature;
Step 2: set up the comprehensive satisfaction model, with V BlaAnd V BtpBe input, with the interval V of the satisfied optimal solution of parametric synthesis BestBe output, from the interval V of the satisfied optimal solution of parametric synthesis BestChoose a value and be issued to sintering process, to realize coordinating control based on the hot blast temperature and the sintering end point temperature of satisfactory optimization.
The interval V of hot blast temperature operating parameter in the step 1 BlaThe interval v of FEEDFORWARD CONTROL Ibla0And V between sintering end point temperature operation parameter region BtpThe interval v of FEEDFORWARD CONTROL Ibtp0Characterize by following formula:
v ibla0=k iblagT blas+C ibla=[k iblaga+C ibla,k iblagb+C ibla]
v ibtp0=k ibtpgT btps+C ibtp=[k ibtpgc+C ibtp,k ibtpgd+C ibtp]
T wherein BlaAnd T BtpRepresent hot blast temperature and sintering end point temperature respectively, T Blas∈ [a, b], T Btps∈ [c, d], a, b, c, d is setting value, establishes a=200, b=300, c=350, d=440.K IblaBe operating parameter v iThe hot blast temperature proportionality coefficient, C IblaBe operating parameter v iThe hot blast temperature constant, K IbtpBe operating parameter v iSintering end point temperature proportionality coefficient, C IblaBe operating parameter v iThe sintering end point thermal constant.According to actual data analysis, get K 1bla=0.0023, K 2bla=0.014, K 3bla=5.64, K 1btp=0.0012, K 2btp=0.057, K 3btp=2.78, C 1bla=0.13, C 2bla=0.83, C 3bla=67.3, C 1btp=0.093, C 2btp=0.46, C 3btp=86.4.
Operating parameter v then iHot blast temperature and sintering end point temperature FEEDBACK CONTROL amount be respectively:
Δv ibla=k iblagΔT bla
Δv ibtp=k ibtpgΔT btp
v iRepresent i operating parameter, i=1,2,3; Wherein,
&Delta;T bla = a - t blam t blam < a 0 a < t blam < b b - t blam t blam > b
&Delta;T btp = c - t btpm t btpm < c 0 c < t btpm < d d - t btpm t btpm > d
Wherein, t Blam, t BtpmBe respectively T BlaAnd T BtpDetected value;
Operating parameter v then iHot blast temperature and sintering end point temperature feed-forward-FEEDBACK CONTROL amount interval be: v ibla = v ibla 0 + &Delta;v ibla v ibtp = v ibtp 0 + &Delta;v ibtp .
The concrete steps of setting up the comprehensive satisfaction model are as follows:
v iHot blast temperature satisfaction function be:
S ibla = 0 v i &le; v i min v i - v i min v ibla min - v i min v i min < v i < v ibla min 1 v ibla min &le; v i &le; v ibla max v i max - v i v i max - v ibla max v ibla max < v i < v i max 0 v i &GreaterEqual; v i max
Wherein, v IminAnd v ImaxRepresent v under the ordinary production respectively iThe minimum of a value and the maximum that allow, [v Iblamin, v Iblamax] expression operating parameter v iHot blast temperature satisfactory solution interval;
Operating parameter v iSintering end point temperature satisfaction function be:
S ibtp = 0 v i &le; v i min v i - v i min v ibtp min - v i min v i min < v i < v ibtp min 1 v ibtp min &le; v i &le; v ibtp max v i max - v i v i max - v ibtp max v ibtp max < v i < v i max 0 v i &GreaterEqual; v i max
Wherein, v IminAnd v ImaxRepresent v under the ordinary production respectively iThe minimum of a value and the maximum that allow, [v Ibtpmin, v Ibtpmax] expression operating parameter v iSintering end point temperature satisfactory solution interval;
Adopt linear weight sum method, set up hot blast temperature and sintering end point temperature operating parameter v iThe comprehensive satisfaction model be:
S i=γS ibla+(1-γ)S ibtp
Wherein, the computing formula of γ is:
&gamma; = 1 - | t btpm - T btpmid | T btpmid ;
T btpmid = c + d 2
Wherein, t BtpmBe T BtpDetected value, T Btps∈ [c, d], c, d is setting value, establishes c=350, d=440;
Because hot blast temperature satisfaction function and sintering end point satisfaction function are trapezoidal function, therefore make the comprehensive satisfaction function S iReach peaked operating parameter v IbestBe an interval (for example situation 1), this interval is operating parameter v iThe output of comprehensive satisfaction model, the interval V of the comprehensively satisfied optimal solution of operating parameter BestCorresponding 3 subinterval v 1best, V 2best, v 3best
Finding the solution of comprehensive satisfaction model is divided into following six kinds of situations:
Situation 1: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaAt the interval v of sintering end point temperature satisfactory solution IbtpWhen interior, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Iblamin, v Iblamax];
Situation 2: as operating parameter v iSintering end point temperature v IbtpThe satisfactory solution interval at the interval v of the satisfactory solution of hot blast temperature IblaWhen interior, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Ibtpmin, v Ibtpmax];
Situation 3: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpCommon factor is arranged, and at the interval v of sintering end point temperature satisfactory solution IbtpThe left side time, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Ibtpmin, v Iblamax];
Situation 4: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpCommon factor is arranged, and at the interval v of sintering end point temperature satisfactory solution IbtpThe right side time, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Iblamin, v Ibtpmax];
Situation 5: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpDo not have and occur simultaneously, and at the interval v of sintering end point temperature satisfactory solution IbtpThe left side time, have
S i = 0 v i &le; v i min &gamma; v i - v i min v ibla min - v i min + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v i min < v i &le; v ibla min &gamma; + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v ibla min < v i &le; v ibla max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v ibla max < v i &le; v ibtp min &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v ibtp min < v i &le; v ibtp max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i max - v i v i max - v ibtp max v ibtp max < v i &le; v i max 0 v i > v i max
Find the solution by this formula and to make the comprehensive satisfaction function S iReach the interval v of peaked operating parameter Ibest, also be operating parameter v iThe output of comprehensive satisfaction model;
Situation 6: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpDo not have and occur simultaneously, and at the interval v of sintering end point temperature satisfactory solution IbtpThe right side time, have
S i = 0 v i &le; v i min &gamma; v i - v i min v ibla min - v i min + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v i min < v i &le; v ibla min &gamma; v i - v i min v ibtp min - v i min + ( 1 - &gamma; ) v ibla min < v i &le; v ibla max &gamma; v i - v i max v ibla max - v i min + ( 1 - &gamma; ) v i min - v i v i max - v ibtp min v ibla max < v i &le; v ibtp min &gamma; + ( 1 - &gamma; ) v i max - v i v i max - v ibla max v ibtp min < v i &le; v ibtp max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i max - v i v i max - v ibtp max v ibtp max < v i &le; v i max 0 v i > v i max
Find the solution by this formula and to make the comprehensive satisfaction function S iReach the maximum interval v of operating parameter Ibest, also be operating parameter v iThe output of comprehensive satisfaction model;
Select V BestMedian V Bestmid, with V BestmidBe issued to sintering process, regulate the sintering machine operation, to realize coordinating control based on the hot blast temperature and the sintering end point temperature of satisfactory optimization.
Technical conceive of the present invention is:
Relation between each element of operating parameter V and hot blast temperature and the sintering end point temperature is carried out Analysis on Mechanism, and each element of operating parameter V is carried out grey correlation analysis.On this basis, set up hot blast temperature and feedover-return controller and sintering end point temperature feed-forward-feedback controller.
Obtain the interval V of hot blast temperature operating parameter by hot blast temperature feed-forward and feedback controller Bla∈ [V Blamin, V Blamax], and obtain V between sintering end point temperature operation parameter region by sintering end point temperature feed-forward-feedback controller Btp∈ [V Btpmin, V Btpmax].
Wherein, operating parameter V=[v 1, v 2, v 3]=[FD, U, IGN], ratio, the U ∈ [0,4.0] of FD ∈ [0,1] expression fresh air air quantity and exhausting air quantity represent that chassis speed, IGN ∈ [1100,1300] represent firing temperature.
For overcoming the circular dependency between hot blast temperature and the sintering end point temperature, make both reach comprehensive optimum, with V BlaAnd V BtpBe input, with the interval V of the satisfied optimal solution of parametric synthesis BestFor output, set up the comprehensive satisfaction model.
Divide six kinds of situations to find the solution the comprehensive satisfaction model, try to achieve V Best
For guaranteeing the allowance up and down of operating parameter, select V BestMedian V Bestmid, with V BestmidBe issued to sintering process, regulate exhausting air quantity, chassis speed and the firing temperature of sintering machine, realize the intelligent coordinated control of hot blast temperature and sintering end point temperature.
Beneficial effect:
Because the circular dependency between hot blast temperature and the sintering end point temperature, at present single sintering end point Position Control and hot blast temperature control not only are difficult to reach comprehensive optimum, and form vicious circle easily, and sintering process is caused bigger fluctuation.
Intelligent coordination control method of the present invention, according to hot blast temperature and sintering end point temperature single satisfaction model to each control variables, be single optimization performance indications, set up hot blast temperature and sintering end point temperature comprehensive satisfaction model, obtained the complex optimum performance indications each control variables.Based on the comprehensive satisfaction model, divide six kinds of situations to find the solution the comprehensive satisfaction model, try to achieve V Best, and according to V BestThe operation of adjusting chassis.Thus, can realize intelligent coordinated control, overcome in the sintering process problem that has circular dependency between the hot blast temperature and sintering end point temperature, is difficult to reach comprehensive optimum hot blast temperature and sintering end point temperature.Simultaneously, the present invention makes the fluctuation of hot blast temperature reduce 3.1%, and the fluctuation of sintering end point temperature has reduced 2.8%, has guaranteed the stable operation of sintering process; For the control of the hot state of sintering provides stable environment, effectively improved the control accuracy of the hot state of sintering process, make the sintering end point Position Control between 22.5-23.5, Deviation Control is within ± 0.5 bellows.In addition, reduced the consumption of coke powder, provide effective way for improving sintering process heat energy utilization rate and iron and steel production energy-saving and emission-reduction level.
Description of drawings
Fig. 1 coordinates the control structure block diagram based on the hot blast temperature of satisfactory optimization and sintering end point temperature intelligent;
Fig. 2 coordinates control flow chart based on the hot blast temperature of satisfactory optimization and sintering end point temperature intelligent;
Fig. 3 is a hot blast temperature satisfaction function;
Fig. 4 is a sintering end point temperature satisfaction function;
Fig. 5 is that the satisfactory solution interval of hot blast temperature is in the satisfactory solution interval of sintering end point temperature;
Fig. 6 is that the satisfactory solution interval of sintering end point temperature is in the satisfactory solution interval of hot blast temperature;
Fig. 7 has common factor (left side) for the interval satisfactory solution interval with the sintering end point temperature of the satisfactory solution of hot blast temperature;
Fig. 8 has common factor (right side) for the interval satisfactory solution interval with the sintering end point temperature of the satisfactory solution of hot blast temperature;
Fig. 9 is that the interval satisfactory solution interval with the sintering end point temperature of the satisfactory solution of hot blast temperature does not have occur simultaneously (left side);
Figure 10 is that the interval satisfactory solution interval with the sintering end point temperature of the satisfactory solution of hot blast temperature does not have occur simultaneously (right side).
The specific embodiment
Below with reference to figure and specific implementation process the present invention is described in further details.
Embodiment 1:
Owing to exist circular dependency between hot blast temperature and the sintering end point temperature, at present single control of sintering end point temperature and hot blast temperature control can not be satisfied the needs that improve the heat integration rate.
With reference to Fig. 1, be the structured flowchart of satisfactory optimization coordination control technology of the present invention, described technology specifically comprises: introduce grey correlation analysis, set up hot blast temperature feed-forward and feedback controller and sintering end point temperature feed-forward-feedback controller.Obtain the interval V of hot blast temperature operating parameter according to hot blast temperature feed-forward and feedback controller BlaBe [V Blamin, V Blamax], obtain V between sintering end point temperature operation parameter region by sintering end point temperature feed-forward-feedback controller BtpBe [V Btpmin, V Btpmax].On this basis, introduce the satisfactory optimization technology, set up the comprehensive satisfaction model, divide six kinds of situations to find the solution the comprehensive satisfaction model, try to achieve V BestFor guaranteeing the allowance up and down of operating parameter, select V BestMedian V Bestmid, with V BestmidBe issued to sintering process, regulate the sintering machine operation, realize the intelligent coordinated control of hot blast temperature and sintering end point temperature.
With reference to Fig. 2, be the flow chart of satisfactory optimization coordination control technology of the present invention, described method specifically may further comprise the steps:
Step S01: the Analysis on Mechanism between each element of operating parameter V and hot blast temperature and the sintering end point temperature.
Because the ratio of oxygen is substantially invariable in the fresh air, so when the ratio FD of fresh air air quantity and exhausting air quantity increases, the also corresponding increase of the ratio of amount of oxygen and exhausting air quantity.And the thermal discharge of sintering deposit burning is directly proportional with the amount of oxygen, and therefore under the constant situation of other conditions, hot blast temperature and sintering end point temperature and FD are that linear positive concerns.
When chassis speed U increased, sintering end point was delayed, and the average burning time of sintering deposit reduces, the also corresponding minimizing of thermal discharge.Therefore under the constant situation of other conditions, hot blast temperature and sintering end point temperature and U are approximately negative linear relationship.
When firing temperature IGN increases, the also corresponding increase of the temperature of sintering deposit.Therefore under the constant situation of other condition, hot blast temperature and sintering end point temperature and IGN are approximately linear positive and concern.
Step S02: the grey relational grade analysis between each element of operating parameter V.
With the correlation between each element of Grey Incidence Analysis analysis operation V parameter, to determine the type of satisfaction model.The system action sequence of native system is:
v 1=(v 1(1),v 1(2),L,v 1(n))
v 2=(v 2(1),v 2(2),L,v 2(n))
v 3=(v 3(1),v 3(2),L,v 3(n))
Wherein k is the time sequence number, v i(k) be operating parameter v iIn k observed data constantly, existing with operating parameter v i(i=1,2,3) ask the degree of association for the system features sequence.
The first step, ask the initial value picture of system:
v 1′=v 1/v 1(1)=(v 1′(1),v 1′(2),L,v 1′(n))
v 2′=v 2/v 2(1)=(v 2′(1),v 2′(2),L,v 2′(n))
v 3′=v 3/v 3(1)=(v 3′(1),v 3′(2),L,v 3′(n))
In second step, ask difference sequence
Δ 1(k)=|v i′(k)-v 1′(k)|
Δ 2(k)=|v i′(k)-v 2′(k)|
Δ 3(k)=|v i′(k)-v 3′(k)|
In the 3rd step, ask two extreme differences
M = max j max k &Delta; j ( k )
m = min j min k &Delta; j ( k )
j=1,2,3
In the 4th step, ask operating parameter v jTo operating parameter v iIncidence coefficient:
r ij ( k ) = m + &xi;M &Delta; j ( k ) + &xi;M
k=1,2,L,n;i=1,2,3
Wherein, ξ is the grey number on [0,1] interval, is taken as 0.5 at this.
In the 5th step, ask operating parameter v jTo operating parameter v iThe degree of association:
&gamma; ij = 1 n &Sigma; k = 1 n r ij ( k )
Step S03: set up hot blast temperature feed-forward and feedback controller and sintering end point temperature feed-forward-feedback controller.
Learn between each element of operating parameter V and hot blast temperature and the sintering end point temperature by the sintering theory Analysis on Mechanism and to be tangible linear dependence.Simultaneously, learn that by grey correlation analysis correlation between each element of operating parameter V is all less than 0.01.Think separate between each operating parameter, be independent of each other.Therefore have:
v ibla=k iblagT bla+C ibla
v ibtp=k ibtpgT btp+C ibtp
T wherein BlaAnd T BtpRepresent hot blast temperature and sintering end point temperature respectively,
At first, with T BlaAnd T BtpSetting value for the input, be output with the operating parameter, set up feedforward controller.Operating parameter v then iHot blast temperature and sintering end point temperature feed-forward controlled quentity controlled variable interval be respectively:
v ibla0=k iblagT blas+C ibla=[k iblaga+C ibla,k iblagb+C ibla]
v ibtp0=k ibtpgT btps+C ibtp=[k ibtpgc+C ibtp,k ibtpgd+C ibtp]
Wherein, T Blas=[a, b], T Btps=[c, d] represents T respectively BlaAnd T BtpSetting value, establish a=200, b=300, c=350, d=440.K IblaBe operating parameter v iThe hot blast temperature proportionality coefficient, C IblaBe operating parameter v iThe hot blast temperature constant, K IbtpBe operating parameter v iSintering end point temperature proportionality coefficient, C IblaBe operating parameter v iThe sintering end point thermal constant.According to actual data analysis, get K 1bla=0.0023, K 2bla=0.014, K 3bla=5.64, K 1btp=0.0012, K 2btp=0.057, K 3btp=2.78, C 1bla=0.13, C 2bla=0.83, C 3bla=67.3, C 1btp=0.093, C 2btp=0.46, C 3btp=86.4.
Then, according to T BlaAnd T BtpDetected value and the error of setting value, set up feedback controller, then operating parameter v iHot blast temperature and sintering end point temperature FEEDBACK CONTROL amount be respectively:
Δv ibla=k iblagΔT bla
Δv ibtp=k ibtpgΔT btp
Wherein,
&Delta;T bla = a - t blam t blam < a 0 a < t blam < b b - t blam t blam > b
&Delta;T btp = c - t btpm t btpm < c 0 c < t btpm < d d - t btpm t btpm > d
Wherein, t Blam, t BtpmBe respectively T BlaAnd T BtpDetected value.
At last, FEEDFORWARD CONTROL amount and the stack of FEEDBACK CONTROL amount are constituted the feed-forward and feedback controller, get operating parameter v iHot blast temperature and sintering end point temperature feed-forward-FEEDBACK CONTROL amount interval:
v ibla=v ibla0+Δv ibla
v ibtp=v ibtp0+Δv ibtp
Step S04: comprehensive satisfaction modeling.
Since separate between each operating parameter, therefore adopt one-dimensional satisfaction function, to operating parameter v iSet up sintering end point temperature satisfaction model and hot blast temperature satisfaction model.
As operating parameter v iAt interval V IblaWhen interior, v iSatisfy the requirement of actual production, v to hot blast temperature iThe value of hot blast temperature satisfaction function be 1, therefore adopt trapezoidal satisfaction function, as shown in Figure 3.With the interval V of hot blast temperature operating parameter BlaFor input, with V IblaSubstitution operating parameter v iHot blast temperature satisfaction function, as follows:
S ibla = 0 v i &le; v i min v i - v i min v ibla min - v i min v i min < v i < v ibla min 1 v ibla min &le; v i &le; v ibla max v i max - v i v i max - v ibla max v ibla max < v i < v i max 0 v i &GreaterEqual; v i max
Wherein, v IminAnd v ImaxRepresent v under the ordinary production respectively iThe minimum of a value and the maximum that allow, v Ibla=[v Iblamin, v Iblamax] expression operating parameter v iHot blast temperature satisfactory solution interval.
As operating parameter v iAt interval v IblaWhen interior, v iSatisfy the requirement of actual production, v to the sintering end point temperature iThe value of sintering end point temperature satisfaction function be 1, therefore adopt trapezoidal satisfaction function, as shown in Figure 4.With V IbtpSubstitution operating parameter v iSintering end point temperature satisfaction function, as follows:
S ibtp = 0 v i &le; v i min v i - v i min v ibtp min - v i min v i min < v i < v ibtp min 1 v ibtp min &le; v i &le; v ibtp max v i max - v i v i max - v ibtp max v ibtp max < v i < v i max 0 v i &GreaterEqual; v i max
Wherein, v IminAnd v ImaxRepresent v under the ordinary production respectively iThe minimum of a value and the maximum that allow, v Ibtp=[v Ibtpmin, v Ibtpmax] expression operating parameter v iSintering end point temperature satisfactory solution interval.
Adopt linear weight sum method, set up hot blast temperature and sintering end point temperature operating parameter v iThe comprehensive satisfaction model:
S i=γS ibla+(1-γ)S ibtp
The computing formula of γ is:
&gamma; = 1 - | t btpm - T btpmid | T btpmid ;
T btpmid = c + d 2
Wherein, t BtpmBe T BtpDetected value, T Btps∈ [c, d], c, d is setting value, establishes c=350, d=440; Because hot blast temperature satisfaction function and sintering end point satisfaction function are trapezoidal function, therefore make the comprehensive satisfaction function S iReach peaked operating parameter v IbestBe an interval, this interval is operating parameter v iThe output of comprehensive satisfaction model, the interval V of the comprehensively satisfied optimal solution of operating parameter BestCorresponding 3 subinterval v 1best, v 2best, v 3best
Step S05: comprehensive satisfaction model solution.
Finding the solution of comprehensive satisfaction model is divided into following six kinds of situations, and derives the solution formula of system synthesis satisfaction under these six kinds of situations:
(1) as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaAt the interval v of sintering end point temperature satisfactory solution IbtpWhen interior, as shown in Figure 5, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Iblamin, v Iblamax].
(2) as operating parameter v iSintering end point temperature v IbtpThe satisfactory solution interval at the interval v of the satisfactory solution of hot blast temperature IblaWhen interior, as shown in Figure 6, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Ibtpmin, v Ibtpmax].
(3) as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution The bt feed-forward and feedbackCommon factor is arranged, and at the interval v of sintering end point temperature satisfactory solution IbtpThe left side time, as shown in Figure 7, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Ibtpmin, v Iblamax].
(4) as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution The bt feed-forward and feedbackCommon factor is arranged, and at the interval v of sintering end point temperature satisfactory solution IbtpThe right side time, as shown in Figure 8, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Iblamin, v Ibtpmax].
(5) as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpDo not have and occur simultaneously, and at the interval v of sintering end point temperature satisfactory solution IbtpThe left side time, as shown in Figure 9, have
S i = 0 v i &le; v i min &gamma; v i - v i min v ibla min - v i min + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v i min < v i &le; v ibla min &gamma; + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v ibla min < v i &le; v ibla max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v ibla max < v i &le; v ibtp min &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v ibtp min < v i &le; v ibtp max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i max - v i v i max - v ibtp max v ibtp max < v i &le; v i max 0 v i > v i max
Find the solution by this formula and to make the comprehensive satisfaction function S iReach the interval v of peaked operating parameter Ibest, also be operating parameter v iThe output of comprehensive satisfaction model.
(6) as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpDo not have and occur simultaneously, and at the interval v of sintering end point temperature satisfactory solution IbtpThe right side time, as shown in figure 10, have
S i = 0 v i &le; v i min &gamma; v i - v i min v ibla min - v i min + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v i min < v i &le; v ibla min &gamma; v i - v i min v ibtp min - v i min + ( 1 - &gamma; ) v ibla min < v i &le; v ibla max &gamma; v i - v i max v ibla max - v i min + ( 1 - &gamma; ) v i min - v i v i max - v ibtp min v ibla max < v i &le; v ibtp min &gamma; + ( 1 - &gamma; ) v i max - v i v i max - v ibla max v ibtp min < v i &le; v ibtp max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i max - v i v i max - v ibtp max v ibtp max < v i &le; v i max 0 v i > v i max
Find the solution by this formula and to make the comprehensive satisfaction function S iReach the maximum interval v of operating parameter Ibest, also be operating parameter v iThe output of comprehensive satisfaction model.
Step S06: controlled quentity controlled variable issues.
For guaranteeing the allowance up and down of operating parameter, select V BestMedian V Bestmid, with V BestmidBe issued to sintering process, regulate exhausting air quantity, chassis speed and the firing temperature of sintering machine, realize the intelligent coordinated control of hot blast temperature and sintering end point temperature.

Claims (4)

1. hot blast temperature and sintering end point temperature control method for coordinating based on a satisfactory optimization is characterized in that, may further comprise the steps: step 1: structure hot blast temperature feed-forward and feedback controller and sintering end point temperature feed-forward-feedback controller;
Wherein, the hot blast temperature that is given as of hot blast temperature feed-forward and feedback controller sets value, the feedback signal of hot blast temperature feed-forward and feedback controller is the hot blast temperature detected value in the sintering process, and hot blast temperature feed-forward and feedback controller is output as the interval V of hot blast temperature operating parameter BlaBe [V Blamin, V Blamax];
Sintering end point temperature feed-forward-feedback controller be given as the sintering end point desired temperature, the feedback signal of sintering end point temperature feed-forward-feedback controller is the sintering end point temperature detection value in the sintering process; Sintering end point temperature feed-forward-feedback controller is output as V between sintering end point temperature operation parameter region BtpBe [V Btpmin, V Btpmax];
Wherein, operating parameter V=[v 1, v 2, v 3]=[FD, U, IGN], ratio, the U ∈ [0,4.0] of FD ∈ [0,1] expression fresh air air quantity and exhausting air quantity represent that chassis speed, IGN ∈ [1100,1300] represent firing temperature;
Step 2: set up the comprehensive satisfaction model, with V BlaAnd V BtpBe input, with the interval V of the satisfied optimal solution of parametric synthesis BestBe output, from the interval V of the satisfied optimal solution of parametric synthesis BestChoose a value and be issued to sintering process, to realize coordinating control based on the hot blast temperature and the sintering end point temperature of satisfactory optimization.
2. hot blast temperature and sintering end point temperature control method for coordinating based on satisfactory optimization according to claim 1 is characterized in that, the interval V of the hot blast temperature operating parameter in the step 1 BlaThe interval v of FEEDFORWARD CONTROL Ibla0And V between sintering end point temperature operation parameter region BtpThe interval v of FEEDFORWARD CONTROL Ibtp0Characterize by following formula:
v ibla0=k iblagT blas+C ibla=[k iblaga+C ibla,k iblagb+C ibla]
v ibtp0=k ibtpgT btps+C ibtp=[k ibtpgc+C ibtp,k ibtpgd+C ibtp]
T wherein BlaAnd T BtpRepresent hot blast temperature and sintering end point temperature respectively, T Blas∈ [a, b], T Btps∈ [c, d], a, b, c, d is setting value, C IblaBe operating parameter v iThe hot blast temperature constant, K IbtpBe operating parameter v iSintering end point temperature proportionality coefficient, C IblaBe operating parameter v iThe sintering end point thermal constant;
Operating parameter v then iHot blast temperature and sintering end point temperature FEEDBACK CONTROL amount be respectively:
Δv ibla=k iblagΔT bla
Δv ibtp=k ibtpgΔT btp
v iRepresent i operating parameter, i=1,2,3; Wherein,
&Delta;T bla = a - t blam t blam < a 0 a < t blam < b b - t blam t blam > b
&Delta;T btp = c - t btpm t btpm < c 0 c < t btpm < d d - t btpm t btpm > d
Wherein, t Blam, t BtpmBe respectively T BlaAnd T BtpDetected value;
Operating parameter v then iHot blast temperature and sintering end point temperature feed-forward-FEEDBACK CONTROL amount interval be: v ibla = v ibla 0 + &Delta;v ibla v ibtp = v ibtp 0 + &Delta;v ibtp .
3. hot blast temperature and sintering end point temperature control method for coordinating based on satisfactory optimization according to claim 1 is characterized in that the concrete steps of setting up the comprehensive satisfaction model are as follows:
v iHot blast temperature satisfaction function be:
S ibla = 0 v i &le; v i min v i - v i min v ibla min - v i min v i min < v i < v ibla min 1 v ibla min &le; v i &le; v ibla max v i max - v i v i max - v ibla max v ibla max < v i < v i max 0 v i &GreaterEqual; v i max
Wherein, v IminAnd v ImaxRepresent v under the ordinary production respectively iThe minimum of a value and the maximum that allow, [v Iblamin, v Iblamax] expression operating parameter v iHot blast temperature satisfactory solution interval;
Operating parameter v iSintering end point temperature satisfaction function be:
S ibtp = 0 v i &le; v i min v i - v i min v ibtp min - v i min v i min < v i < v ibtp min 1 v ibtp min &le; v i &le; v ibtp max v i max - v i v i max - v ibtp max v ibtp max < v i < v i max 0 v i &GreaterEqual; v i max
Wherein, v IminAnd v ImaxRepresent v under the ordinary production respectively iThe minimum of a value and the maximum that allow, [v Ibtpmin, v Ibtpmax] expression operating parameter v iSintering end point temperature satisfactory solution interval;
Adopt linear weight sum method, set up hot blast temperature and sintering end point temperature operating parameter v iThe comprehensive satisfaction model be:
S i=γS ibla+(1-γ)S ibtp
Wherein, the computing formula of γ is:
&gamma; = 1 - | t btpm - T btpmid | T btpmid ;
T btpmid = c + d 2
Wherein, t BtpmBe T BtpDetected value, T Btps∈ [c, d], c, d is setting value, generally establishes c=350, d=440;
Because hot blast temperature satisfaction function and sintering end point satisfaction function are trapezoidal function, therefore make the comprehensive satisfaction function S iReach peaked operating parameter v IbestBe an interval, this interval is operating parameter v iThe output of comprehensive satisfaction model, the interval V of the comprehensively satisfied optimal solution of operating parameter BestCorresponding 3 subinterval v 1best, v 2best, v 3best
4. according to claim 1-3 each described hot blast temperature and sintering end point temperature control method for coordinating, it is characterized in that, finding the solution of comprehensive satisfaction model be divided into following six kinds of situations based on satisfactory optimization:
Situation 1: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaAt the interval v of sintering end point temperature satisfactory solution IbtpWhen interior, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Iblamin, v Iblamax];
Situation 2: as operating parameter v iSintering end point temperature v IbtpThe satisfactory solution interval at the interval v of the satisfactory solution of hot blast temperature IblaWhen interior, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Ibtpmin, v Ibtpmax];
Situation 3: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpCommon factor is arranged, and at the interval v of sintering end point temperature satisfactory solution IbtpThe left side time, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Ibtpmin, v Iblamax];
Situation 4: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpCommon factor is arranged, and at the interval v of sintering end point temperature satisfactory solution IbtpThe right side time, operating parameter v iThe interval v of comprehensive satisfied optimal solution IbestBe [v Iblamin, v Ibtpmax];
Situation 5: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpDo not have and occur simultaneously, and at the interval v of sintering end point temperature satisfactory solution IbtpThe left side time, have
S i = 0 v i &le; v i min &gamma; v i - v i min v ibla min - v i min + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v i min < v i &le; v ibla min &gamma; + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v ibla min < v i &le; v ibla max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v ibla max < v i &le; v ibtp min &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v ibtp min < v i &le; v ibtp max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i max - v i v i max - v ibtp max v ibtp max < v i &le; v i max 0 v i > v i max
Find the solution by this formula and to make the comprehensive satisfaction function S iReach the interval v of peaked operating parameter Ibest, also be operating parameter v iThe output of comprehensive satisfaction model;
Situation 6: as operating parameter v iThe interval v of hot blast temperature satisfactory solution IblaWith the interval v of sintering end point temperature satisfactory solution IbtpDo not have and occur simultaneously, and at the interval v of sintering end point temperature satisfactory solution IbtpThe right side time, have
S i = 0 v i &le; v i min &gamma; v i - v i min v ibla min - v i min + ( 1 - &gamma; ) v i - v i min v ibtp min - v i min v i min < v i &le; v ibla min &gamma; v i - v i min v ibtp min - v i min + ( 1 - &gamma; ) v ibla min < v i &le; v ibla max &gamma; v i - v i max v ibla max - v i min + ( 1 - &gamma; ) v i min - v i v i max - v ibtp min v ibla max < v i &le; v ibtp min &gamma; + ( 1 - &gamma; ) v i max - v i v i max - v ibla max v ibtp min < v i &le; v ibtp max &gamma; v i max - v i v i max - v ibla max + ( 1 - &gamma; ) v i max - v i v i max - v ibtp max v ibtp max < v i &le; v i max 0 v i > v i max
Find the solution by this formula and to make the comprehensive satisfaction function S iReach the maximum interval v of operating parameter Ibest, also be operating parameter v iThe output of comprehensive satisfaction model;
Select V BestMedian V Bestmid, with V BestmidBe issued to sintering process, regulate the sintering machine operation, to realize coordinating control based on the hot blast temperature and the sintering end point temperature of satisfactory optimization.
CN2010102951094A 2010-09-28 2010-09-28 Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization Active CN101949652B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102951094A CN101949652B (en) 2010-09-28 2010-09-28 Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102951094A CN101949652B (en) 2010-09-28 2010-09-28 Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization

Publications (2)

Publication Number Publication Date
CN101949652A true CN101949652A (en) 2011-01-19
CN101949652B CN101949652B (en) 2012-11-07

Family

ID=43453234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102951094A Active CN101949652B (en) 2010-09-28 2010-09-28 Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization

Country Status (1)

Country Link
CN (1) CN101949652B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354109A (en) * 2011-06-22 2012-02-15 中南大学 Sintering hot air temperature and hot air oxygen content intelligent coordination optimization control method
CN103375997A (en) * 2012-04-28 2013-10-30 宝山钢铁股份有限公司 Method for regulating and controlling circulating flue-gas temperature and oxygen content
CN104266500A (en) * 2014-09-25 2015-01-07 河北联合大学 Cooler heat source parameter forecasting and regulation method based on heat condition in sintering process
CN108170176A (en) * 2017-12-21 2018-06-15 北京首钢自动化信息技术有限公司 SiO in a kind of finished ball2The control method of content
CN109669353A (en) * 2018-11-16 2019-04-23 台州旭日环境科技有限公司 One kind being based on the matched product robust analysis method of parameter area
CN111026189A (en) * 2019-12-10 2020-04-17 山东科技大学 Smoking temperature rising device and method, smoking temperature rising detection method, control device and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688085A1 (en) * 1994-06-17 1995-12-20 Schlumberger Industries S.A. Temperature control system with tariff change optimization
EP1218812B1 (en) * 1999-09-23 2003-04-23 Kic Thermal Profiling, Inc. Method and apparatus for controlling temperature response of a part in a conveyorized thermal processor
CN101363689A (en) * 2008-09-18 2009-02-11 中冶长天国际工程有限责任公司 Sintering bench section temperature control method, device and system
CN101424484A (en) * 2008-11-12 2009-05-06 昆明阳光基业股份有限公司 Control method for stabilizing and enhancing sintered ring cooling wind temperature while smelting steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688085A1 (en) * 1994-06-17 1995-12-20 Schlumberger Industries S.A. Temperature control system with tariff change optimization
EP1218812B1 (en) * 1999-09-23 2003-04-23 Kic Thermal Profiling, Inc. Method and apparatus for controlling temperature response of a part in a conveyorized thermal processor
CN101363689A (en) * 2008-09-18 2009-02-11 中冶长天国际工程有限责任公司 Sintering bench section temperature control method, device and system
CN101424484A (en) * 2008-11-12 2009-05-06 昆明阳光基业股份有限公司 Control method for stabilizing and enhancing sintered ring cooling wind temperature while smelting steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《化工学报》 20100831 向婕,吴敏,曹卫华, 段平 基于模糊满意度的烧结过程多目标优化控制 2138-2143 1-4 第61卷, 第8期 2 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354109A (en) * 2011-06-22 2012-02-15 中南大学 Sintering hot air temperature and hot air oxygen content intelligent coordination optimization control method
CN102354109B (en) * 2011-06-22 2014-06-11 中南大学 Sintering hot air temperature and hot air oxygen content intelligent coordination optimization control method
CN103375997A (en) * 2012-04-28 2013-10-30 宝山钢铁股份有限公司 Method for regulating and controlling circulating flue-gas temperature and oxygen content
CN103375997B (en) * 2012-04-28 2014-10-29 宝山钢铁股份有限公司 Method for regulating and controlling circulating flue-gas temperature and oxygen content
CN104266500A (en) * 2014-09-25 2015-01-07 河北联合大学 Cooler heat source parameter forecasting and regulation method based on heat condition in sintering process
CN108170176A (en) * 2017-12-21 2018-06-15 北京首钢自动化信息技术有限公司 SiO in a kind of finished ball2The control method of content
CN108170176B (en) * 2017-12-21 2021-02-12 北京首钢自动化信息技术有限公司 SiO in finished ball2Content control method
CN109669353A (en) * 2018-11-16 2019-04-23 台州旭日环境科技有限公司 One kind being based on the matched product robust analysis method of parameter area
CN111026189A (en) * 2019-12-10 2020-04-17 山东科技大学 Smoking temperature rising device and method, smoking temperature rising detection method, control device and system
CN111026189B (en) * 2019-12-10 2021-02-26 山东科技大学 Smoking temperature rising device and method, smoking temperature rising detection method, control device and system

Also Published As

Publication number Publication date
CN101949652B (en) 2012-11-07

Similar Documents

Publication Publication Date Title
CN101949652B (en) Hot air temperature and sintering final point temperature coordinated control method based on satisfactory optimization
CN101876449B (en) Method of controlling oxygen air-flowing environment in heating furnace
CN107168055B (en) Ammonia desulphurization optimization control method based on multivariable predictive control
CN104765350B (en) Cement decomposing furnace control method and system based on Combined model forecast control technology
CN109583118B (en) Sintering ratio calculation and sinter cost optimization method
CN103173584A (en) Blast furnace burden-distribution control system with self-learning control function
CN112359159B (en) Hot blast stove automatic burning method and system based on deep reinforcement learning
CN103293955A (en) Method for hybrid system modeling and coordinated optimization control of blast-furnace hot blast stove
CN103116282B (en) The pre-input amount Multipurpose Optimal Method of circulating fluidized bed desulfur agent
CN114622048A (en) Combustion optimization system and method for hot blast stove
CN106011353B (en) A kind of blast funnace hot blast stove air-fuel ratio self-optimization method
CN105276561A (en) Self-adaption predictive control method for main steam pressure of boiler
CN103593578A (en) Flue suction force feedback setting method in coke oven heating combustion process
CN102559964A (en) Feedforward control method of furnace top pressure of blast furnace
CN108488831B (en) Boiler combustion control system and method
CN106022496A (en) Raw material sintering burdening optimization method and system
CN102054125B (en) Method for stabilizing chemical constituents of charging agglomerate
CN110347038B (en) Two-degree-of-freedom Smith estimation control method in cement clinker cooling process
CN109654897B (en) Intelligent sintering end point control method for improving carbon efficiency
CN106127351A (en) A kind of blast funnace hot blast stove initially burns producer gas flow optimization system
CN107145751A (en) A kind of method for setting cement firing system best operating point
CN103017529A (en) Method and system for controlling air quantity of main draft fan of sintering machine
CN103017533A (en) Method and system for controlling air quantity of main draft fan of sintering machine
CN110619931A (en) Sintering process carbon efficiency optimization method based on multi-time scale optimization
CN102433134B (en) Method and system for controlling gas-collecting tube pressure of coke oven

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant