CN101926650A - 实际皮肤入射剂量率计算装置及方法和x光机 - Google Patents

实际皮肤入射剂量率计算装置及方法和x光机 Download PDF

Info

Publication number
CN101926650A
CN101926650A CN2009101462859A CN200910146285A CN101926650A CN 101926650 A CN101926650 A CN 101926650A CN 2009101462859 A CN2009101462859 A CN 2009101462859A CN 200910146285 A CN200910146285 A CN 200910146285A CN 101926650 A CN101926650 A CN 101926650A
Authority
CN
China
Prior art keywords
dose rate
entrance dose
skin entrance
distance
ray source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009101462859A
Other languages
English (en)
Other versions
CN101926650B (zh
Inventor
曾学明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to CN200910146285.9A priority Critical patent/CN101926650B/zh
Priority to US12/823,014 priority patent/US8433038B2/en
Publication of CN101926650A publication Critical patent/CN101926650A/zh
Application granted granted Critical
Publication of CN101926650B publication Critical patent/CN101926650B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/588Setting distance between source unit and detector unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明公开了一种实际皮肤入射剂量率计算装置及方法和X光机。该实际皮肤入射剂量率计算装置包括在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器和布置于所述X射线源的角度传感器以及计算单元。该实际皮肤入射剂量率计算方法包括感测距离步骤:通过在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器感测距离;感测角度步骤;判断步骤;计算步骤。该X光机包括所述实际皮肤入射剂量率计算装置。采用本发明的技术方案能够计算出实际皮肤入射剂量率,有效可行。

Description

实际皮肤入射剂量率计算装置及方法和X光机
技术领域
本发明总体上涉及医疗X光机领域,尤其涉及一种实际皮肤入射剂量率计算装置及方法和X光机。
背景技术
当前,X光机越来越广泛地被应用于医疗领域,X光机通过发射X射线通过主体,而对主体进行成像。医生根据所得到的图像对主体进行诊断和医治。然后,众所周知的是X射线对人体是有害的。因此,需要知道入射在主体皮肤上的X射线剂量率,从而可以有效地控制曝光时间,以便将X射线对主体的伤害降到最低。
在德国以及欧洲的一些国家都要求医院用的X光机,例如C形臂X光机必须提供DAP(Dose Area Product,剂量面积乘积)来指示施加到主体的剂量。
在美国,最新的21CFR(Title 21 of the Code of Federal Regulations,美国联邦法典第21条))1020.32(K)要求应该显示在给定参考位置处的AKR(Air Kerma Rate,剂量率)和CAR(Cumulative Air Kerma,累积剂量)的值。对于在2006年6月10日及其以后生产的透视设备而言应在使用者的工作位置显示AKR和CAR。
在21CFR 1020.32(K)中指出,对于X射线系统而言,参考位置是固定的,即在X射线探测器上表面30cm处的位置。
根据上述规定要求,医生能够知道在给定参考位置处的总的吸收剂量或者剂量率。然而,通常医生并不能刚好将主体放置于参考位置处,而常常是将主体放置在最佳诊断位置。因此,医生不能够知道实际的皮肤入射剂量。实际皮肤入射剂量与参考位置处的入射剂量是不同的,有时实际皮肤入射剂量率可能是在参考位置处的入射剂量率的3倍甚至更多。因而,即使在参考位置处的皮肤剂量率很低,但是也可能伤害到主体皮肤,原因在于实际皮肤入射剂量率可能是参考位置处的皮肤剂量率的3倍甚至更多,以至于达到几十倍。
美国专利US 6 330 229 B1(专利权人为通用电气公司)公开了一种用于确定X射线成像系统中剂量面积乘积的系统和方法,其基于一套X射线规范和图像规范计算出DAP,然后得到在参考位置处(如在21CFR1020.32(K)中所定义的)的皮肤入射剂量率RR
美国专利US 6 934 362 B2公开了一种确定在X射线检查中有效皮肤入射剂量的X射线系统和方法。在该专利文献中,通过用所测得的DAP除以所暴露的皮肤入射面积来获得皮肤入射剂量,其中所暴露的皮肤入射面积是从在胶片或者图像增强器平面中的所暴露的面积计算得到的。
美国专利申请公开号US 2005/0152498A1公开了一种计算给定位置处射线剂量率的方法,这种方法在机器设计中就生成一个表格,根据曝光参数中的千伏和电流值在表格中查出射线剂量率。。
上述公开的这些专利以及专利申请的技术方案只能给出在指定参考位置的入射剂量率,都不能给出实际皮肤入射剂量率。
当前存在一种测量实际皮肤入射剂量率的方法,其是通过在主体皮肤表面放置剂量率测试仪来实时测量皮肤入射剂量率。但是由于在皮肤表面放置剂量率测试仪,使得在X光图像中会出现剂量率测试仪,从而妨碍医生对疾病的诊断。这在实际的手术中是非常不可行的。
发明内容
本发明解决的主要问题是提供一种有效可行的实际皮肤入射剂量率计算装置及方法和X光机。
为了解决上述问题,本发明实际皮肤入射剂量率计算装置的技术方案为:
该装置用于X光机中,所述X光机包括X射线源、与所述X射线源相对布置的X射线探测器以及用于支撑主体的支撑装置;
所述装置包括在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器和布置于所述X射线源的角度传感器以及计算单元;其中,所述计算单元包括:
判断单元,用于判断所述角度传感器所感测的角度Φ大于等于90度还是小于90度;
结果单元,用于根据所述判断单元的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
进一步地,所述结果单元包括第一单元和第二单元,其中,
所述第一单元,若所述角度传感器所感测的角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率;
所述第二单元,若所述角度传感器所感测的角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,K是AL的剂量吸收因子,DAL是所述支撑装置的等效铝衰减值。
相应地,本发明实际皮肤入射剂量率计算方法的技术方案为:
所述X光机包括X射线源、与所述X射线源相对布置的X射线探测器以及用于支撑主体的支撑装置,所述计算方法包括:
感测距离步骤:通过在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器感测距离D3
感测角度步骤:通过布置于所述X射线源的角度传感器感测角度Φ;
判断步骤:判断所述角度传感器所感测的角度Φ大于等于90度还是小于90度;
计算步骤:根据所述判断步骤的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
进一步地,所述计算步骤进一步包括步骤:
若所述判断步骤的结果为角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率;
若所述判断步骤的结果为角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,K是AL的剂量吸收因子,DAL是所述支撑装置的等效铝衰减值。
在本发明的另一方面中,本发明还提供了一种X光机,该X光机的技术方案包括:
X射线源、与所述X射线源相对布置的X射线探测器以及用于支撑主体的支撑装置和实际皮肤入射剂量率计算装置,所述实际皮肤入射剂量率计算装置包括:
包括在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器和布置于所述X射线源的角度传感器以及计算单元;其中,所述计算单元包括:
判断单元,用于判断所述角度传感器所感测的角度Φ大于等于90度还是小于90度;
结果单元,用于根据所述判断单元的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
进一步地,所述结果单元包括第一单元和第二单元,其中,
所述第一单元,若所述角度传感器所感测的角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率;
所述第二单元,若所述角度传感器所感测的角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,K是AL的剂量吸收因子,DAL是所述支撑装置的等效铝衰减值。
与现有技术相比,本发算实际皮肤入射剂量率计算装置及方法和X光机的有益效果为:
由于本发明采用了距离传感器和角度传感器来感测至主体的距离以及铅垂线与X射线射束中心线的夹角,并根据所述夹角和距离以及参考位置处的皮肤入射剂量率之间的关系等而计算得出实际皮肤入射剂量率,从而能够非常准确地得到实际皮肤入射剂量率,非常切实可行,使得医生能够得知对主体的实际皮肤入射剂量率,从而能够有效地保护主体,并能够在对主体进行有效正确诊断的情况下使X射线对主体的伤害减小到最低限度。
附图说明
下面通过结合附图所进行的下列描述,对于本领域技术人员来说将能更透彻地理解本发明,在附图中相同的附图标记指代相同的元素,其中:
图1是本发明在X光机中实际皮肤入射剂量率计算装置的示图;
图2是本发明在X光机中实际皮肤入射剂量率计算方法的流程图;
图3是角度传感器所感测的角度Φ大于等于90度的一个实施例的示意图;
图4是角度传感器所感测的角度Φ小于90度的一个实施例的示意图;
图5是角度传感器所感测的角度等于0度的一个实施例的示意图。
具体实施方式
下面通过示例实施例来描述本发明的各特征及优点等。
如图1所示,图示了一种在X光机中实际皮肤入射剂量率计算装置。在该图中图示的X光机包括X射线源130、与所述X射线源130相对布置的X射线探测器120(也可以是图像增强器)以及用于支撑主体110的支撑装置170。从图1可以看出,所述装置包括在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器160和布置于所述X射线源130的角度传感器150以及计算单元180;其中,所述计算单元180包括:
判断单元1801,用于判断所述角度传感器150所感测的角度Φ大于等于90度还是小于90度;
结果单元1802,用于根据所述判断单元1801的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
对于所述结果单元1802而言,可以包括第一单元18021和第二单元18022,其中,
所述第一单元18021,若所述角度传感器150所感测的角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源130与参考位置之间的距离,D2是常数且表示所述X射线源130与所述距离传感器160之间的距离,D3是所述距离传感器160所感测的距离,RR是在参考位置处的皮肤入射剂量率;
所述第二单元18022,若所述角度传感器150所感测的角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源130与所述距离传感器160之间的距离,D3是所述距离传感器160所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,K是AL的剂量吸收因子,DAL是所述支撑装置170的等效铝衰减值。
从上述可知,对于X射线源130与主体110之间的关系而言,不外乎有两种类型:一种类型是X射线源130在主体110之上,参见图3,即Φ大于等于90度,这时根据距离传感器160所测得的距离以及一些常数等即可计算出实际皮肤入射剂量率;另一种情况是X射线源130在主体110(或支撑装置170)之下,即Φ小于90度,这时必需要考虑支撑装置170厚度以及角度Φ的剂量衰减而来计算实际皮肤入射剂量率。对于Φ小于90度的情况,还包括一个特例,即Φ等于0度的情况,这时只需考虑支撑装置170厚度的剂量衰减即可,而不必考虑角度的衰减问题。
如图3所示,图示了角度传感器所感测的角度Φ大于等于90度的一个实施例的示意图;
众所周知,在参考位置处的X射线束面积与在主体皮肤的实际X射线束面积之比如下:
A R A S = D 1 2 ( D 2 + D 3 ) 2 - - - ( 1 )
其中,AR是在参考位置处的X射线束面积;AS是在主体皮肤的实际X射线束面积。
又已知在参考位置的DAP率DAPR等于在主体皮肤的实际DAP率DAPs,即:
DAPR=DAPS                 (2)
又由于DAPR和DAPs分别计算如下:
DAPR=RR×AR               (3)
DAPS=RS×AS               (4)
其中,RR是参考位置处的皮肤入射剂量率;RS是实际皮肤入射剂量率。
下面将公式(3)和(4)分别代入公式(2)得到:
R S = A R A S × R R
然后,将公式(1)代入上式得到:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R - - - ( 5 )
其中,D1是常数且表示所述X射线源130与参考位置之间的距离,D2是常数且表示所述X射线源130与所述距离传感器160之间的距离,D3是所述距离传感器160所感测的距离,RR是在参考位置处的皮肤入射剂量率(根据美国专利US 6 330 299 B1可以计算得出)。
因此,由公式(5)能够计算出当Φ大于等于90度的情况下的实际皮肤入射剂量率。
对于Φ小于90度的情况下,如图4所示,X射线源130位于主体110(或支撑装置170)之下,所以X射线源130发射出的X射线要经过支撑装置170后才能到达主体110,因此,假设支撑装置170的等效铝AL衰减值为DAL,由于在给定KV(千伏)下铝的剂量衰减因子为K。
则考虑剂量衰减因素之后,公式(5)变换为:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL ) - - - ( 6 )
对于DAL=0的情况下,公式(6)应为:
R S = A R A S × R R = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R
对于DAL≠0的情况下,公式(6)为:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ
对于一台X光机而言,D1、D2、D5都是常数,在本例中假设它们分别为70cm、18cm、3cm。本例的支撑装置170的等效铝衰减DAL=0.7mm,曝光条件为70k则K=0.072,并且根据美国专利US 6 330299 B1计算得出:
RR=1μGy/min  (微戈瑞/分钟)
如图3所示的情况,距离传感器160感测到的距离D3为30cm,角度传感器150感测到的角度Φ为180度。
判断单元1801判断此角度Φ(180度)大于90度,结果单元1802根据所述判断单元1801的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
其中,由于判断单元1801的判断结果为角度Φ大于90度,则启动第一单元18021,即用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
R S = 70 2 ( 18 + 30 ) 2 × 1 = 2.13 ( μGy / min )
如图4所示的情况,距离传感器160感测到的距离D3为30cm,角度传感器150感测到的角度Φ为30度。
判断单元1801判断此角度Φ(30度)小于90度,结果单元1802根据所述判断单元1801的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
其中,由于判断单元1801的判断结果为角度Φ小于90度,则启动第二单元18022,即用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
Figure B2009101462859D0000094
如图5所示的情况,距离传感器160感测到的距离D3为30cm,角度传感器150感测到的角度Φ为0度。
判断单元1801判断此角度Φ(0度)小于90度,结果单元1802根据所述判断单元1801的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
其中,由于判断单元1801的判断结果为角度Φ小于90度,则启动第二单元18022,即用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
Figure B2009101462859D0000102
本发明还公开了一种在X光机中计算实际皮肤入射剂量率的方法。如图2和1所示,其中,所述X光机包括X射线源130、与所述X射线源130相对布置的X射线探测器120以及用于支撑主体110的支撑装置170,所述方法包括:
感测距离步骤1:通过在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器160感测距离D3
感测角度步骤2:通过布置于所述X射线源的角度传感器150感测角度Φ;
判断步骤3:判断所述角度传感器150所感测的角度Φ大于等于90度还是小于90度;
计算步骤4:根据所述判断步骤的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
进一步地,计算步骤4进一步包括步骤:
若所述判断步骤的结果为角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器160之间的距离,D3是所述距离传感器160所感测的距离,RR是在参考位置处的皮肤入射剂量率;
若所述判断步骤3的结果为角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器160之间的距离,D3是所述距离传感器160所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,在给定KV下AL的剂量吸收因子为K,DAL是所述支撑装置的等效铝衰减值。
对于一台X光机而言,D1、D2、D5都是常数,在本例中假设它们分别为70cm、18cm、3cm。本例的支撑装置170的等效铝衰减DAL=0.7mm,曝光条件为70k则K=0.072,并且根据美国专利US 6330299B 1计算得出:
RR=1μGy/min    (微戈瑞/分钟)
对于图3所示的情况,采用本发明在X光机中计算实际皮肤入射剂量率的方法来计算此例的实际皮肤入射剂量率。
首先执行感测距离步骤1:通过在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器160感测距离D3,为30cm;然后进行到感测角度步骤2:通过布置于所述X射线源的角度传感器150感测角度Φ,为180度;接着进行判断步骤3:判断所述角度传感器150所感测的角度Φ大于等于90度还是小于90度,此步骤判断为角度Φ(180度)大于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
R S = 70 2 ( 18 + 30 ) 2 × 1 = 2.13 ( μGy / min )
对于如图4所示的情况,采用本发明在X光机中计算实际皮肤入射剂量率的方法来计算此例的实际皮肤入射剂量率。
首先执行感测距离步骤1:通过在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器160感测距离D3,为30cm;然后进行到感测角度步骤2:通过布置于所述X射线源的角度传感器150感测角度Φ,为30度;接着进行判断步骤3:判断所述角度传感器150所感测的角度Φ大于等于90度还是小于90度,此步骤判断为角度Φ(30度)小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
Figure B2009101462859D0000122
对于如图5所示的情况,采用本发明在X光机中计算实际皮肤入射剂量率的方法来计算此例的实际皮肤入射剂量率。
首先执行感测距离步骤1:通过在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器160感测距离D3,为30cm;然后进行到感测角度步骤2:通过布置于所述X射线源的角度传感器150感测角度Φ,为0度;接着进行判断步骤3:判断所述角度传感器150所感测的角度Φ大于等于90度还是小于90度,此步骤判断为角度Φ(0度)小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
Figure B2009101462859D0000124
此外,本发明还公开了一种X光机,包括X射线源、与所述X射线源相对布置的X射线探测器以及用于支撑主体的支撑装置,其还包括实际皮肤入射剂量率计算装置,所述实际皮肤入射剂量率计算装置包括:
包括在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器160和布置于所述X射线源的角度传感器150以及计算单元180;其中,所述计算单元180包括:
判断单元1801,用于判断所述角度传感器150所感测的角度Φ大于等于90度还是小于90度;
结果单元1802,用于根据所述判断单元1801的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
进一步地所述结果单元1802包括第一单元18021和第二单元18022,其中,
所述第一单元18021,若所述角度传感器150所感测的角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器160之间的距离,D3是所述距离传感器160所感测的距离,RR是在参考位置处的皮肤入射剂量率;
所述第二单元18022,若所述角度传感器150所感测的角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器160之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,K是AL的剂量吸收因子,DAL是所述支撑装置的等效铝衰减值。
综上所述,采用本发明的技术方案能够非常准确地得到实际皮肤入射剂量率,非常切实可行,使得医生能够得知对主体的实际皮肤入射剂量率,从而能够有效地保护主体,并能够在对主体进行有效正确诊断的情况下使X射线对主体的伤害减小到最低限度。
虽然上述通过本发明的具体实施例对本发明的各特征进行了描述,但是对于本领域技术人员来说,在不脱离本发明的精神和范围的情况下可以对本发明进行各种修改和等价变换。所有这些修改和等价变换都意在被包括在随附的权利要求所限定的范围之内。

Claims (6)

1.一种在X光机中实际皮肤入射剂量率计算装置,所述X光机包括X射线源、与所述X射线源相对布置的X射线探测器以及用于支撑主体的支撑装置,其特征在于:
所述装置包括在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器和布置于所述X射线源的角度传感器以及计算单元;其中,所述计算单元包括:
判断单元,用于判断所述角度传感器所感测的角度Φ大于等于90度还是小于90度;
结果单元,用于根据所述判断单元的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
2.如权利要求1所述的计算装置,其特征在于,所述结果单元包括第一单元和第二单元,其中,
所述第一单元,若所述角度传感器所感测的角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率;
所述第二单元,若所述角度传感器所感测的角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,K是AL的剂量吸收因子,DAL是所述支撑装置的等效铝衰减值。
3.一种在X光机中实际皮肤入射剂量率计算方法,所述X光机包括X射线源、与所述X射线源相对布置的X射线探测器以及用于支撑主体的支撑装置,其特征在于,所述计算方法包括:
感测距离步骤:通过在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器感测距离D3
感测角度步骤:通过布置于所述X射线源的角度传感器感测角度Φ;
判断步骤:判断所述角度传感器所感测的角度Φ大于等于90度还是小于90度;
计算步骤:根据所述判断步骤的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
4.如权利要求3所述的计算方法,其特征在于,所述计算步骤进一步包括步骤:
若所述判断步骤的结果为角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率;
若所述判断步骤的结果为角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,K是AL的剂量吸收因子,DAL是所述支撑装置的等效铝衰减值。
5.一种X光机,包括X射线源、与所述X射线源相对布置的X射线探测器以及用于支撑主体的支撑装置,其特征在于,还包括实际皮肤入射剂量率计算装置,所述实际皮肤入射剂量率计算装置包括:
包括在正对所述主体方向靠近X射线束中心处且不在所述X射线束内布置的距离传感器和布置于所述X射线源的角度传感器以及计算单元;其中,所述计算单元包括:
判断单元,用于判断所述角度传感器所感测的角度Φ大于等于90度还是小于90度;
结果单元,用于根据所述判断单元的结果以及参考位置处的皮肤入射剂量率与实际皮肤入射剂量率的关系得到所述实际皮肤入射剂量率。
6.如权利要求5所述的X光机,其特征在于,所述结果单元包括第一单元和第二单元,其中,
所述第一单元,若所述角度传感器所感测的角度Φ大于等于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 ) 2 × R R
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率;
所述第二单元,若所述角度传感器所感测的角度Φ小于90度,则用下列公式计算实际皮肤入射剂量率:
R S = D 1 2 ( D 2 + D 3 + D 5 COSΦ ) 2 × R R × e - K D 5 COSΦ ( 0 ⊕ D AL )
其中,D1是常数且表示所述X射线源与参考位置之间的距离,D2是常数且表示所述X射线源与所述距离传感器之间的距离,D3是所述距离传感器所感测的距离,RR是在参考位置处的皮肤入射剂量率,D5是所述支撑装置的厚度,K是AL的剂量吸收因子,DAL是所述支撑装置的等效铝衰减值。
CN200910146285.9A 2009-06-26 2009-06-26 实际皮肤入射剂量率计算装置及方法和x光机 Expired - Fee Related CN101926650B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200910146285.9A CN101926650B (zh) 2009-06-26 2009-06-26 实际皮肤入射剂量率计算装置及方法和x光机
US12/823,014 US8433038B2 (en) 2009-06-26 2010-06-24 Actual skin input dose rate computing device and method and X-ray machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910146285.9A CN101926650B (zh) 2009-06-26 2009-06-26 实际皮肤入射剂量率计算装置及方法和x光机

Publications (2)

Publication Number Publication Date
CN101926650A true CN101926650A (zh) 2010-12-29
CN101926650B CN101926650B (zh) 2014-04-30

Family

ID=43366277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910146285.9A Expired - Fee Related CN101926650B (zh) 2009-06-26 2009-06-26 实际皮肤入射剂量率计算装置及方法和x光机

Country Status (2)

Country Link
US (1) US8433038B2 (zh)
CN (1) CN101926650B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102727229A (zh) * 2011-03-31 2012-10-17 上海西门子医疗器械有限公司 Ct设备中投影角的获取方法、装置、及ct设备
CN103142243A (zh) * 2011-11-29 2013-06-12 Ge医疗系统环球技术有限公司 放射线断层摄影装置、被照射射线量计算方法以及程序
CN107714060A (zh) * 2016-08-11 2018-02-23 上海联影医疗科技有限公司 X射线成像设备
CN107735029A (zh) * 2015-04-20 2018-02-23 韩国威泰有限公司 包括运动传感器的x射线照射设备和使用该设备的x射线成像方法
CN109171999A (zh) * 2018-07-19 2019-01-11 苏州铸正机器人有限公司 用于x射线设备的角度检测装置及x射线设备
CN113876341A (zh) * 2020-07-03 2022-01-04 上海西门子医疗器械有限公司 待测对象厚度测量的参数校准因子计算及厚度测量方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5579636B2 (ja) * 2011-02-07 2014-08-27 富士フイルム株式会社 放射線画像撮影装置および放射線画像撮影方法
US9649084B2 (en) * 2014-07-21 2017-05-16 Samsung Electronics Co., Ltd. X-ray imaging apparatus and method for creating X-ray image
EP3735907A1 (en) 2016-06-13 2020-11-11 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for x-ray scanner positioning
KR102378300B1 (ko) * 2021-08-05 2022-03-25 주식회사 포스콤 엑스선 촬영장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020136356A1 (en) * 2001-03-22 2002-09-26 Siemens Elema Ab X-ray imaging system
US20050002489A1 (en) * 2003-05-16 2005-01-06 Peter Scheuering X-ray system and method to determine the effective skin input dose in x-ray examinations
CN1637435A (zh) * 2003-12-26 2005-07-13 Ge医疗系统环球技术有限公司 照射量计算方法与射线照相系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694449A (en) * 1996-05-20 1997-12-02 General Electric Company Method and system for detecting and correcting erroneous exposures generated during x-ray imaging
US5798528A (en) * 1997-03-11 1998-08-25 International Business Machines Corporation Correction of pattern dependent position errors in electron beam lithography
US6422751B1 (en) * 1998-08-07 2002-07-23 General Electric Company Method and system for prediction of exposure and dose area product for radiographic x-ray imaging
US6330299B1 (en) * 2000-06-10 2001-12-11 Ge Medical Systems Global Technology Company, Llc System and method for determining dose area product in an X-ray imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020136356A1 (en) * 2001-03-22 2002-09-26 Siemens Elema Ab X-ray imaging system
US20050002489A1 (en) * 2003-05-16 2005-01-06 Peter Scheuering X-ray system and method to determine the effective skin input dose in x-ray examinations
CN1637435A (zh) * 2003-12-26 2005-07-13 Ge医疗系统环球技术有限公司 照射量计算方法与射线照相系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102727229A (zh) * 2011-03-31 2012-10-17 上海西门子医疗器械有限公司 Ct设备中投影角的获取方法、装置、及ct设备
CN103142243A (zh) * 2011-11-29 2013-06-12 Ge医疗系统环球技术有限公司 放射线断层摄影装置、被照射射线量计算方法以及程序
CN103142243B (zh) * 2011-11-29 2015-10-28 Ge医疗系统环球技术有限公司 放射线断层摄影装置、被照射射线量计算方法
CN107735029A (zh) * 2015-04-20 2018-02-23 韩国威泰有限公司 包括运动传感器的x射线照射设备和使用该设备的x射线成像方法
CN107714060A (zh) * 2016-08-11 2018-02-23 上海联影医疗科技有限公司 X射线成像设备
CN107714060B (zh) * 2016-08-11 2020-09-22 上海联影医疗科技有限公司 X射线成像设备
CN109171999A (zh) * 2018-07-19 2019-01-11 苏州铸正机器人有限公司 用于x射线设备的角度检测装置及x射线设备
CN113876341A (zh) * 2020-07-03 2022-01-04 上海西门子医疗器械有限公司 待测对象厚度测量的参数校准因子计算及厚度测量方法
CN113876341B (zh) * 2020-07-03 2023-12-19 上海西门子医疗器械有限公司 待测对象厚度测量的参数校准因子计算及厚度测量方法

Also Published As

Publication number Publication date
US8433038B2 (en) 2013-04-30
US20100329430A1 (en) 2010-12-30
CN101926650B (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
CN101926650B (zh) 实际皮肤入射剂量率计算装置及方法和x光机
McCollough et al. Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220
JP6053947B2 (ja) 脊柱中の椎骨の空間位置並びに向きを判定するための方法およびデバイス
Balter Methods for measuring fluoroscopic skin dose
US9119560B2 (en) X-ray CT apparatus
Park et al. Comparison of conventional lateral cephalograms with corresponding CBCT radiographs
US9687201B2 (en) X-ray CT system
US8848868B2 (en) X-ray system and method of using thereof
EP2162067B1 (en) Method for correcting an acquired medical image and medical imager
JP2000271089A (ja) 医療診断装置の品質管理システム
EP3391819A1 (en) Beam hardening correction in x-ray dark-field imaging
US20140221874A1 (en) Blood vessel sizing device
US20190274620A1 (en) Method for diagnosing scoliosis using spatial coordinates of body shape and computer program therefor
US20200025946A1 (en) Method for measuring and representing the level of local irradiation doses
US6264365B1 (en) Background monitoring of CT data for existence and location of a bad detector
JP2007307125A (ja) 画像診断装置
JP6294105B2 (ja) 核医学診断装置および医用画像処理装置
CN109157236A (zh) 一种基于骨密度测试卡的测量骨密度方法
WO2020054211A1 (ja) X線画像撮影装置
Acri et al. Slice-thickness evaluation in CT and MRI: an alternative computerised procedure
US20130287255A1 (en) Method and apparatus of detecting real size of organ or lesion in medical image
JP5268248B2 (ja) ディジタル及びコンピューティッド・ラジオグラフィ画像についての適応画像処理及び表示法
EP4319640A1 (en) Personalized critical care imaging
Tandon et al. Quality Assurance in Positron Emission Tomography-Computed Tomography (PET-CT)
KR20170120289A (ko) 방사선 누적 피폭선량 관리장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140430

Termination date: 20210626