CN101940475A - 一种提高血氧饱和度检测精度的方法 - Google Patents

一种提高血氧饱和度检测精度的方法 Download PDF

Info

Publication number
CN101940475A
CN101940475A CN2010102728814A CN201010272881A CN101940475A CN 101940475 A CN101940475 A CN 101940475A CN 2010102728814 A CN2010102728814 A CN 2010102728814A CN 201010272881 A CN201010272881 A CN 201010272881A CN 101940475 A CN101940475 A CN 101940475A
Authority
CN
China
Prior art keywords
blood oxygen
signal
isolated component
oxygen saturation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102728814A
Other languages
English (en)
Inventor
吴小培
刘冠聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Solaris Medical Technology Inc.
Original Assignee
SHENZHEN NEWTECH ELECTRONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN NEWTECH ELECTRONICS CO Ltd filed Critical SHENZHEN NEWTECH ELECTRONICS CO Ltd
Priority to CN2010102728814A priority Critical patent/CN101940475A/zh
Publication of CN101940475A publication Critical patent/CN101940475A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种提高血氧饱和度检测精度的方法,该方法首先采集血氧原始信号,并对原始信号进行带通滤波;然后对带通滤波后的血氧信号基于信息极大独立性判据的独立分量分析算法进行计算,得出血氧独立分量和干扰独立分量,并估计分离矩阵W和混合矩阵A;再鉴别并去除干扰独立分量,并获取两路干净的血氧信号;最后利用干净的血氧信号计算血氧饱和度。采用了本发明技术方案的一种提高血氧饱和度检测精度的方法,可以有效地降低比率值计算过程中由于噪声引起的干扰,同时通过精度值的设定和判断,可达到提高血氧饱和度检测精度的目的;而且该方法的运算复杂度较低,可对不同环境下获取的双波长血氧信号进行在线提取,并能保证较稳定的计算精度。

Description

一种提高血氧饱和度检测精度的方法
技术领域
本发明涉及医疗器械技术领域,具体涉及血氧饱和度检测技术,特别涉及一种提高血氧饱和度检测精度的方法。
背景技术
基于红光和红外光的双波长血氧饱和度(SPO2)无创检测技术已被广泛应用于临床。较之传统的有创血氧检测方法,虽然双波长血氧饱和度检测方法具有很多优点(如,操作方便,可连续监测),但其检测精度往往受制于红光和红外光血氧检测信号的纯净程度。因为在双波长血氧检测信号的获取过程中,会不可避免地存在大量干扰成分,如肢体自主或不自主的运动所产生的运动干扰、环境电磁干扰,随机光源干扰等。这些干扰成分的幅度往往远大于血氧检测信号(特别是肌肉运动所产生的干扰),因此给后续血氧饱和度的计算带来诸多不便和麻烦,对测量精度也造成了很大影响。
为了从强干扰背景中分离出相对纯净的血氧信号,一些信号处理方法被应用于血氧信号的获取。其中最常用的信号处理方法是传统数字滤波方法。通过选择合适带宽的滤波器来抑制血氧信号中的干扰成分,以提高信噪比。但由于血氧信号和干扰信号在频谱上往往相互混叠,因此常规滤波方法在信噪比改善方面的效果非常有限。除了传统的滤波处理方法外,一些基于统计分析理论的信号处理方法也被应用于血氧信号的提取,如自适应滤波方法,独立分量分析方法,但这类基于统计分析的血氧提取算法计算复杂度很高,因此在算法的具体实现时,对处理器计算性能的要求很高,否则难以实现血氧信号的实时分析和处理。
综上所述,目前的血氧饱和度检测方法存在检测精度不高的问题,需要改进。
发明内容
本发明所要解决的技术问题是提供一种血氧饱和度检测方法,来解决现有血氧饱和度检测方法检测精度不高的问题。
为解决上述技术问题,本发明采用如下技术方案:
一种提高血氧饱和度检测精度的方法,包括如下步骤:
S1)、采集原始信号,并对原始信号进行带通滤波;
S2)、对带通滤波后的信号基于信息极大独立性判据的独立分量分析算法进行计算,得出血氧独立分量和干扰独立分量,并估计分离矩阵W和混合矩阵A;
S3)、鉴别并去除干扰独立分量,并获取两路干净的血氧信号;
S4)、利用干净的血氧信号计算血氧饱和度。
所述步骤S2)具体是指:对带通滤波后的血氧信号进行Infomax算法或者扩展Infomax算法计算,以提取出血氧独立分量和干扰独立分量,并估计分离矩阵W和混合矩阵A。
所述提取出血氧独立分量的公式为:
x(t)=[xrd(t),xir(t)]T
其中,xrd(t),xir(t)分别为实测红光和红外血氧信号,
xrd(t),xir(t)的生成模型可表示为:
x rd ( t ) x ir ( t ) = a 11 a 12 a 21 a 22 s ( t ) n ( t ) ⇔ x = As
其中s(t)和n(t)分别表示干净的血氧成分和噪声干扰成分,aij是未知的混合矩阵A的系数。
所述血氧信号独立分量和干扰噪声独立分量如下式:
s = A - 1 x = Wx ⇔ s ( t ) n ( t ) = w 11 w 12 w 21 w 22 x rd ( t ) x ir ( t )
其中s(t)和n(t)分别表示干净的血氧成分和噪声干扰成分。
所述扩展Infomax算法以及估计分离矩阵W获取的具体学习算法为:
W(t+1)=W(t)+μΔW
ΔW = [ I - K tanh ( u ) u T - uu T ] W k i = 1 : Sup - Gauss k i = - 1 : Sub - Gauss
式中t为迭代次数;μ为学习步长;I是单位矩阵;K是用于概率模型切换的对角矩阵;ki为K的元素,取值可为1或-1,分别对应于分离结果中的超高斯独立分量和亚高斯独立分量。
所述步骤S3)具体是指:利用所得混合矩阵A将血氧独立分量反投影至观测信号中,以获取两路“干净”血氧信号和两路噪声信号。
所述消除干扰后的两路干净血氧信号,即干净红光血氧信号srd(t)和干净红外光血氧信号和sir(t)的计算公式为:
s rd ( t ) s ir ( t ) = a 11 a 12 a 21 a 22 s ( t ) 0 ⇔ s rd ( t ) = a 11 s ( t ) s ir ( t ) = a 21 s ( t ) .
所述带通滤波器的通带为0.5-15Hz。
本发明的有益效果是:
采用了本发明技术方案的一种提高血氧饱和度检测精度的方法,可以有效地降低比率值计算过程中由于噪声引起的干扰,同时通过精度值的设定和判断,可达到提高血氧饱和度精度的目的。该方法的运算复杂度较低,可对不同环境下获取的双波长血氧信号进行在线提取,并能保证较稳定的计算精度,可大大提高血氧信号提取精度,能够从噪声混杂的信号中分离出干净有用的信号。
附图说明
图1是ICA算法的原理示意简图。
图2是本发明具体实施方式一中血氧饱和度检测方法的流程框图。
图3是本发明具体实施方式一血氧饱和度检测方法的中扩展Infomax算法的原理框图。
图4是本发明具体实施方式一中对手掌小幅慢运动情况下所提取的原始血氧信号。
图5是对图4中原始信号带通滤波后的信号。
图6是对图5中的信号经ICA处理后得到的血氧信号独立分量和噪声独立分量。
图7是利用ICA算法估计的混合矩阵A将图6中血氧信号独立分量分别映射回观测信号中得到的“干净”血氧信号。
图8是利用ICA算法估计的混合矩阵A将图6中噪声独立分量分别映射回观测信号中得到的的噪声信号。
图9是本发明具体实施方式二中对手掌快速运动情况下所提取的原始血氧信号。
图10是对图9中原始信号带通滤波后的信号。
图11是对图10中的信号经ICA处理后得到的血氧信号独立分量和噪声独立分量。
图12是利用ICA算法估计的混合矩阵A将图11中血氧信号独立分量分别映射回观测信号中得到的“干净”血氧信号。
图13是利用ICA算法估计的混合矩阵A将图11中噪声独立分量分别映射回观测信号中得到的的噪声信号。
图14是本发明具体实施方式三中对胳膊带动手掌大幅度较慢速运动的情况下所提取的原始血氧信号。
图15是对图14中原始信号带通滤波后的信号。
图16是对图15中的信号经ICA处理后得到的血氧信号独立分量和噪声独立分量。
图17是利用ICA算法估计的混合矩阵A将图16中血氧信号独立分量分别映射回观测信号中得到的“干净”血氧信号。
图18是利用ICA算法估计的混合矩阵A将图17中噪声独立分量分别映射回观测信号中得到的的噪声信号。
图19是本发明具体实施方式四中对有白炽灯随机开关的情况下所提取的原始血氧信号。
图20是对图19中原始信号带通滤波后的信号。
图21是对图20中的信号经ICA处理后得到的血氧信号独立分量和噪声独立分量。
图22是利用ICA算法估计的混合矩阵A将图21中血氧信号独立分量分别映射回观测信号中得到的“干净”血氧信号。
图23是利用ICA算法估计的混合矩阵A将图21中噪声独立分量分别映射回观测信号中得到的的噪声信号。
下面将结合附图对本发明作进一步详述。
具体实施方式
实施例一
本具体实施方式提供了一种提高血氧饱和度检测精度的方法,该方法的流程框图如图1所示:
首先,采集原始信号,并对原始信号进行带通滤波。本具体实施方式中采集手掌小幅慢运动情况下红光和红外光血氧原始信号,并对所采集到的原始信号进行带通滤波,带通滤波器的通带为0.5-15Hz。所采集到的原始信号如图2所示,经过带通滤波后的信号如图3所示。
然后,计算血氧独立分量和干扰独立分量,并估计分离矩阵W和混合矩阵A。即对带通滤波后的信号基于信息极大独立性判据的独立分量分析算法(Infomax-ICA)进行计算,以提取血氧独立分量和干扰独立分量。本具体实施方式中对带通滤波后的信号进行Infomax算法计算,或者扩展Infomax算法计算,以提取出如图4所示的血氧独立分量和干扰独立分量,并估计分离矩阵W和混合矩阵A。
再鉴别并去除干扰独立分量,并获取两路“干净”的血氧信号。即利用所得混合矩阵A将图4中所示血氧独立分量反投影至观测信号中,以获取如图5所示的两路“干净”血氧信号和图6所示的两路噪声信号。所述观测信号可被认为是原始输入信号,预处理后的信号,实测信号或者带通后信号。
最后,利用干净的血氧信号计算血氧饱和度。即利用图5中所示两路“干净”的血氧信号计算血氧饱和度。
本发明的关键就在于第二步中的独立分量分析方法(IndependentComponent Analysis:ICA),在此特意详细介绍下。独立分量分析方法是20世纪九十年代发展起来的一种新的多维统计分析方法。图7是对ICA问题的描述,虚线框部分是作为ICA输入的多通道信号生成模型。s(t)=[s1(t),s2(t),...,sN(t)]T和x(t)=[x1(t),x2(t),...,xN(t)]T分别为源信号向量和观测信号向量。A是一N×N维的未知混合矩阵。在基本ICA模型中,它们之间的关系是线性混合关系,即:
x(t)=As(t)    (1)
观测信号向量x(t)经分离矩阵W输出对源信号向量s(t)的逼近u(t)=[u1(t),u2(t),...,uN(t)]T。其中对输出u(t)中各分量的统计独立程度的判别是调整分离矩阵W的依据,即:通过调整W,使输出u(t)的各分量尽可能的相互独立。
根据图7所示的基本ICA生成模型,如果混合矩阵A是可逆的,则一定存在一个分离矩阵W=A-1,实现从混合观测信号x(t)中无失真恢复源信号,即:
u(t)=Wx(t)   (2)
上式中,u(t)是对源信号向量s(t)的估计。
具体到本发明中双波长血氧信号提取问题,通过红光和红外光获取的两路血氧信号中含有纯净的血氧信号成分和干扰信号成分。由于这些信号成分来自不同的源,可看成是相互独立。因此可利用独立分量分析算法从干扰背景中分离出纯净的血氧信号成分。根据图1所示ICA算法模型,实测血氧信号可表示为:
x(t)=[xrd(t),xir(t)]T    (3)
其中,xrd(t),xir(t)分别为实测红光和红外血氧信号,其生成模型可表示为:
x rd ( t ) x ir ( t ) = a 11 a 12 a 21 a 22 s ( t ) n ( t ) ⇔ x = As - - - ( 4 )
其中s(t)和n(t)分别表示干净的血氧成分和噪声干扰成分。aij是未知的混合矩阵A的系数。
利用ICA算法估计出的分离矩阵W,通过下述运算,可得到血氧信号独立分量和干扰噪声独立分量,如下式:
s = A - 1 x = Wx ⇔ s ( t ) n ( t ) = w 11 w 12 w 21 w 22 x rd ( t ) x ir ( t ) - - - ( 5 )
利用上式结果,进而可获得消除干扰后的红光和红外光血氧信号:srd(t)和sir(t)
s rd ( t ) s ir ( t ) = a 11 a 12 a 21 a 22 s ( t ) 0 ⇔ s rd ( t ) = a 11 s ( t ) s ir ( t ) = a 21 s ( t ) - - - ( 6 )
其中,扩展Infomax算法的框图如图8所示:
扩展Infomax算法分离矩阵获取的具体学习算法为:
W(t+1)=W(t)+μΔW    (7)
ΔW = [ I - K tanh ( u ) u T - uu T ] W k i = 1 : Sup - Gauss k i = - 1 : Sub - Gauss - - - ( 8 )
上式中t为迭代次数;μ为学习步长;I是单位矩阵;K是用于概率模型切换的对角矩阵;ki为K的元素,取值可为1或-1。分别对应于分离结果中的超高斯独立分量和亚高斯独立分量。
本具体实施方式采用Infomax算法或者扩展Infomax算法进行血氧信号提取,是因为该类算法具有较好的在线实现形式,可对血氧信号的实时动态进行分析和提取;并且在线Infomax算法对处理器的计算和存储性能要求也较低,因而能够通过常规处理器实现的血氧信号分离计算。
本具体实施方式的一种提高血氧饱和度检测精度的方法,主要采用基于信息极大独立性判据的独立分量分析算法(Infomax-ICA),进行多波长血氧信号的盲提取。采用该方法可以有效地降低比率值计算过程中由于噪声引起的干扰,同时通过精度值的设定和判断,可达到提高血氧饱和度精度的目的。该方法的运算复杂度较低,可对不同环境下获取的双波长血氧信号进行在线提取,并能保证较稳定的计算精度,可大大提高血氧信号提取精度,能够从噪声混杂的信号中分离出干净有用的信号。
实施例二
本具体实施方式大致与实施例一类似,不同之处在于所采集到的血氧原始信号是在手掌快速运动的情况下所提取的。所提取到的原始数据如图9所示。经过带通滤波后的信号如图10所示。经ICA处理后得到的血氧信号独立分量和噪声独立分量如图11所示。获取的两路“干净”血氧信号如图12所示。获取的两路噪声信号如图13所示。
实施例三
本具体实施方式大致与实施例一类似,不同之处在于所采集到的血氧原始信号是在胳膊带动手掌大幅度较慢速运动情况下所提取的。所提取到的原始数据如图14所示。经过带通滤波后的信号如图15所示。经ICA处理后得到的血氧信号独立分量和噪声独立分量如图16所示。获取的两路“干净”血氧信号如图17所示。获取的两路噪声信号如图18所示。
实施例四
本具体实施方式大致与实施例一类似,不同之处在于所采集到的血氧原始信号是在有白炽灯随机开关的情况下所提取的。所提取到的原始数据如图19所示。经过带通滤波后的信号如图20所示。经ICA处理后得到的血氧信号独立分量和噪声独立分量如图21所示。获取的两路“干净”血氧信号如图22所示。获取的两路噪声信号如图23所示。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

1.一种提高血氧饱和度检测精度的方法,包括如下步骤:
S1)、采集血氧原始信号,并对血氧原始信号进行带通滤波;
S2)、对带通滤波后的血氧信号基于信息极大独立性判据的独立分量分析算法进行计算,得出血氧独立分量和干扰独立分量,并估计分离矩阵W和混合矩阵A;
S3)、鉴别并去除干扰独立分量,并获取两路干净的血氧信号;
S4)、利用干净的血氧信号计算血氧饱和度。
2.如权利要求1所述的一种提高血氧饱和度检测精度的方法,其特征在于,所述步骤S2)具体是指:对带通滤波后的血氧信号进行Infomax算法或者扩展Infomax算法计算,以提取出血氧独立分量和干扰独立分量,并估计分离矩阵W和混合矩阵A。
3.如权利要求2所述的一种提高血氧饱和度检测精度的方法,其特征在于,所述提取出血氧独立分量的公式为:
x(t)=[xrd(t),xir(t)]T
其中,xrd(t),xir(t)分别为实测红光和红外血氧信号,
xrd(t),xir(t)的生成模型可表示为:
x rd ( t ) x ir ( t ) = a 11 a 12 a 21 a 22 s ( t ) n ( t ) ⇔ x = As
其中s(t)和n(t)分别表示干净的血氧成分和噪声干扰成分,aij是未知的混合矩阵A的系数。
4.如权利要求2所述的一种提高血氧饱和度检测精度的方法,其特征在于,所述血氧信号独立分量和干扰噪声独立分重如下式:
s = A - 1 x = Wx ⇔ s ( t ) n ( t ) = w 11 w 12 w 21 w 22 x rd ( t ) x ir ( t )
其中s(t)和n(t)分别表示干净的血氧成分和噪声干扰成分。
5.如权利要求2所述的一种提高血氧饱和度检测精度的方法,其特征在于,所述扩展Infomax算法以及估计分离矩阵W获取的具体学习算法为:
W(t+1)=W(t)+μΔW
ΔW = [ I - K tanh ( u ) u T - uu T ] W k i = 1 : Sup - Gauss k i = - 1 : Sub - Gauss
式中t为迭代次数;μ为学习步长;I是单位矩阵;K是用于概率模型切换的对角矩阵;ki为K的元素,取值可为1或-1,分别对应于分离结果中的超高斯独立分量和亚高斯独立分量。
6.如权利要求1至5中任意一项所述的一种提高血氧饱和度检测精度的方法,其特征在于,所述步骤S3)具体是指:利用所得混合矩阵A将血氧独立分量反投影至观测信号中,以获取两路干净血氧信号和两路噪声信号。
7.如权利要求6所述的一种提高血氧饱和度检测精度的方法,其特征在于,所述消除干扰后的两路干净血氧信号,即干净红光血氧信号srd(t)和干净红外光血氧信号和sir(t)的计算公式为:
s rd ( t ) s ir ( t ) = a 11 a 12 a 21 a 22 s ( t ) 0 ⇔ s rd ( t ) = a 11 s ( t ) s ir ( t ) = a 21 s ( t ) .
8.如权利要求7所述的一种提高血氧饱和度检测精度的方法,其特征在于,所述带通滤波器的通带为0.5-15Hz。
9.如权利要求1至5中任意一项所述的一种提高血氧饱和度检测精度的方法,其特征在于,所述带通滤波器的通带为0.5-15Hz。
CN2010102728814A 2010-09-03 2010-09-03 一种提高血氧饱和度检测精度的方法 Pending CN101940475A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102728814A CN101940475A (zh) 2010-09-03 2010-09-03 一种提高血氧饱和度检测精度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102728814A CN101940475A (zh) 2010-09-03 2010-09-03 一种提高血氧饱和度检测精度的方法

Publications (1)

Publication Number Publication Date
CN101940475A true CN101940475A (zh) 2011-01-12

Family

ID=43432821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102728814A Pending CN101940475A (zh) 2010-09-03 2010-09-03 一种提高血氧饱和度检测精度的方法

Country Status (1)

Country Link
CN (1) CN101940475A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102973279A (zh) * 2012-12-18 2013-03-20 哈尔滨工业大学 独立成分分析联合最小二乘法的近红外脑机接口的信号检测方法
CN105228517A (zh) * 2013-04-05 2016-01-06 日东电工股份有限公司 使用光学测量测定受测者的SpO2的方法及装置
WO2020182047A1 (zh) * 2019-03-12 2020-09-17 华为技术有限公司 一种血氧检测方法及装置
CN112741626A (zh) * 2020-09-09 2021-05-04 华为技术有限公司 一种多光电探测器并联的血氧检测方法及装置
CN112869737A (zh) * 2021-02-01 2021-06-01 浙江大学山东工业技术研究院 一种非接触式人体血氧饱和度检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007114A1 (en) * 2000-02-10 2002-01-17 Ziad Elghazzawi Method and apparatus for detecting a physiological parameter
US20090024447A1 (en) * 2007-03-29 2009-01-22 Neurofocus, Inc. Analysis of marketing and entertainment effectiveness using central nervous system, autonomic nervous sytem, and effector data
CN101484065A (zh) * 2006-04-11 2009-07-15 诺丁汉大学 光电体积描记术

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007114A1 (en) * 2000-02-10 2002-01-17 Ziad Elghazzawi Method and apparatus for detecting a physiological parameter
CN101484065A (zh) * 2006-04-11 2009-07-15 诺丁汉大学 光电体积描记术
US20090024447A1 (en) * 2007-03-29 2009-01-22 Neurofocus, Inc. Analysis of marketing and entertainment effectiveness using central nervous system, autonomic nervous sytem, and effector data

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
侯艳艳: "一种基于扩展Infomax的自适应学习算法", 《九江学院学报》 *
苏永春等: "基于独立分量分析的脉搏波信号的降噪处理", 《医疗设备信息》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102973279A (zh) * 2012-12-18 2013-03-20 哈尔滨工业大学 独立成分分析联合最小二乘法的近红外脑机接口的信号检测方法
CN102973279B (zh) * 2012-12-18 2014-09-17 哈尔滨工业大学 独立成分分析联合最小二乘法的近红外脑机接口的信号检测方法
CN105228517A (zh) * 2013-04-05 2016-01-06 日东电工股份有限公司 使用光学测量测定受测者的SpO2的方法及装置
WO2020182047A1 (zh) * 2019-03-12 2020-09-17 华为技术有限公司 一种血氧检测方法及装置
CN112741626A (zh) * 2020-09-09 2021-05-04 华为技术有限公司 一种多光电探测器并联的血氧检测方法及装置
CN112741626B (zh) * 2020-09-09 2022-05-24 华为技术有限公司 一种多光电探测器并联的血氧检测方法及装置
CN112869737A (zh) * 2021-02-01 2021-06-01 浙江大学山东工业技术研究院 一种非接触式人体血氧饱和度检测方法

Similar Documents

Publication Publication Date Title
CN105105737B (zh) 基于光电容积描记和谱分析的运动状态心率监测方法
CN102697493B (zh) 一种快速的脑电信号中眼电伪迹自动识别和去除的方法
CN103377647B (zh) 一种基于音视频信息的自动音乐记谱方法及系统
CN101940475A (zh) 一种提高血氧饱和度检测精度的方法
CN103190898B (zh) 心磁信号噪声自适应滤波消除设计方法
Kotas et al. Application of spatio-temporal filtering to fetal electrocardiogram enhancement
CN106691425A (zh) 一种运动手环的腕部心率监测方法
CN104655423A (zh) 一种基于时频域多维振动特征融合的滚动轴承故障诊断方法
CN114469124B (zh) 一种运动过程中异常心电信号的识别方法
CN101972143A (zh) 基于盲源提取的房颤监测方法
CN105654963A (zh) 频谱校正及数据密度聚类法语音欠定盲识别方法和装置
CN103761424A (zh) 基于二代小波和ica的肌电信号降噪与去混迭方法
CN110169764A (zh) 一种lms自适应滤波ppg信号心率提取方法
CN112370015A (zh) 基于格拉姆角场的生理信号质量评估方法
Li et al. Feature extraction of lung sounds based on bispectrum analysis
CN108272451A (zh) 一种基于改进小波变换的qrs波识别方法
CN105286860A (zh) 一种基于双树复小波能量差的运动想象脑电信号识别方法
CN104732076A (zh) 一种侧信道能量迹特征提取的方法
Wang et al. Research on denoising algorithm for ECG signals
CN104020136A (zh) 小波中值近红外光谱去噪方法和装置
CN104778342B (zh) 一种基于小波奇异熵的心音特征提取方法
Elbuni et al. ECG parameter extraction algorithm using (DWTAE) algorithm
CN116942172A (zh) 一种基于编解码结构的小波双通道单导联心电去噪方法
Hongyan et al. Blind separation of noisy mixed speech signals based Independent Component Analysis
Tangirala et al. Wavelets applications in modeling and control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: SHENZHEN SUOLAIRUI MEDICAL TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: SHENZHEN NEWTECH ELECTRONIC CO., LTD.

Effective date: 20130708

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 518057 SHENZHEN, GUANGDONG PROVINCE TO: 518067 SHENZHEN, GUANGDONG PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20130708

Address after: 3, building 1, building 18, Arts crafts emporium, No. 518067, Shun Shan Road, Shekou, Guangdong, Shenzhen, Nanshan District

Applicant after: Shenzhen Solaris Medical Technology Inc.

Address before: 518057, R1-B building, Nanshan District hi tech Industrial Park, Guangdong, Shenzhen

Applicant before: Shenzhen Newtech Electronics Co., Ltd.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110112