CN101937614A - 一种即插即用的交通综合检测系统 - Google Patents

一种即插即用的交通综合检测系统 Download PDF

Info

Publication number
CN101937614A
CN101937614A CN 201010199179 CN201010199179A CN101937614A CN 101937614 A CN101937614 A CN 101937614A CN 201010199179 CN201010199179 CN 201010199179 CN 201010199179 A CN201010199179 A CN 201010199179A CN 101937614 A CN101937614 A CN 101937614A
Authority
CN
China
Prior art keywords
track
video
traffic
detection
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010199179
Other languages
English (en)
Inventor
吴柯维
许松涛
魏周朝
贾子杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING ZHONGKE ZHUOSHI TECHNOLOGY Co Ltd
Original Assignee
BEIJING ZHONGKE ZHUOSHI TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING ZHONGKE ZHUOSHI TECHNOLOGY Co Ltd filed Critical BEIJING ZHONGKE ZHUOSHI TECHNOLOGY Co Ltd
Priority to CN 201010199179 priority Critical patent/CN101937614A/zh
Publication of CN101937614A publication Critical patent/CN101937614A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

一种即插即用的交通综合检测系统,包括步骤一,通过视频采集系统进行对视频进行采集,通过视频采集得到视频帧序列;步骤二,利用视频采集模块得到的帧序列,进行车道范围与车道方向的识别;步骤三,进行运动目标检测和目标跟踪。采用常规方法进行运动目标检测和运动目标跟踪;步骤四,结合运动目标检测结果、运动目标跟踪结果以及车道范围及车道方向检测结果,进行目标的行为分析,得到交通参数检测结果和交通事件检测结果。通过如上所述步骤,即能实现一种即插即用的交通综合检测系统,其通过自动识别车道范围和车道方向,并实现车辆流量、违章行为等方面的检测,从而大大提高了采用云台摄像机条件下的检测性能。

Description

一种即插即用的交通综合检测系统
技术领域
本发明涉及一种即插即用的交通综合检测系统。 
背景技术
交通综合检测器是基于视频检测技术,通过将摄像机拍摄的模拟/数字视频信号输入到检测设备,由检测设备进行处理,进行目标跟踪与模型匹配,实现实时交通参数统计调查和自动监视摄像机视野内异常交通事件的功能。使用户能够轻松掌握路段的交通情况并及时发现路段异常事件。目前,市面上已有一些交通综合检测器产品,并能实现交通流量和事件的检测,例如citilog公司提出的MediaTunnel、MediaRoad等系列产品。 
但是目前市面上的产品更多的是适用于固定式摄像机,在系统工作前,需要进行繁琐的系统配置,系统配置完成之后,就不能改变摄像机的视域,一旦视域发生改变,则需要工程人员根据新的视域重新进行系统配置,因而达不到即插即用的便捷性要求。而有些少量的能够实现即插即用适用于云台式摄像机的产品也只能进行简单的停车事件检测,而无法实现包括流量检测、逆行事件检测等交通综合检测过程中不可缺少的内容。 
现有的交通综合检测系统通常是基于固定摄像机视频的,通过将摄像机拍摄的模拟/数字视频信号输入到检测设备(即视频检测器),由检测设备(视频检测器)进行处理,进行目标跟踪与模型匹配,实现实时交通流量统计调查和自动监视摄像机视野内异常交通事件的功能,其中视频检测器往往需要配置道路的实际区域用于检测器车辆,即通过划定检测线圈得到检测器区域,并通过手动配置车辆的运动方向,从而进行逆行检测。为了统计各个车道的流量和车辆速度,需要在各个车道关键位置放置检测线圈。在检测过程中,通过检测器线圈内车辆的通过情况给出检测结果。 
传统的交通视频检测方案基本上包括以下几个步骤: 
(1)根据当前检测视域,进行系统配置,这里的系统配置主要是进行检测视域的标定,检测范围的设定,在关键位置放置检测器以及检测参数的配置等。 
(2)获取检测视频帧,并进行运动目标检测和运动目标跟踪。 
(3)根据运动目标检测和运动目标跟踪结果,得到检测结果,如交通流量、车辆速度以及车辆行为等。 
其处理流程图如图1所示。 
对于固定式摄像机,现有检测方法具有一定的可行性,因此目前广泛应用的就是这种方案。其最大的缺点是灵活性较差,摄像机安装后视域就固定了,这大大限制了摄像机的视觉功能。目前越来越多的高速公路、城市道路和隧道中采用了云台式摄像机(或者球机),其能够在监控中心通过云台控制摄像机,实现视域的放大缩小,变焦变倍,并能进行水平和俯仰的旋转等,从而使得摄像机的可视范围大大增强,可视能力大大提高。 
而这种摄像机的应用给传统的视频检测带来了新的挑战,由于其视域不固定,因此不能再应用传统的通过设定检测范围的方法进行检测。特别的,在应用了这种云台式摄像机之后,传统的交通检测内容也大大缩减,目前市面上多数基于这种云台式摄像机的交通检测往往仅限定在停车检测、异常事件检测等方面,因而不能很好的满足当前的应用需求。本发明提出一种能够适用于云台模式摄像机(当然也能适用于固定式摄像机)的即插即用交通综合检测方案,其既能很好的检测停车事件、异常事件等,还能进行车辆逆向行驶、车辆流量等多方面的检测。 
本发明就是基于如上问题,给出了一种能够适用于包括云台式摄像机在内的即插即用的视频检测系统,其能够方便的实现云台模式下的流量检测、逆行事件检测等,并能实现高效的常规异常事件检测。 
发明内容
本发明就是基于如上问题,给出了一种能够适用于包括云台式摄像机在内的即插即用的视频检测系统,其能够方便的实现云台模式下的流量检测、逆行事件检测等,并能实现高效的常规异常事件检测。 
本发明的目的是通过以下技术方案来实现的。 
一种即插即用的交通综合检测系统的实现方法,其主要处理步骤如下: 
步骤一,通过视频采集系统进行对视频进行采集,所述采集方式是通过当前通用的视频采集卡直接采集模拟的视频、通过网络端口接收远程发送的视频流并解码得到视频、直接通过设备自带的摄像头进行采集,三种采集方式的任意一种或多种。通过视频采集得到视频帧序列。 
步骤二,利用视频采集模块得到的帧序列,进行车道范围与车道方向的识别。 
步骤三,进行运动目标检测和目标跟踪。采用常规方法进行运动目标检测和运动目标跟踪。 
步骤四,结合运动目标检测结果、运动目标跟踪结果以及车道范围及车道方向检测结果,进行目标的行为分析,得到交通参数检测结果和交通事件检测结果。 
可选的,所述步骤二和步骤三之间又存在一定的关联,即通过车道范围和车道方向检测结果改进目标检测和跟踪的结果,或者,通过目标检测和跟踪的结果,反过来修正车道范围和车道方向的检测结果。具体修正方法,包括但不限于以下示例所述: 
方法一,通过采集卡进行视频采集。例如可以通过目前市面上已有的数字采集卡进行视频采集,这里的视频采集卡通过线缆外接高清或者标清的摄像机。 
方法二,通过Internet网络接收视频进行视频采集。这里通过网络接收的方式可以通过接收数字摄像机或者专用的视频编码器设备发送的视频流,并解码或者解析得到视频帧序列。 
方法三,直接通过本地摄像头采集得到视频帧序列。 
步骤二所述的车道范围和车道方向的识别过程,其具体步骤说明如下: 
步骤一,进行视频场景的背景建立,得到干净场景背景图。目前背景建立的方法已有很多的研究成果,有些将背景建立过程称之为背景建模或者背景生成,其主要方法是通过若干帧视频得到一张无前景目标(或者近似无前景目标)的场景背景图。下面简要介绍几种背景建立方法: 
方法一,通过采集卡进行视频采集。例如可以通过目前市面上已有的数字采集卡进行视频采集,这里的视频采集卡通过线缆外接高清或者标清的摄像机。方法二,通过Internet网络接收视频进行视频采集。这里通过网络接收的方式可以通过接收数字摄像机或者专用的视频编码器设备发送的视频流,并解码或者解析得到视频帧序列。 
方法三,直接通过本地摄像头采集得到视频帧序列。但这里所提到的方法并限于如下举例,目前已有的任何一种背景建模方法均可以用于这里的背景建立过程。 
通过背景建立得到一种无前景目标的干净背景图,对于前景目标特别少的场景,则还直接可以将获取的当前帧作为背景图。 
步骤二,对场景背景进行道路边缘标线识别,得到道路范围。 
众所周知,目前的道路特别是高速公路,在道路上都有明显的标识线,如用于区分车道的车道线和虚实线,这里车道两侧的实线能够用于识别道路范围,而车道中间的虚线则不仅可以用于进一步细分车道,更能用于对道路进行自动标定。 
在高速公路场景中,由于道路的结构特征非常明显,画面中经常会存在大量的道路边缘线以及白色的道路路标线,这些直线在实际场景中通常是平行的,在经过摄像机的透视投影以后,理想情况下这些平行的直线会在图像平面中相交于一点,该交点被称作消失点(Vanishing Point)。道路消失点有个重要性质:道路上的任意行道线或与行道线平行的任意直线具有相同的消失点。可以根据这一性质对检测得到的直线进行约束,从而检测所有有效的车道线。这里我们自动标定时也利用了这个有效性质。 
综上,边缘标线识别识别和自动识别过程如下: 
首先对车道范围内的直线进行检测,这里检测直线的方法有很多种,例如可以通过边缘检测后进行hough变换,检测得到的边缘图中的直线,然后通过检测得到的直线进行结构分析得到道路边缘线。通过道路边缘线即能得到道路范围; 
步骤三,根据道路行驶的规则--靠右行驶还是靠左行驶,判断车辆在道路上的运行方向。例如中国大陆地区的道路均为靠右行驶,而英国的道路均为靠左行驶。 
步骤四,根据道路内虚线和道路边缘标线识别结果进行道路的标定。根据摄像机标定理论,只需要知道图像中的四个点的像素坐标和实际大地参考坐标,即能对整个图像进行标定,并可以将一幅斜视角的图像影射俯瞰视角的图像。 
步骤五,进行运动目标的检测与跟踪; 
结合步骤一中得到的背景,本发明采用背景差分法或者帧间差分法进行运动目标的检测和提取。也可采用混合高斯模型等其他方法直接提取前景目标,随后采用Meanshift等目标跟踪算法进行目标跟踪。 
步骤六,利用运动目标检测和跟踪的结果进行交通参数和交通事件的检测,并根据运动结果修正道路的检测结果;基于目标跟踪结果统计交通流量,并根据目标的运动速度判定交通事件是否发生。此外,结合跟踪结果,判定目标在 每个车道内的运动方向,判定方法如下: 
对于某车道,如果目标运动方向延预判方向,则认定车道正向运动计数器加一,否则认定车道逆行运动计数器加一,当车辆通过数量大于N时,如果: 
车道正向运动计数器值/车道逆向运动计数器值>K 
则认定车道方向预判正确,否则认定车道方向预判错误,并以真实车流方向(计数器值偏大的车流方向)为车道方向。 
通过如上所述步骤,即能实现一种即插即用的交通综合检测系统,其通过自动识别车道范围和车道方向,并实现车辆流量、违章行为等方面的检测,从而大大提高了采用云台摄像机条件下的检测性能。 
本发明提出了一种全新的即插即用交通视频检测方案及设备,其在摄像机视域发生更改后无需再进行重新配置,并独创性的实现了基于云台式摄像机的车辆逆行检测和分车道流量检测,并在异常事件检测等方面远优于目前已有的解决方案。 
附图说明
下面根据附图和实施例对本发明作进一步详细说明。 
图1是传统的交通视频检测方案流程图; 
图2是本发明所述即插即用交通视频检测系统的基本处理流程图。 
图3是坐标分析示例图像; 
图4是将图3影射为俯瞰视角的图像。 
具体实施方式
如图2所示,一种即插即用的交通综合检测系统的实现方法,其主要处理步骤如下: 
步骤一,通过视频采集系统进行对视频进行采集,所述采集方式是通过当前通用的视频采集卡直接采集模拟的视频、通过网络端口接收远程发送的视频流并解码得到视频、直接通过设备自带的摄像头进行采集,三种采集方式的任意一种或多种。通过视频采集得到视频帧序列。 
步骤二,利用视频采集模块得到的帧序列,进行车道范围与车道方向的识别。 
步骤三,进行运动目标检测和目标跟踪。采用常规方法进行运动目标检测和运动目标跟踪。 
步骤四,结合运动目标检测结果、运动目标跟踪结果以及车道范围及车道方向检测结果,进行目标的行为分析,得到交通参数检测结果和交通事件检测结果。 
可选的,所述步骤二和步骤三之间又存在一定的关联,即通过车道范围和车道方向检测结果改进目标检测和跟踪的结果,或者,通过目标检测和跟踪的结果,反过来修正车道范围和车道方向的检测结果。具体修正方法,包括但不限于以下示例所述: 
方法一,通过采集卡进行视频采集。例如可以通过目前市面上已有的数字采集卡进行视频采集,这里的视频采集卡通过线缆外接高清或者标清的摄像机。 
方法二,通过Internet网络接收视频进行视频采集。这里通过网络接收的方式可以通过接收数字摄像机或者专用的视频编码器设备发送的视频流,并解码或者解析得到视频帧序列。 
方法三,直接通过本地摄像头采集得到视频帧序列。 
步骤二所述的车道范围和车道方向的识别过程,其具体步骤说明如下: 
步骤一,进行视频场景的背景建立,得到干净场景背景图。目前背景建立的方法已有很多的研究成果,有些将背景建立过程称之为背景建模或者背景生成,其主要方法是通过若干帧视频得到一张无前景目标(或者近似无前景目标)的场景背景图。下面简要介绍几种背景建立方法: 
方法一,通过采集卡进行视频采集。例如可以通过目前市面上已有的数字采集卡进行视频采集,这里的视频采集卡通过线缆外接高清或者标清的摄像机。 
方法二,通过Internet网络接收视频进行视频采集。这里通过网络接收的方式可以通过接收数字摄像机或者专用的视频编码器设备发送的视频流,并解码或者解析得到视频帧序列。 
方法三,直接通过本地摄像头采集得到视频帧序列。但这里所提到的方法并限于如下举例,目前已有的任何一种背景建模方法均可以用于这里的背景建立过程。 
通过背景建立得到一种无前景目标的干净背景图,对于前景目标特别少的场景,则还直接可以将获取的当前帧作为背景图。 
步骤二,对场景背景进行道路边缘标线识别,得到道路范围。 
众所周知,目前的道路特别是高速公路,在道路上都有明显的标识线,如 用于区分车道的车道线和虚实线,这里车道两侧的实线能够用于识别道路范围,而车道中间的虚线则不仅可以用于进一步细分车道,更能用于对道路进行自动标定。 
在高速公路场景中,由于道路的结构特征非常明显,画面中经常会存在大量的道路边缘线以及白色的道路路标线,这些直线在实际场景中通常是平行的,在经过摄像机的透视投影以后,理想情况下这些平行的直线会在图像平面中相交于一点,该交点被称作消失点(Vanishing Point)。道路消失点有个重要性质:道路上的任意行道线或与行道线平行的任意直线具有相同的消失点。可以根据这一性质对检测得到的直线进行约束,从而检测所有有效的车道线。这里我们自动标定时也利用了这个有效性质。 
综上,边缘标线识别识别和自动识别过程如下: 
首先对车道范围内的直线进行检测,这里检测直线的方法有很多种,例如可以通过边缘检测后进行hough变换,检测得到的边缘图中的直线,然后通过检测得到的直线进行结构分析得到道路边缘线。通过道路边缘线即能得到道路范围; 
步骤三,根据道路行驶的规则--靠右行驶还是靠左行驶,判断车辆在道路上的运行方向。例如中国大陆地区的道路均为靠右行驶,而英国的道路均为靠左行驶。 
步骤四,根据道路内虚线和道路边缘标线识别结果进行道路的标定。根据摄像机标定理论,只需要知道图像3中的四个点的像素坐标和实际大地参考坐标,即能对整个图像进行标定,并可以将一幅斜视角的图像影射为俯瞰视角的图像,如图4所示。 
步骤五,进行运动目标的检测与跟踪; 
结合步骤一中得到的背景,本发明采用背景差分法或者帧间差分法进行运动目标的检测和提取。也可采用混合高斯模型等其他方法直接提取前景目标,随后采用Meanshift等目标跟踪算法进行目标跟踪。 
步骤六,利用运动目标检测和跟踪的结果进行交通参数和交通事件的检测,并根据运动结果修正道路的检测结果;基于目标跟踪结果统计交通流量,并根据目标的运动速度判定交通事件是否发生。此外,结合跟踪结果,判定目标在每个车道内的运动方向,判定方法如下: 
对于某车道,如果目标运动方向延预判方向,则认定车道正向运动计数器加一,否则认定车道逆行运动计数器加一,当车辆通过数量大于N时,如果: 
车道正向运动计数器值/车道逆向运动计数器值>K 
则认定车道方向预判正确,否则认定车道方向预判错误,并以真实车流方向(计数器值偏大的车流方向)为车道方向。 
通过如上所述步骤,即能实现一种即插即用的交通综合检测系统,其通过自动识别车道范围和车道方向,并实现车辆流量、违章行为等方面的检测,从而大大提高了采用云台摄像机条件下的检测性能。 
本发明提出了一种全新的即插即用交通视频检测方案及设备,其在摄像机视域发生更改后无需再进行重新配置,并独创性的实现了基于云台式摄像机的车辆逆行检测和分车道流量检测,并在异常事件检测等方面远优于目前已有的解决方案。 

Claims (7)

1.一种即插即用的交通综合检测系统的实现方法,其主要处理步骤如下:
步骤一,通过视频采集系统进行对视频进行采集,通过视频采集得到视频帧序列;
步骤二,利用视频采集模块得到的帧序列,进行车道范围与车道方向的识别;
步骤三,进行运动目标检测和目标跟踪。采用常规方法进行运动目标检测和运动目标跟踪;
步骤四,结合运动目标检测结果、运动目标跟踪结果以及车道范围及车道方向检测结果,进行目标的行为分析,得到交通参数检测结果和交通事件检测结果。
2.根据权利要求1所述的一种即插即用的交通综合检测系统的实现方法,其特征在于,步骤一所述采集方式是通过当前通用的视频采集卡直接采集模拟的视频、通过网络端口接收远程发送的视频流并解码得到视频、直接通过设备自带的摄像头进行采集,三种采集方式的任意一种或多种。
3.根据权利要求1所述的一种即插即用的交通综合检测系统的实现方法,其特征在于,所述步骤二和步骤三之间又存在一定的关联,即通过车道范围和车道方向检测结果改进目标检测和跟踪的结果,或者,通过目标检测和跟踪的结果,反过来修正车道范围和车道方向的检测结果。
4.根据权利要求1所述的一种即插即用的交通综合检测系统的实现方法,其特征在于,步骤二所述的车道范围和车道方向的识别过程,其具体步骤包括:
步骤一,进行视频场景的背景建立,得到干净场景背景图;
步骤二,对场景背景进行道路边缘标线识别,得到道路范围;
步骤三,根据道路行驶的规则,判断车辆在道路上的运行方向;
步骤四,根据道路内虚线和道路边缘标线识别结果进行道路的标定;
步骤五,进行运动目标的检测与跟踪;
步骤六,利用运动目标检测和跟踪的结果进行交通参数和交通事件的检测,并根据运动结果修正道路的检测结果;基于目标跟踪结果统计交通流量,并根据目标的运动速度判定交通事件是否发生。
5.根据权利要求4所述的一种即插即用的交通综合检测系统的实现方法,其特征在于,步骤二所述边缘标线识别和自动识别过程如下:
首先对车道范围内的直线进行检测,然后通过检测得到的直线进行结构分析得到道路边缘线,通过道路边缘线即能得到道路范围。
6.根据权利要求5所述的一种即插即用的交通综合检测系统的实现方法,其特征在于,这里检测直线的方法,包括但不限于:可以通过边缘检测后进行hough变换,检测得到的边缘图中的直线。
7.根据权利要求4所述的一种即插即用的交通综合检测系统的实现方法,其特征在于,步骤三所述的判定目标在每个车道内的运动方向,判定方法如下:
对于某车道,如果目标运动方向延预判方向,则认定车道正向运动计数器加一,否则认定车道逆行运动计数器加一,当车辆通过数量大于N时,如果:
车道正向运动计数器值/车道逆向运动计数器值>K
则认定车道方向预判正确,否则认定车道方向预判错误,并以真实车流方向为车道方向。
CN 201010199179 2010-06-12 2010-06-12 一种即插即用的交通综合检测系统 Pending CN101937614A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010199179 CN101937614A (zh) 2010-06-12 2010-06-12 一种即插即用的交通综合检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010199179 CN101937614A (zh) 2010-06-12 2010-06-12 一种即插即用的交通综合检测系统

Publications (1)

Publication Number Publication Date
CN101937614A true CN101937614A (zh) 2011-01-05

Family

ID=43390926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010199179 Pending CN101937614A (zh) 2010-06-12 2010-06-12 一种即插即用的交通综合检测系统

Country Status (1)

Country Link
CN (1) CN101937614A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298844A (zh) * 2011-08-15 2011-12-28 无锡中星微电子有限公司 自动违章车辆检测系统和方法
CN102724484A (zh) * 2012-06-25 2012-10-10 中国科学院自动化研究所 一种公交站台人群监控装置及其监控方法
CN102819952A (zh) * 2012-06-29 2012-12-12 浙江大学 一种基于视频检测技术的车辆违法变道检测方法
CN102831445A (zh) * 2012-08-01 2012-12-19 厦门大学 基于语义Hough变换和偏最小二乘法的目标检测方法
CN103208184A (zh) * 2013-04-03 2013-07-17 昆明联诚科技有限公司 一种高速公路交通事件视频检测方法
CN103730015A (zh) * 2013-12-27 2014-04-16 株洲南车时代电气股份有限公司 交叉路口车流量检测方法及装置
CN103886753A (zh) * 2014-03-31 2014-06-25 姜廷顺 一种信号灯控制路口异常停车原因快速确认系统及方法
CN106560861A (zh) * 2015-09-30 2017-04-12 徐贵力 基于计算机视觉的智能监管方法
CN106874863A (zh) * 2017-01-24 2017-06-20 南京大学 基于深度卷积神经网络的车辆违停逆行检测方法
CN107085869A (zh) * 2017-01-16 2017-08-22 田桂昌 基于物联网与云计算的数据处理系统
CN107133610A (zh) * 2017-06-01 2017-09-05 电子科技大学 一种复杂路况下行车流量视觉检测与计数方法
CN109919066A (zh) * 2019-02-27 2019-06-21 湖南信达通信息技术有限公司 一种检测轨道交通车厢内乘客密度异常的方法和装置
CN110610118A (zh) * 2018-06-15 2019-12-24 杭州海康威视数字技术股份有限公司 交通参数采集方法及装置
CN111275740A (zh) * 2020-01-19 2020-06-12 武汉大学 一种基于高分辨率孪生网络的卫星视频目标跟踪方法
CN113706891A (zh) * 2020-05-20 2021-11-26 阿里巴巴集团控股有限公司 交通数据传输方法、装置、电子设备和存储介质
WO2022134387A1 (zh) * 2020-12-21 2022-06-30 深圳市商汤科技有限公司 车辆逆行检测方法、装置、设备、计算机可读存储介质、计算机程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427246A (zh) * 2001-12-17 2003-07-02 中国科学院自动化研究所 基于平行线的单视平面测量方法
CN1945596A (zh) * 2006-11-02 2007-04-11 东南大学 用于车道偏离报警的车道线鲁棒识别方法
CN101105893A (zh) * 2006-07-14 2008-01-16 沈阳江龙软件开发科技有限公司 一种车辆视频识别测速方法
CN101264755A (zh) * 2008-03-06 2008-09-17 上海交通大学 车辆行驶安全智能监控装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427246A (zh) * 2001-12-17 2003-07-02 中国科学院自动化研究所 基于平行线的单视平面测量方法
CN101105893A (zh) * 2006-07-14 2008-01-16 沈阳江龙软件开发科技有限公司 一种车辆视频识别测速方法
CN1945596A (zh) * 2006-11-02 2007-04-11 东南大学 用于车道偏离报警的车道线鲁棒识别方法
CN101264755A (zh) * 2008-03-06 2008-09-17 上海交通大学 车辆行驶安全智能监控装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298844A (zh) * 2011-08-15 2011-12-28 无锡中星微电子有限公司 自动违章车辆检测系统和方法
CN102724484A (zh) * 2012-06-25 2012-10-10 中国科学院自动化研究所 一种公交站台人群监控装置及其监控方法
CN102819952B (zh) * 2012-06-29 2014-04-16 浙江大学 一种基于视频检测技术的车辆违法变道检测方法
CN102819952A (zh) * 2012-06-29 2012-12-12 浙江大学 一种基于视频检测技术的车辆违法变道检测方法
CN102831445A (zh) * 2012-08-01 2012-12-19 厦门大学 基于语义Hough变换和偏最小二乘法的目标检测方法
CN102831445B (zh) * 2012-08-01 2014-09-03 厦门大学 基于语义Hough变换和偏最小二乘法的目标检测方法
CN103208184A (zh) * 2013-04-03 2013-07-17 昆明联诚科技有限公司 一种高速公路交通事件视频检测方法
CN103730015A (zh) * 2013-12-27 2014-04-16 株洲南车时代电气股份有限公司 交叉路口车流量检测方法及装置
CN103730015B (zh) * 2013-12-27 2016-01-20 株洲南车时代电气股份有限公司 交叉路口车流量检测方法及装置
CN103886753A (zh) * 2014-03-31 2014-06-25 姜廷顺 一种信号灯控制路口异常停车原因快速确认系统及方法
CN103886753B (zh) * 2014-03-31 2016-09-21 北京易华录信息技术股份有限公司 一种信号灯控制路口异常停车原因快速确认系统及方法
CN106560861A (zh) * 2015-09-30 2017-04-12 徐贵力 基于计算机视觉的智能监管方法
CN107085869A (zh) * 2017-01-16 2017-08-22 田桂昌 基于物联网与云计算的数据处理系统
CN106874863A (zh) * 2017-01-24 2017-06-20 南京大学 基于深度卷积神经网络的车辆违停逆行检测方法
CN106874863B (zh) * 2017-01-24 2020-02-07 南京大学 基于深度卷积神经网络的车辆违停逆行检测方法
CN107133610A (zh) * 2017-06-01 2017-09-05 电子科技大学 一种复杂路况下行车流量视觉检测与计数方法
CN107133610B (zh) * 2017-06-01 2020-09-01 电子科技大学 一种复杂路况下行车流量视觉检测与计数方法
CN110610118A (zh) * 2018-06-15 2019-12-24 杭州海康威视数字技术股份有限公司 交通参数采集方法及装置
CN109919066A (zh) * 2019-02-27 2019-06-21 湖南信达通信息技术有限公司 一种检测轨道交通车厢内乘客密度异常的方法和装置
CN109919066B (zh) * 2019-02-27 2021-05-25 湖南信达通信息技术有限公司 一种检测轨道交通车厢内乘客密度异常的方法和装置
CN111275740A (zh) * 2020-01-19 2020-06-12 武汉大学 一种基于高分辨率孪生网络的卫星视频目标跟踪方法
CN111275740B (zh) * 2020-01-19 2021-10-22 武汉大学 一种基于高分辨率孪生网络的卫星视频目标跟踪方法
CN113706891A (zh) * 2020-05-20 2021-11-26 阿里巴巴集团控股有限公司 交通数据传输方法、装置、电子设备和存储介质
WO2022134387A1 (zh) * 2020-12-21 2022-06-30 深圳市商汤科技有限公司 车辆逆行检测方法、装置、设备、计算机可读存储介质、计算机程序产品

Similar Documents

Publication Publication Date Title
CN101937614A (zh) 一种即插即用的交通综合检测系统
CN100557657C (zh) 一种基于视频图像特征的车辆检测方法
CN103927878B (zh) 一种用于违章停车的自动抓拍装置及自动抓拍方法
CN102693632B (zh) 一种基于视觉图像的监控装置和监控方法
CN106571039A (zh) 一种高速公路违章行为自动抓拍系统
CN107688764B (zh) 检测车辆违章的方法及装置
CN104464290B (zh) 一种基于嵌入式双核芯片的道路交通参数采集及违章抓拍系统
CN103646544B (zh) 基于云台和相机设备的车辆行为分析识别方法
CN102622767B (zh) 双目非标定空间定位方法
EP1796043A2 (en) Object detection
US8712149B2 (en) Apparatus and method for foreground detection
CN103841313A (zh) 云台摄像机控制方法、系统及设备
CN104951775A (zh) 基于视频技术的铁路道口防护区域安全智能识别方法
CN102496281B (zh) 一种基于跟踪与虚拟线圈结合的车辆闯红灯检测方法
CN103517041A (zh) 基于多相机旋转扫描的实时全景监控方法和装置
CN101924923B (zh) 嵌入式智能自动变焦抓拍方法
CN104123776B (zh) 一种基于图像的对象统计方法及系统
CN103646550A (zh) 一种智能车牌识别系统
CN102004925B (zh) 物体分类模型的训练方法及利用该模型的识别方法
CN101853576B (zh) 基于fpga的嵌入式超速视频检测方法
CN101719217A (zh) 一种基于弹性松驰算法的车型识别系统及方法
CN202058221U (zh) 一种基于双目视觉的客流统计装置
CN110460813A (zh) 一种基于视频流的集装箱图像采集装置及采集方法
CN103021179A (zh) 基于实时监控视频中的安全带检测方法
CN110880205B (zh) 一种停车收费方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110105