CN101938201B - Axial-radial magnetic field modulation brushless composite structure motor - Google Patents
Axial-radial magnetic field modulation brushless composite structure motor Download PDFInfo
- Publication number
- CN101938201B CN101938201B CN2010102743373A CN201010274337A CN101938201B CN 101938201 B CN101938201 B CN 101938201B CN 2010102743373 A CN2010102743373 A CN 2010102743373A CN 201010274337 A CN201010274337 A CN 201010274337A CN 101938201 B CN101938201 B CN 101938201B
- Authority
- CN
- China
- Prior art keywords
- rotor
- permanent magnet
- output shaft
- stator
- modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 25
- 238000004804 winding Methods 0.000 claims description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 28
- 230000005415 magnetization Effects 0.000 claims description 25
- 230000005855 radiation Effects 0.000 claims 7
- 241000239290 Araneae Species 0.000 claims 4
- 230000001939 inductive effect Effects 0.000 claims 4
- 230000001105 regulatory effect Effects 0.000 description 21
- 230000027311 M phase Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 229910001035 Soft ferrite Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
技术领域 technical field
本发明涉及轴向-径向磁场调制型无刷复合结构电机,属于电机领域。The invention relates to an axial-radial magnetic field modulation type brushless composite structure motor, which belongs to the field of motors.
背景技术 Background technique
传统内燃机汽车的燃油消耗和尾气排放污染是举世关注的热点问题。使用电动汽车可实现低能耗、低排放,但由于作为电动汽车的关键部件之一的电池其能量密度、寿命、价格等方面的问题,使得电动汽车的性价比无法与传统的内燃机汽车相抗衡,在这种情况下,融合内燃机汽车和电动汽车优点的混合动力电动汽车发展迅速,成为新型汽车开发的热点。Fuel consumption and exhaust emission pollution of traditional internal combustion engine vehicles are hot issues of worldwide concern. The use of electric vehicles can achieve low energy consumption and low emissions. However, due to the energy density, lifespan, and price of batteries, which are one of the key components of electric vehicles, the cost performance of electric vehicles cannot compete with traditional internal combustion engine vehicles. Under such circumstances, hybrid electric vehicles, which combine the advantages of internal combustion engine vehicles and electric vehicles, develop rapidly and become a hot spot in the development of new vehicles.
现有串联式驱动装置的特点是:可使发动机不受汽车行驶工况的影响,始终在其最佳的工作区稳定运行,并可选用功率较小的发动机,但需要功率足够大的发电机和电动机,发动机的输出需全部转化为电能再变为驱动汽车的机械能,由于机电能量转换和电池充放电的效率较低,使得燃油能量的利用率比较低;并联式驱动装置能量利用率相对较高,但发动机工况要受汽车行驶工况的影响,因此不适于变化频繁的行驶工况,相比于串联式结构,需要较为复杂的变速装置和动力复合装置以及传动机构;混联式驱动装置融合了串联式和并联式的优点,由于整个驱动系统的能量流动更加灵活,因此发动机、发电机、电动机等部件能够进一步得到优化,从而使整个系统效率更高。但是仍然需要较为复杂的变速装置和动力复合装置以及传动机构。The characteristics of the existing serial driving device are: the engine can be operated stably in its best working area without being affected by the driving conditions of the vehicle, and an engine with a lower power can be selected, but a generator with sufficient power is required And the motor, the output of the engine needs to be fully converted into electrical energy and then into the mechanical energy to drive the car. Due to the low efficiency of electromechanical energy conversion and battery charging and discharging, the utilization rate of fuel energy is relatively low; the energy utilization rate of the parallel drive device is relatively low. High, but the engine operating conditions are affected by the driving conditions of the car, so it is not suitable for frequently changing driving conditions. Compared with the serial structure, it requires more complicated transmission devices, power compound devices and transmission mechanisms; hybrid drive The device combines the advantages of series and parallel. Since the energy flow of the entire drive system is more flexible, components such as the engine, generator, and motor can be further optimized, thereby making the entire system more efficient. But still need comparatively complicated transmission device and power compound device and transmission mechanism.
在上述驱动装置中,存在发动机和系统其他部件不能协调配合的问题,使整个系统存在体积笨重、结构复杂、耗能大、尾气排放量大的问题,而不能有效的将动力输出。In the above-mentioned driving device, there is a problem that the engine and other components of the system cannot be coordinated and coordinated, so that the whole system has problems of bulky volume, complex structure, large energy consumption, and large exhaust emissions, and cannot effectively output power.
发明内容 Contents of the invention
本发明目的是为了解决现有串联式、并联式和混联式驱动装置中发动机和系统其他部件不能简单高效配合,从而使整个系统存在体积笨重、结构复杂、成本偏高、性能受限,而不能有效地将动力输出的问题,提供了一种轴向-径向磁场调制型无刷复合结构电机。The purpose of the present invention is to solve the problem that the engine and other components of the system in the existing series, parallel and hybrid drive devices cannot be coordinated simply and efficiently, so that the whole system has bulky volume, complex structure, high cost, and limited performance. To solve the problem of not being able to effectively output power, an axial-radial magnetic field modulation type brushless composite structure motor is provided.
本发明轴向-径向磁场调制型无刷复合结构电机的第一种结构:The first structure of the axial-radial magnetic field modulation type brushless composite structure motor of the present invention:
轴向-径向磁场调制型无刷复合结构电机的壳体通过分隔件被分成左右两部分,轴向双转子电机和径向转矩调节电机分别设置在壳体的左右两部分内,所述轴向双转子电机包括第一定子、调制环转子、第一永磁转子、永磁转子输出轴和调制环转子输出轴,所述径向转矩调节电机包括第二定子和第二永磁转子,调制环转子输出轴同时作为径向转矩调节电机的转子轴,The casing of the axial-radial magnetic field modulation type brushless composite structure motor is divided into two parts on the left and right by a partition, and the axial double-rotor motor and the radial torque adjustment motor are respectively arranged in the two parts on the left and right of the casing. The axial double-rotor motor includes a first stator, a modulating ring rotor, a first permanent magnet rotor, a permanent magnet rotor output shaft and a modulating ring rotor output shaft, and the radial torque adjustment motor includes a second stator and a second permanent magnet The rotor, the modulating ring rotor output shaft is also used as the rotor shaft of the radial torque regulating motor,
所述径向转矩调节电机的第二定子固定在壳体右部分的内侧壁上,第二永磁转子固定在调制环转子输出轴上,第二定子与第二永磁转子之间沿径向方向有气隙L3;The second stator of the radial torque regulating motor is fixed on the inner wall of the right part of the housing, the second permanent magnet rotor is fixed on the output shaft of the modulation ring rotor, and the radial direction between the second stator and the second permanent magnet rotor There is an air gap L3 in the direction;
所述轴向双转子电机的两个第一定子的各一个外圆环端面分别固定在壳体左部分的左右端面内壁上,第一永磁转子固定在永磁转子输出轴上,永磁转子输出轴通过第一轴承与壳体的一侧端面转动连接,且通过第二轴承和第四轴承与调制环转子转动连接,调制环转子位于两个第一定子之间、第一永磁转子的外部,调制环转子输出轴的一端固定在调制环转子上,且调制环转子输出轴通过第三轴承与壳体的分隔件转动连接、通过第五轴承与壳体的另一个端面转动连接;调制环转子和第一定子的圆环端面之间有气隙L1;调制环转子与第一永磁转子之间有气隙L2,The outer ring end faces of the two first stators of the axial double rotor motor are respectively fixed on the inner walls of the left and right end faces of the left part of the housing, the first permanent magnet rotor is fixed on the output shaft of the permanent magnet rotor, and the permanent magnet rotor is fixed on the output shaft of the permanent magnet rotor. The output shaft of the rotor is rotatably connected to one end face of the casing through the first bearing, and is rotatably connected to the modulating ring rotor through the second bearing and the fourth bearing. The modulating ring rotor is located between the two first stators, and the first permanent magnet On the outside of the rotor, one end of the output shaft of the modulating ring rotor is fixed on the modulating ring rotor, and the output shaft of the modulating ring rotor is rotatably connected with the partition of the housing through the third bearing, and is rotatably connected with the other end surface of the housing through the fifth bearing ; There is an air gap L1 between the modulation ring rotor and the circular end face of the first stator; there is an air gap L2 between the modulation ring rotor and the first permanent magnet rotor,
第一定子由第一定子铁心和m相第一定子绕组构成,第一定子绕组通有m相对称交流电流时,形成2p极数的旋转磁场,m、p为正整数;The first stator is composed of a first stator core and an m-phase first stator winding. When the first stator winding is supplied with an m-phase symmetrical alternating current, a rotating magnetic field with 2p poles is formed, and m and p are positive integers;
第一永磁转子由第一永磁转子铁心和多个第一永磁体单元构成,第一永磁转子铁心为圆盘形,第一永磁转子铁心的两侧圆盘端面上对称设置第一永磁体单元,每个圆盘端面上设置的2n个第一永磁体单元以永磁转子输出轴为中心呈放射线状均匀排布,第一永磁体单元沿轴向平行充磁,同一圆盘端面相邻两块第一永磁体单元的充磁方向相反,两侧圆盘端面上位置对称的两块第一永磁体单元充磁方向相同,第一永磁转子旋转时,形成2n极数的永磁转子端面磁场,n为正整数;The first permanent magnet rotor is composed of a first permanent magnet rotor core and multiple first permanent magnet units. Permanent magnet units, 2n first permanent magnet units arranged on the end face of each disc are evenly arranged radially with the output shaft of the permanent magnet rotor as the center, the first permanent magnet units are magnetized in parallel in the axial direction, and the same disc end face The magnetization directions of the two adjacent first permanent magnet units are opposite, and the magnetization directions of the two first permanent magnet units symmetrically located on the end faces of the disks on both sides are the same. When the first permanent magnet rotor rotates, a permanent magnet with 2n poles is formed. Magnetic rotor end face magnetic field, n is a positive integer;
调制环转子由转子支架、2q块导磁块和2q块绝缘块构成,转子支架是由两个圆端面和一个圆环构成的封闭框架,每个圆端面上交错设置q块导磁块和q块绝缘块,且以永磁转子输出轴为中心呈放射线状均匀排布;The modulation ring rotor is composed of a rotor support, 2q magnetic blocks and 2q insulating blocks. The rotor support is a closed frame composed of two circular end faces and a ring. Each circular end face is staggered with q magnetic blocks and q A block of insulating blocks, and the output shaft of the permanent magnet rotor is arranged uniformly in a radial shape;
且满足p=|hn+kq|关系式成立,其中,h是正奇数,k是整数。And the relationship p=|hn+kq| is satisfied, where h is a positive odd number and k is an integer.
本发明轴向-径向磁场调制型无刷复合结构电机的第二种结构:The second structure of the axial-radial magnetic field modulation type brushless composite structure motor of the present invention:
轴向-径向磁场调制型无刷复合结构电机的壳体通过分隔件被分成左右两部分,径向转矩调节电机和轴向双转子电机分别设置在壳体的左右两部分内,所述轴向双转子电机包括第一定子、调制环转子、第一永磁转子、永磁转子输出轴和调制环转子输出轴,所述径向转矩调节电机包括第二定子和第二永磁转子,调制环转子输出轴同时作为径向转矩调节电机的转子轴,The casing of the axial-radial magnetic field modulation type brushless composite structure motor is divided into left and right parts by a separator, and the radial torque regulating motor and the axial double-rotor motor are respectively arranged in the left and right parts of the casing. The axial double-rotor motor includes a first stator, a modulating ring rotor, a first permanent magnet rotor, a permanent magnet rotor output shaft and a modulating ring rotor output shaft, and the radial torque adjustment motor includes a second stator and a second permanent magnet The rotor, the modulating ring rotor output shaft is also used as the rotor shaft of the radial torque regulating motor,
所述径向转矩调节电机的第二定子固定在壳体左部分的内侧壁上,第二永磁转子固定在调制环转子输出轴上,第二定子与第二永磁转子之间沿径向方向有气隙L3;The second stator of the radial torque regulating motor is fixed on the inner wall of the left part of the housing, the second permanent magnet rotor is fixed on the output shaft of the modulation ring rotor, and the radial direction between the second stator and the second permanent magnet rotor There is an air gap L3 in the direction;
所述轴向双转子电机的第一定子的外圆环端面固定在壳体右部分的分隔件左侧端面内壁上,第一永磁转子固定在永磁转子输出轴上,永磁转子输出轴通过第三轴承与壳体的一侧端面转动连接,调制环转子位于第一定子与第一永磁转子之间,调制环转子输出轴的一端通过第二轴承与第一永磁转子转动连接,且调制环转子输出轴通过第一轴承与壳体的分隔件转动连接、通过第四轴承与壳体的另一侧端面转动连接;调制环转子和第一定子之间有气隙L1;调制环转子与第一永磁转子之间有气隙L2;The outer circular ring end face of the first stator of the axial double-rotor motor is fixed on the inner wall of the left end face of the separator in the right part of the housing, the first permanent magnet rotor is fixed on the permanent magnet rotor output shaft, and the permanent magnet rotor output The shaft is rotatably connected to one end face of the housing through the third bearing, the modulation ring rotor is located between the first stator and the first permanent magnet rotor, and one end of the output shaft of the modulation ring rotor rotates with the first permanent magnet rotor through the second bearing The output shaft of the modulating ring rotor is rotatably connected to the partition of the housing through the first bearing, and is rotatably connected to the other end face of the housing through the fourth bearing; there is an air gap L1 between the modulating ring rotor and the first stator ; There is an air gap L2 between the modulation ring rotor and the first permanent magnet rotor;
第一定子由第一定子铁心和m相第一定子绕组构成,第一定子绕组通有m相对称交流电流时,形成2p极数的旋转磁场,m、p为正整数;The first stator is composed of a first stator core and an m-phase first stator winding. When the first stator winding is supplied with an m-phase symmetrical alternating current, a rotating magnetic field with 2p poles is formed, and m and p are positive integers;
第一永磁转子由第一永磁转子铁心和2n个第一永磁体单元构成,第一永磁转子铁心为圆盘形,2n个第一永磁体单元设置在与调制环转子相对的第一永磁转子铁心的圆盘端面,并以永磁转子输出轴为中心呈放射线状均匀排布,第一永磁体单元沿轴向平行充磁,相邻两块第一永磁体单元的充磁方向相反,第一永磁转子旋转时,形成2n极数的永磁转子端面磁场,n为正整数;The first permanent magnet rotor is composed of a first permanent magnet rotor core and 2n first permanent magnet units, the first permanent magnet rotor core is disc-shaped, and the 2n first permanent magnet units are arranged on the first The disk end face of the permanent magnet rotor core is evenly arranged radially around the output shaft of the permanent magnet rotor. The first permanent magnet unit is magnetized parallel to the axial direction, and the magnetization direction of two adjacent first permanent magnet units On the contrary, when the first permanent magnet rotor rotates, a permanent magnet rotor end surface magnetic field with 2n poles is formed, and n is a positive integer;
调制环转子由转子支架、2q块导磁块和2q块绝缘块构成,转子支架是由两个圆端面和一个圆环构成的封闭框架,每个圆端面上交错设置q块导磁块和q块绝缘块,且以永磁转子输出轴为中心呈放射线状均匀排布;The modulation ring rotor is composed of a rotor support, 2q magnetic blocks and 2q insulating blocks. The rotor support is a closed frame composed of two circular end faces and a ring. Each circular end face is staggered with q magnetic blocks and q A block of insulating blocks, and the output shaft of the permanent magnet rotor is arranged uniformly in a radial shape;
且满足p=|hn+kq|关系式成立,其中,h是正奇数,k是整数。And the relationship p=|hn+kq| is satisfied, where h is a positive odd number and k is an integer.
本发明的优点:本发明电机为复合结构的电机,具有两个转轴,这两个转轴的转速彼此独立且转速可调,两个转轴输出的转矩彼此独立且转矩可调,这样可以使一个转轴实现高速小转矩运行,另一个转轴实现低速大转矩运行。Advantages of the present invention: the motor of the present invention is a motor with a composite structure, and has two rotating shafts. One rotating shaft realizes high-speed and low-torque operation, and the other rotating shaft realizes low-speed and high-torque operation.
本发明在与内燃机结合使用时,能使内燃机不依赖于路况,始终运行在最高效率区,从而降低了燃油消耗和尾气排放,实现节能降耗;它同时也能取代汽车中变速箱,离合器和飞轮等部件,使汽车结构简化,成本降低。它能通过电子器件实现汽车的速度驾驶控制、宽范围平稳调速;同时还具有不需要复杂的冷却装置、结构简单、体积小、成本低廉的优点。它还可应用在不同转速的两个机械转轴同时工作的工业装置中。When the present invention is used in combination with an internal combustion engine, the internal combustion engine can always run in the highest efficiency zone regardless of road conditions, thereby reducing fuel consumption and exhaust emissions, and realizing energy saving and consumption reduction; it can also replace gearboxes, clutches and Flywheel and other components simplify the structure of the car and reduce the cost. It can realize the speed driving control of the car and the smooth speed regulation in a wide range through electronic devices; at the same time, it also has the advantages of not requiring complicated cooling devices, simple structure, small size and low cost. It can also be used in industrial installations where two mechanical shafts with different rotational speeds work simultaneously.
本发明属于无刷结构,克服了有刷复合结构电机因采用电刷滑环馈电结构而导致的运行效率下降、可靠性降低以及经常需要对电刷等部件进行维护等问题。The invention belongs to the brushless structure, and overcomes the problems of reduced operating efficiency, reduced reliability and frequent maintenance of brushes and other components caused by the use of a brush slip ring feeding structure for a motor with a composite brush structure.
附图说明 Description of drawings
图1是实施方式一和二的结构示意图;Fig. 1 is the structural representation of embodiment one and two;
图2是图1的D-D剖视图;Fig. 2 is a D-D sectional view of Fig. 1;
图3是实施方式三的结构示意图;Fig. 3 is a schematic structural view of
图4是图3的E-E剖视图;Fig. 4 is the E-E sectional view of Fig. 3;
图5是实施方式四的结构示意图;Fig. 5 is a schematic structural diagram of
图6是图5的F-F剖视图;Fig. 6 is the F-F sectional view of Fig. 5;
图7是实施方式五的结构示意图;Fig. 7 is a schematic structural diagram of
图8是图7的G-G剖视图;Fig. 8 is a G-G sectional view of Fig. 7;
图9是实施方式六的结构示意图;Fig. 9 is a schematic structural diagram of
图10是图9的H-H剖视图;Fig. 10 is the H-H sectional view of Fig. 9;
图11是图1、图3、图5、图7和图9的A-A剖视图;Fig. 11 is A-A sectional view of Fig. 1, Fig. 3, Fig. 5, Fig. 7 and Fig. 9;
图12是图1、图3、图5、图7和图9的B-B剖视图;Fig. 12 is the B-B sectional view of Fig. 1, Fig. 3, Fig. 5, Fig. 7 and Fig. 9;
图13是图1、图3、图5、图7和图9的C-C剖视图;Fig. 13 is the C-C sectional view of Fig. 1, Fig. 3, Fig. 5, Fig. 7 and Fig. 9;
图14是实施方式七和八的结构示意图;Fig. 14 is a schematic structural view of
图15是图14的L-L剖视图;Fig. 15 is the L-L sectional view of Fig. 14;
图16是实施方式九的结构示意图;Fig. 16 is a schematic structural diagram of
图17是图16的M-M剖视图;Fig. 17 is the M-M sectional view of Fig. 16;
图18是实施方式十的结构示意图;Fig. 18 is a schematic structural diagram of
图19是图18的N-N剖视图;Fig. 19 is the N-N sectional view of Fig. 18;
图20是实施方式十一的结构示意图;Fig. 20 is a schematic structural diagram of
图21是图20的O-O剖视图;Fig. 21 is the O-O sectional view of Fig. 20;
图22是实施方式十二的结构示意图;Fig. 22 is a schematic structural diagram of
图23是图22的P-P剖视图;Figure 23 is a P-P sectional view of Figure 22;
图24是图14、图16、图18、图20和图22的I-I剖视图;Fig. 24 is the I-I sectional view of Fig. 14, Fig. 16, Fig. 18, Fig. 20 and Fig. 22;
图25是图14、图16、图18、图20和图22的J-J剖视图;Fig. 25 is a J-J sectional view of Fig. 14, Fig. 16, Fig. 18, Fig. 20 and Fig. 22;
图26是图14、图16、图18、图20和图22的K-K剖视图。FIG. 26 is a K-K sectional view of FIG. 14 , FIG. 16 , FIG. 18 , FIG. 20 and FIG. 22 .
具体实施方式 Detailed ways
具体实施方式一:下面结合图1至图13说明本实施方式,本实施方式轴向-径向磁场调制型无刷复合结构电机,壳体4通过分隔件被分成左右两部分,轴向双转子电机和径向转矩调节电机分别设置在壳体4的左右两部分内,所述轴向双转子电机包括第一定子5、调制环转子6、第一永磁转子7、永磁转子输出轴1和调制环转子输出轴9,所述径向转矩调节电机包括第二定子11和第二永磁转子12,调制环转子输出轴9同时作为径向转矩调节电机的转子轴,Specific Embodiment 1: The present embodiment will be described below with reference to FIGS. 1 to 13. In this embodiment, the axial-radial magnetic field modulation type brushless composite structure motor, the
所述径向转矩调节电机的第二定子11固定在壳体4右部分的内侧壁上,第二永磁转子12固定在调制环转子输出轴9上,第二定子11与第二永磁转子12之间沿径向方向有气隙L3;The
所述轴向双转子电机的两个第一定子5的各一个外圆环端面分别固定在壳体4左部分的左右端面内壁上,第一永磁转子7固定在永磁转子输出轴1上,永磁转子输出轴1通过第一轴承2与壳体4的一侧端面转动连接,且通过第二轴承3和第四轴承10与调制环转子6转动连接,调制环转子6位于两个第一定子5之间、第一永磁转子7的外部,调制环转子输出轴9的一端固定在调制环转子6上,且调制环转子输出轴9通过第三轴承8与壳体4的分隔件转动连接、通过第五轴承13与壳体4的另一个端面转动连接;调制环转子6和第一定子5的圆环端面之间有气隙L1;调制环转子6与第一永磁转子7之间有气隙L2,The outer ring end surfaces of the two
第一定子5由第一定子铁心5-2和m相第一定子绕组5-1构成,第一定子绕组5-1通有m相对称交流电流时,形成2p极数的旋转磁场,m、p为正整数;The
第一永磁转子7由第一永磁转子铁心7-2和多个第一永磁体单元7-1构成,第一永磁转子铁心7-2为圆盘形,第一永磁转子铁心7-2的两侧圆盘端面上对称设置第一永磁体单元7-1,每个圆盘端面上设置的2n个第一永磁体单元7-1以永磁转子输出轴1为中心呈放射线状均匀排布,第一永磁体单元7-1沿轴向平行充磁,同一圆盘端面相邻两块第一永磁体单元7-1的充磁方向相反,两侧圆盘端面上位置对称的两块第一永磁体单元7-1充磁方向相同,第一永磁转子7旋转时,形成2n极数的永磁转子端面磁场,n为正整数;The first
调制环转子6由转子支架6-3、2q块导磁块6-1和2q块绝缘块6-2构成,转子支架6-3是由两个圆端面和一个圆环构成的封闭框架,每个圆端面上交错设置q块导磁块6-1和q块绝缘块6-2,且以永磁转子输出轴1为中心呈放射线状均匀排布;导磁块6-1选用软磁复合材料、硅钢片、实心铁或软磁铁氧体;The
且满足p=|hn+kq|关系式成立,其中,h是正奇数,k是整数。And the relationship p=|hn+kq| is satisfied, where h is a positive odd number and k is an integer.
本实施方式所述的轴向双转子电机是轴向对称式结构,它可以避免轴向产生不对称的磁场拉力。The axial double-rotor motor described in this embodiment has an axially symmetrical structure, which can avoid asymmetrical magnetic field tension generated in the axial direction.
第一定子铁心5-2为圆环形,第一定子铁心5-2的外圆环端面固定在壳体4左部分的端面内壁上,第一定子铁心5-2的内圆环端面上沿径向开有多个槽,所述多个槽的开口中心线以永磁转子输出轴1为中心呈放射线状均匀分布,第一定子绕组5-1分别嵌入所述槽内形成m相绕组,m为正整数。The first stator core 5-2 is annular, and the outer ring end face of the first stator core 5-2 is fixed on the end face inner wall of the left part of the
第一永磁转子7上设置的第一永磁体单元7-1有两种方式:The first permanent magnet unit 7-1 provided on the first
第一种:第一永磁体单元7-1的每个圆盘端面上嵌入设置的2n个第一永磁体单元7-1以永磁转子输出轴1为中心呈放射线状均匀排布。The first type: 2n first permanent magnet units 7 - 1 embedded in the end surface of each disk of the first permanent magnet unit 7 - 1 are uniformly arranged radially with the
第二种:第一永磁体单元7-1的每个圆盘端面上表贴设置的2n个第一永磁体单元7-1以永磁转子输出轴1为中心呈放射线状均匀排布。The second type: 2n first permanent magnet units 7 - 1 that are surface-mounted on each disk end surface of the first permanent magnet unit 7 - 1 are evenly arranged radially with the
第二定子11由第二定子铁心11-1和m′相第二定子绕组11-2构成,第二定子铁心11-1为圆环形,其内圆表面沿轴向开有多个槽,所述多个槽的开口中心线围绕调制环转子输出轴9均匀分布,第二定子绕组11-2分别嵌入所述槽内形成m′相绕组,m′为正整数;The
第二永磁转子12由第二永磁转子铁心12-2和2r个第二永磁体单元12-1构成,第二永磁转子铁心12-2固定在调制环转子输出轴9上,2r个第二永磁体单元12-1沿圆周方向均匀分布排列,2r个第二永磁体单元12-1嵌入第二永磁转子铁心12-2内部或固定在第二永磁转子铁心12-2的外圆表面上,相邻两块第二永磁体单元12-1的充磁方向相反,r为正整数。The second
轴向-径向磁场调制型无刷复合结构电机从可实现的功能上分为两部分:一部分是轴向双转子电机;另一部分是径向转矩调节电机。轴向双转子电机主要实现的功能是使调制环转子输出轴9的转速不依赖于永磁转子输出轴1的转速,并且使调制环转子输出轴9能够实现无级变速,同时调制环转子输出轴9根据永磁转子输出轴1的输入的转矩按照一定的比例输出相对应的转矩。径向转矩调节电机的作用是根据实际负载的需要,输入驱动转矩或者制动转矩,使调制环转子输出轴9最终输出到负载的转矩不依赖于永磁转子输出轴1所输入的转矩,实现了转矩的灵活调节。The axial-radial magnetic field modulation type brushless composite structure motor is divided into two parts in terms of achievable functions: one part is an axial dual-rotor motor; the other part is a radial torque regulating motor. The main function of the axial dual-rotor motor is to make the speed of the modulation ring
下面先详细分析一下轴向双转子电机的工作原理:Let's first analyze the working principle of the axial dual-rotor motor in detail:
本实施方式轴向双转子电机结构中存在两个气隙L1,这两个气隙中磁场作用机理是相同的;本实施方式轴向双转子电机结构中存在两个气隙L2,这两个气隙中磁场作用机理也是相同的。该实施方式为左右对称结构,下面以左侧的定子、调制环转子的左侧端面和永磁转子的左侧面为例说明该实施方式的工作原理,右侧作用机理与左侧相同。In this embodiment, there are two air gaps L1 in the structure of the axial double-rotor motor, and the mechanism of the magnetic field in these two air gaps is the same; The mechanism of the magnetic field in the air gap is also the same. This embodiment has a left-right symmetrical structure. The working principle of this embodiment will be described below by taking the left stator, the left end surface of the modulation ring rotor and the left side of the permanent magnet rotor as examples. The mechanism of action on the right side is the same as that on the left side.
首先原动机通过永磁转子输出轴1以驱动转矩T驱动第一永磁转子7逆时针旋转,其旋转速度为Ω1,从第一永磁转子7向第一定子5方向看,下面说明中的视图方向相同;First, the prime mover drives the first
为了使第一永磁转子7所受力矩平衡,此时将第一定子5的第一定子绕组5-1中通入m相对称交流电流,在外层气隙L1中产生2p极数的定子旋转磁场,所述定子旋转磁场的旋转速度为Ω2;In order to balance the torque on the first
所述定子旋转磁场通过调制环转子6的调制作用,在内层气隙L2中产生与第一永磁转子7相同极数的旋转磁场,通过磁场的相互作用,产生的内调制转矩T1作用在第一永磁转子7上,且转矩T1的方向为顺时针方向;The stator rotating magnetic field is modulated by the
由力矩平衡原理可知,T1=-T,二者大小相等,方向相反;According to the principle of moment balance, T 1 =-T, the two are equal in magnitude and opposite in direction;
又根据作用力与反作用力的原理,可知在内层气隙L2中存在与内调制转矩T1大小相等且方向相反的力矩T′1同时作用在调制环转子6上,T′1的方向为逆时针方向;According to the principle of action force and reaction force, it can be seen that there is a moment T′ 1 equal in size and opposite in direction to the inner
同时,内层以速度Ω1旋转的第一永磁转子7产生的永磁转子旋转磁场通过调制环转子6的调制作用,在外层气隙L1中产生2p极数的旋转磁场,与定子旋转磁场相互作用,可产生外调制转矩T2,并作用在第一定子5上,且外调制转矩T2方向为顺时针方向;Simultaneously, the permanent magnet rotor rotating magnetic field produced by the first
根据作用力与反作用力的原理,可知在外层气隙L1中存在与外调制转矩T2大小相等且方向相反的力矩T′2同时作用在调制环转子6上,且方向为逆时针方向;According to the principle of action force and reaction force, it can be seen that there is a moment T′ 2 which is equal in size and opposite to the external
因此,调制环转子6的输出转矩T3满足条件:T3=T′1+T′2=-(T1+T2),调制环转子6的旋转速度为Ω3,且方向为逆时针方向,调制环转子输出轴9以转矩T3驱动负载。Therefore, the output torque T 3 of the
由此可以看出,调制环转子6的输出转矩T3是内调制转矩T1与外调制转矩T2的合成转矩,而第一永磁转子7的输出转矩是内调制转矩T1。因此,调制环转子6的输出转矩T3将大于第一永磁转子7的输出转矩T1,并且二者具有一定的变比。It can be seen from this that the output torque T3 of the
本发明的双转子结构电机可以通过调节通入第一定子绕组5-1的电流的频率f来调节转速,定子旋转磁场的旋转速度Ω2、调制环转子6的旋转速度Ω3和第一永磁转子7的旋转速度Ω1满足关系式:The double-rotor structure motor of the present invention can adjust the rotating speed by adjusting the frequency f of the current passing into the first stator winding 5-1, the rotational speed Ω 2 of the stator rotating magnetic field, the rotational speed Ω 3 of the
下面具体分析几种特殊情况及其产生的原理:The following is a detailed analysis of several special situations and the principles of their occurrence:
1、在调制环转子6静止不动的情况下,即Ω3=0,代入公式(1),则存在以下关系式成立:1. When the
其产生的原理为:The principle of its generation is:
在调制环转子6静止不动的情况下,此时第一定子绕组5-1通m相对称交流电流产生定子旋转磁场,而第一永磁转子7在原动机的驱动下也在空间中产生了旋转速度为Ω1的转子旋转磁场,这种工作模式可以等效看成磁性齿轮的工作模式。根据磁性齿轮的工作原理,及定子旋转磁场的极对数p、第一永磁转子7的旋转磁场极对数n和调制环转子6中导磁块数q满足的关系式:p=|hn+kq|,可知:当调制环转子6静止不动时,则定子旋转磁场的旋转速度Ω2和内层的第一永磁转子7的旋转速度Ω1满足关系式(2),由此可知定子旋转磁场的旋转速度Ω2与第一永磁转子7的旋转速度Ω1具有一定的变比关系,调节二者中任何一方的转速都会使另一方的转速发生变化。When the
2、通入第一定子绕组5-1的电流的频率f=0,则第一定子绕组5-1通入直流电流时,产生恒定磁场,不旋转,Ω2=0,代入公式(1),则存在以下关系式成立:2. The frequency f=0 of the current fed into the first stator winding 5-1, then when the first stator winding 5-1 is fed with a direct current, a constant magnetic field is generated and does not rotate, Ω 2 =0, which is substituted into the formula ( 1), then the following relation exists:
其产生的原理为:The principle of its generation is:
当第一定子绕组5-1通入直流电流时,产生恒定磁场,同时第一永磁转子7在原动机的驱动下在空间中产生了旋转速度为Ω1的转子旋转磁场,而此时并不对调制环转子6进行固定,这种工作模式可以等效看成磁性齿轮的另一种工作模式。根据磁性齿轮的工作原理,及定子旋转磁场的极对数p、第一永磁转子7的旋转磁场极对数n和调制环转子6中导磁块数q满足的关系式:p=|hn+kq|,可知:调制环转子6将会以一定的速度进行旋转,调制环转子6旋转速度Ω3和第一永磁转子7的旋转速度Ω1将满足关系式(3),由此可知调制环转子6的旋转速度Ω3与第一永磁转子7的旋转速度Ω1具有一定的变比,调节二者中任何一方的转速都会使另一方的转速发生变化;When the first stator winding 5-1 is fed with a direct current, a constant magnetic field is generated, and simultaneously the first
下面进行说明公式(1)的产生原理,若此时使第一定子5产生的恒定磁场“旋转起来”,即当第一定子绕组5-1通入对称交流电流产生定子旋转磁场时,根据磁场调制原理可推导出,定子旋转磁场的旋转速度Ω2与调制环转子6的旋转速度Ω3和第一永磁转子7的旋转速度Ω1满足关系式(1)。因此,当内层第一永磁转子7的速度Ω1不变的情况下,调节定子旋转磁场的旋转速度Ω2,可以实现调制环转子6的旋转转速Ω3的调节。由此可以看出,调制环转子6的旋转速度Ω3是由第一永磁转子7的旋转速度Ω1和定子旋转磁场的旋转速度Ω2共同决定的。The generation principle of the formula (1) is described below. If the constant magnetic field generated by the
综上,本发明所述的双转子电机根据公式(1)调节通入第一定子绕组5-1的电流的频率f来调节转速。To sum up, the dual-rotor motor according to the present invention adjusts the frequency f of the current passed into the first stator winding 5-1 according to the formula (1) to adjust the rotational speed.
下面详细分析一下径向转矩调节电机的工作原理:The following is a detailed analysis of the working principle of the radial torque regulating motor:
因为第二永磁转子12固定在调制环转子输出轴9上,所以第二永磁转子12以调制环转子输出轴9的转速旋转。第二定子绕组11-2通入多相交流电流时,在空间产生与第二永磁转子12磁场极数相同的旋转磁场,通过磁场的相互作用产生转矩并作用到第二永磁转子12上,同时传递到调制环转子输出轴9上。Since the second
当轴向双转子电机输入到调制环转子输出轴9上的转矩大于负载需要的转矩时,通过控制输入第二定子绕组11-2的电流,使径向转矩调节电机工作在发电制动状态,此时径向转矩调节电机产生制动转矩作用在调制环转子输出轴9上,因此,保证了调制环转子输出轴9输入和输出的转矩相平衡。这时,轴向双转子电机输入到调制环转子输出轴9上的能量一部分用来驱动负载,另一部分用来驱动径向转矩调节电机使其发电,从而使调制环转子输出轴9输入和输出的能量相平衡。When the torque input by the axial dual-rotor motor to the
当轴向双转子电机输入到调制环转子输出轴9上的转矩小于负载需要的转矩时,通过控制输入第二定子绕组11-2的电流,使径向转矩调节电机工作在电动驱动状态,此时径向转矩调节电机产生驱动转矩作用在调制环转子输出轴9上,因此,保证了调制环转子输出轴9输入和输出的转矩相平衡。这时,驱动负载的能量一部分来源于轴向双转子电机输入到调制环转子输出轴9上的能量,另一部分来源于径向转矩调节电机输入的能量,从而使调制环转子输出轴9输入和输出的能量相平衡。When the torque input by the axial dual-rotor motor to the
当轴向双转子电机输入到调制环转子输出轴9上的转矩与负载需要的转矩相等时,此时径向转矩调节电机不工作。这时,驱动负载的能量全部来源于轴向双转子电机输入到调制环转子输出轴9上的能量,从而使调制环转子输出轴输入和输出的能量相平衡。When the torque input by the axial dual-rotor motor to the
具体实施方式二:下面结合图1和图2说明本实施方式,本实施方式与实施方式一的不同之处在于,第二永磁体单元12-1设置在第二永磁转子铁心12-2的外圆表面上,第二永磁体单元12-1沿径向充磁或沿径向平行充磁,其它结构和连接方式与实施方式一相同。Specific Embodiment 2: The present embodiment will be described below in conjunction with FIG. 1 and FIG. 2. The difference between this embodiment and
具体实施方式三:下面结合图3和图4说明本实施方式,本实施方式与实施方式一的不同之处在于,第二永磁体单元12-1嵌入设置在第二永磁转子铁心12-2的外圆表面内,第二永磁体单元12-1沿径向充磁或沿径向平行充磁,其它结构和连接方式与实施方式一相同。Specific Embodiment Three: The present embodiment will be described below in conjunction with FIG. 3 and FIG. 4. The difference between this embodiment and
具体实施方式四:下面结合图5和图6说明本实施方式,本实施方式与实施方式一的不同之处在于,第二永磁体单元12-1的横截面为矩形,2r个第二永磁体单元12-1以调制环转子输出轴9为中心在第二永磁转子铁心12-2的内部放射状分布,第二永磁体单元12-1的充磁方向为沿切向平行充磁,其它结构和连接方式与实施方式一相同。Specific Embodiment Four: The present embodiment will be described below in conjunction with FIG. 5 and FIG. 6. The difference between this embodiment and
本实施方式中永磁转子属于聚磁结构,在永磁转子相邻永磁体的并联作用下,使得在每极磁场下有两块永磁体对气隙提供磁通,可提高气隙磁密,尤其在极数较多的情况下更为突出。In this embodiment, the permanent magnet rotor belongs to the magnetic accumulation structure. Under the parallel action of the adjacent permanent magnets of the permanent magnet rotor, two permanent magnets provide magnetic flux to the air gap under the magnetic field of each pole, which can increase the magnetic density of the air gap. Especially in the case of a large number of poles is more prominent.
具体实施方式五:下面结合图7和图8说明本实施方式,本实施方式与实施方式一的不同之处在于,第二永磁体单元12-1的横截面为矩形,2r个第二永磁体单元12-1在第二永磁转子铁心12-2的内部以调制环转子输出轴9为中心均布,每相邻两个第二永磁体单元12-1的夹角为360°/2r,第二永磁体单元12-1的充磁方向为沿径向平行充磁,其它结构和连接方式与实施方式一相同。Specific Embodiment Five: The present embodiment will be described below in conjunction with FIG. 7 and FIG. 8. The difference between this embodiment and
具体实施方式六:下面结合图9和图10说明本实施方式,本实施方式与实施方式一的不同之处在于,每个第二永磁体单元12-1由两块横截面为矩形的永磁体构成V字形结构,两块第二永磁体的充磁方向为分别垂直于V字形的两条边,且同时指向V字形的开口方向或同时背离V字形的开口方向,2r个V字形的第二永磁体单元12-1以调制环转子输出轴9为中心均布在第二永磁转子铁心12-2的内部,V字形的开口沿径向朝外开口,其它结构和连接方式与实施方式一相同。Specific Embodiment Six: The present embodiment will be described below in conjunction with FIG. 9 and FIG. 10. The difference between this embodiment and
本实施方式中永磁转子属于聚磁结构,在构成V字形相邻永磁体的并联作用下,使得在每极磁场下有两块永磁体对气隙提供磁通,可提高气隙磁密。In this embodiment, the permanent magnet rotor belongs to the magnetic accumulation structure. Under the parallel action of the V-shaped adjacent permanent magnets, two permanent magnets provide magnetic flux to the air gap under the magnetic field of each pole, which can increase the magnetic density of the air gap.
具体实施方式七:下面结合图14至图26说明本实施方式,本实施方式轴向-径向磁场调制型无刷复合结构电机,壳体4通过分隔件被分成左右两部分,径向转矩调节电机和轴向双转子电机分别设置在壳体4的左右两部分内,所述轴向双转子电机包括第一定子5、调制环转子6、第一永磁转子7、永磁转子输出轴1和调制环转子输出轴9,所述径向转矩调节电机包括第二定子11和第二永磁转子12,调制环转子输出轴9同时作为径向转矩调节电机的转子轴,Specific Embodiment Seven: The present embodiment will be described below in conjunction with FIGS. 14 to 26. In this embodiment, the axial-radial magnetic field modulation type brushless composite structure motor, the
所述径向转矩调节电机的第二定子11固定在壳体4左部分的内侧壁上,第二永磁转子12固定在调制环转子输出轴9上,第二定子11与第二永磁转子12之间沿径向方向有气隙L3;The
所述轴向双转子电机的第一定子5的外圆环端面固定在壳体4右部分的分隔件内壁上,第一永磁转子7固定在永磁转子输出轴1上,永磁转子输出轴1通过第三轴承8与壳体4的一侧端面转动连接,调制环转子6位于第一定子5与第一永磁转子7之间,调制环转子输出轴9的一端通过第二轴承3与第一永磁转子7转动连接,且调制环转子输出轴9通过第一轴承2与壳体4的分隔件转动连接、通过第四轴承10与壳体4的另一侧端面转动连接;调制环转子6和第一定子5之间有气隙L1;调制环转子6与第一永磁转子7之间有气隙L2;The outer ring end face of the
第一定子5由第一定子铁心5-2和m相第一定子绕组5-1构成,第一定子绕组5-1通有m相对称交流电流时,形成2p极数的旋转磁场,m、p为正整数;The
第一永磁转子7由第一永磁转子铁心7-2和2n个第一永磁体单元7-1构成,第一永磁转子铁心7-2为圆盘形,2n个第一永磁体单元7-1设置在与调制环转子6相对的第一永磁转子铁心7-2的圆盘端面,并以永磁转子输出轴1为中心呈放射线状均匀排布,第一永磁体单元7-1沿轴向平行充磁,相邻两块第一永磁体单元7-1的充磁方向相反,第一永磁转子7旋转时,形成2n极数的永磁转子端面磁场,n为正整数;The first
调制环转子6由转子支架6-3、2q块导磁块6-1和2q块绝缘块6-2构成,转子支架6-3是由两个圆端面和一个圆环构成的封闭框架,每个圆端面上交错设置q块导磁块6-1和q块绝缘块6-2,且以永磁转子输出轴1为中心呈放射线状均匀排布;导磁块6-1选用软磁复合材料、硅钢片、实心铁或软磁铁氧体;The
且满足p=|hn+kq|关系式成立,其中,h是正奇数,k是整数。And the relationship p=|hn+kq| is satisfied, where h is a positive odd number and k is an integer.
本实施方式所述电机的结构为轴向单边式,使得电机的体积更小,结构更紧凑。The structure of the motor in this embodiment is an axial unilateral type, so that the volume of the motor is smaller and the structure is more compact.
第一定子铁心5-2为圆环形,第一定子铁心5-2的外圆环端面固定在壳体4右部分的分隔件内壁上,第一定子铁心5-2的内圆环端面上沿径向开有多个槽,所述多个槽的开口中心线以永磁转子输出轴1为中心呈放射线状均匀分布,第一定子绕组5-1分别嵌入所述槽内形成m相绕组,m为正整数。The first stator core 5-2 is circular, and the outer ring end face of the first stator core 5-2 is fixed on the partition inner wall of the right part of the
第一永磁转子7上设置的第一永磁体单元7-1有两种方式:The first permanent magnet unit 7-1 provided on the first
第一种:第一永磁体单元7-1的每个圆盘端面上嵌入设置的2n个第一永磁体单元7-1以永磁转子输出轴1为中心呈放射线状均匀排布。The first type: 2n first permanent magnet units 7 - 1 embedded in the end surface of each disk of the first permanent magnet unit 7 - 1 are uniformly arranged radially with the
第二种:第一永磁体单元7-1的每个圆盘端面上表贴设置的2n个第一永磁体单元7-1以永磁转子输出轴1为中心呈放射线状均匀排布。The second type: 2n first permanent magnet units 7 - 1 that are surface-mounted on each disk end surface of the first permanent magnet unit 7 - 1 are evenly arranged radially with the
第二定子11由第二定子铁心11-1和m′相第二定子绕组11-2构成,第二定子铁心11-1为圆环形,其内圆表面沿轴向开有多个槽,所述多个槽的开口中心线围绕调制环转子输出轴9均匀分布,第二定子绕组11-2分别嵌入所述槽内形成m′相绕组,m′为正整数;The
第二永磁转子12由第二永磁转子铁心12-2和2r个第二永磁体单元12-1构成,第二永磁转子铁心12-2固定在调制环转子输出轴9上,2r个第二永磁体单元12-1沿圆周方向均匀分布排列,2r个第二永磁体单元12-1嵌入第二永磁转子铁心12-2内部或固定在第二永磁转子铁心12-2的外圆表面上,相邻两块第二永磁体单元12-1的充磁方向相反,r为正整数。The second
本实施方式所述电机的原理与实施方式一所述的相类似,不再赘述。The principle of the motor described in this embodiment is similar to that described in
具体实施方式八:下面结合图14和图15说明本实施方式,本实施方式与实施方式一的不同之处在于,第二永磁体单元12-1设置在第二永磁转子铁心12-2的外圆表面上,第二永磁体单元12-1沿径向充磁或沿径向平行充磁,其它结构和连接方式与实施方式七相同。Embodiment 8: The present embodiment will be described below in conjunction with FIG. 14 and FIG. 15. The difference between this embodiment and
具体实施方式九:下面结合图16和图17说明本实施方式,本实施方式与实施方式一的不同之处在于,第二永磁体单元12-1嵌入设置在第二永磁转子铁心12-2的外圆表面内,第二永磁体单元12-1沿径向充磁或沿径向平行充磁,其它结构和连接方式与实施方式七相同。Ninth specific embodiment: The present embodiment will be described below in conjunction with Fig. 16 and Fig. 17. The difference between this embodiment and
具体实施方式十:下面结合图18和图19说明本实施方式,本实施方式与实施方式一的不同之处在于,第二永磁体单元12-1的横截面为矩形,2r个第二永磁体单元12-1以调制环转子输出轴9为中心在第二永磁转子铁心12-2的内部放射状分布,第二永磁体单元12-1的充磁方向为沿切向平行充磁,其它结构和连接方式与实施方式七相同。Specific Embodiment Ten: The present embodiment will be described below in conjunction with FIG. 18 and FIG. 19. The difference between this embodiment and
本实施方式中永磁转子属于聚磁结构,在永磁转子相邻永磁体的并联作用下,使得在每极磁场下有两块永磁体对气隙提供磁通,可提高气隙磁密,尤其在极数较多的情况下更为突出。In this embodiment, the permanent magnet rotor belongs to the magnetic accumulation structure. Under the parallel action of the adjacent permanent magnets of the permanent magnet rotor, two permanent magnets provide magnetic flux to the air gap under the magnetic field of each pole, which can increase the magnetic density of the air gap. Especially in the case of a large number of poles is more prominent.
具体实施方式十一:下面结合图20和图21说明本实施方式,本实施方式与实施方式一的不同之处在于,第二永磁体单元12-1的横截面为矩形,2r个第二永磁体单元12-1在第二永磁转子铁心12-2的内部以调制环转子输出轴9为中心均布,每相邻两个第二永磁体单元12-1的夹角为360°/2r,第二永磁体单元12-1的充磁方向为沿径向平行充磁,其它结构和连接方式与实施方式一相同。Specific Embodiment Eleven: The present embodiment will be described below with reference to Figure 20 and Figure 21. The magnet units 12-1 are evenly distributed inside the second permanent magnet rotor core 12-2 with the modulation ring
具体实施方式十二:下面结合图22和图23说明本实施方式,本实施方式与实施方式一的不同之处在于,每个第二永磁体单元12-1由两块横截面为矩形的永磁体构成V字形结构,两块第二永磁体的充磁方向为分别垂直于V字形的两条边,且同时指向V字形的开口方向或同时背离V字形的开口方向,2r个V字形的第二永磁体单元12-1以调制环转子输出轴9为中心均布在第二永磁转子铁心12-2的内部,V字形的开口沿径向朝外开口,其它结构和连接方式与实施方式一相同。Specific Embodiment Twelve: The present embodiment will be described below in conjunction with Fig. 22 and Fig. 23. The difference between this embodiment and
本实施方式中永磁转子属于聚磁结构,在构成V字形相邻永磁体的并联作用下,使得在每极磁场下有两块永磁体对气隙提供磁通,可提高气隙磁密。In this embodiment, the permanent magnet rotor belongs to the magnetic accumulation structure. Under the parallel action of the V-shaped adjacent permanent magnets, two permanent magnets provide magnetic flux to the air gap under the magnetic field of each pole, which can increase the magnetic density of the air gap.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102743373A CN101938201B (en) | 2010-09-07 | 2010-09-07 | Axial-radial magnetic field modulation brushless composite structure motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102743373A CN101938201B (en) | 2010-09-07 | 2010-09-07 | Axial-radial magnetic field modulation brushless composite structure motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101938201A CN101938201A (en) | 2011-01-05 |
CN101938201B true CN101938201B (en) | 2011-11-23 |
Family
ID=43391376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102743373A Expired - Fee Related CN101938201B (en) | 2010-09-07 | 2010-09-07 | Axial-radial magnetic field modulation brushless composite structure motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101938201B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102738984B (en) * | 2012-06-21 | 2013-10-16 | 哈尔滨工业大学 | Brushless double-fed motor with multiple air gaps |
CN104377918B (en) * | 2014-12-10 | 2017-02-22 | 哈尔滨工业大学 | Axial-radial magnetic field electromagnetic planetary gear power divider |
CN105207432B (en) * | 2015-09-30 | 2017-11-10 | 河南科技大学 | A kind of spinner motor |
CN105375714B (en) * | 2015-11-24 | 2019-05-14 | 华中科技大学 | A kind of double electric port magnetoes of double mechanical port |
CN106515406A (en) * | 2016-11-18 | 2017-03-22 | 精进电动科技股份有限公司 | Coaxial multi-motor driving system and vehicle comprising same |
CN106685184B (en) * | 2017-01-20 | 2018-11-02 | 哈尔滨工业大学 | Unilateral adjustable magnetic profile shaft is to integrated form electric stepless gear |
CN112217373B (en) * | 2019-07-11 | 2025-02-14 | 芜湖磁轮传动技术有限公司 | A two-stage magnetic wheel transmission device |
CN110557002A (en) * | 2019-09-30 | 2019-12-10 | 华中科技大学 | Totally-enclosed torque motor with magnetic gear reducer |
CN113937979B (en) * | 2021-03-11 | 2023-03-14 | 国家电投集团科学技术研究院有限公司 | Permanent magnet gear speed change device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1545188A (en) * | 2003-11-19 | 2004-11-10 | 南京航空航天大学 | Hybrid Excitation Synchronous Motor |
CN101174782A (en) * | 2006-10-26 | 2008-05-07 | 迪尔公司 | Dual rotor electromagnetic machine |
CN100399677C (en) * | 2006-08-31 | 2008-07-02 | 哈尔滨工业大学 | Axial Flux-Radial Flux Composite Permanent Magnet Motor |
CN101572464A (en) * | 2009-06-02 | 2009-11-04 | 上海电机学院 | Halbach array parallel rotor composite excitation brushless synchronous motor |
JP2010166745A (en) * | 2009-01-17 | 2010-07-29 | Nissan Motor Co Ltd | Variable characteristics rotating electrical machine |
-
2010
- 2010-09-07 CN CN2010102743373A patent/CN101938201B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1545188A (en) * | 2003-11-19 | 2004-11-10 | 南京航空航天大学 | Hybrid Excitation Synchronous Motor |
CN100399677C (en) * | 2006-08-31 | 2008-07-02 | 哈尔滨工业大学 | Axial Flux-Radial Flux Composite Permanent Magnet Motor |
CN101174782A (en) * | 2006-10-26 | 2008-05-07 | 迪尔公司 | Dual rotor electromagnetic machine |
JP2010166745A (en) * | 2009-01-17 | 2010-07-29 | Nissan Motor Co Ltd | Variable characteristics rotating electrical machine |
CN101572464A (en) * | 2009-06-02 | 2009-11-04 | 上海电机学院 | Halbach array parallel rotor composite excitation brushless synchronous motor |
Also Published As
Publication number | Publication date |
---|---|
CN101938201A (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101924438B (en) | Radial-axial magnetic field modulation type brushless composite structure motor | |
CN101938201B (en) | Axial-radial magnetic field modulation brushless composite structure motor | |
CN101924436B (en) | Axial magnetic field modulated brushless double rotor motor | |
CN101938200B (en) | Axial-axial magnetic field modulation type brushless composite structure motor | |
CN101938199B (en) | Radial-radial magnetic field modulation type brush-less composite structure motor | |
CN101951090B (en) | Radial Field Modulation Brushless Dual Rotor Motor | |
CN104393727B (en) | Radial magnetic field type electromagnetic planetary gear transmission | |
CN107612252B (en) | A kind of birotor axial disk magneto | |
CN104393725B (en) | Axial magnetic field electromagnetic planetary gear speed changer | |
CN101951088B (en) | Radial-axis radial magnetic field modulation type brushless composite structure motor | |
CN104377918B (en) | Axial-radial magnetic field electromagnetic planetary gear power divider | |
CN101951089B (en) | Axial-axial radial magnetic field modulation type brushless composite structure motor | |
CN103904846A (en) | Stator permanent magnet type dual-rotor motor structure for hybrid electric vehicle | |
CN101667768A (en) | Brushless feed claw-pole composite motor | |
CN100592603C (en) | Axial Radial-Axial Radial Flux Structure Compound Permanent Magnet Motor | |
CN104377916B (en) | Radial-axial magnetic field electromagnetic planetary gear power divider | |
CN106712450B (en) | Middle tone magnetic-type axial direction integrated form electric stepless gear | |
CN104377915B (en) | Radial-radial magnetic field electromagnetic planetary gear power divider | |
CN111446829B (en) | Brushless rotor permanent magnet double mechanical port motor structure for vehicle | |
CN104393726B (en) | Axial axis radial magnetic field electromagnetic planetary gear power divider | |
CN104377919B (en) | Axial-axial magnetic field electromagnetic planetary gear power divider | |
CN106685183A (en) | Radial integrated electric continuously variable transmission with one-side magnetic adjustment | |
CN100399677C (en) | Axial Flux-Radial Flux Composite Permanent Magnet Motor | |
CN104377917B (en) | Radial-axial magnetic field electromagnetic planetary gear power divider | |
CN102738984B (en) | Brushless double-fed motor with multiple air gaps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111123 |
|
CF01 | Termination of patent right due to non-payment of annual fee |