CN101915755B - 水下拉曼-荧光光谱联合探测装置 - Google Patents

水下拉曼-荧光光谱联合探测装置 Download PDF

Info

Publication number
CN101915755B
CN101915755B CN2010102278507A CN201010227850A CN101915755B CN 101915755 B CN101915755 B CN 101915755B CN 2010102278507 A CN2010102278507 A CN 2010102278507A CN 201010227850 A CN201010227850 A CN 201010227850A CN 101915755 B CN101915755 B CN 101915755B
Authority
CN
China
Prior art keywords
grating
raman
fluorescence spectrum
detection device
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102278507A
Other languages
English (en)
Other versions
CN101915755A (zh
Inventor
郭金家
刘智深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN2010102278507A priority Critical patent/CN101915755B/zh
Priority to PCT/CN2010/077805 priority patent/WO2012006826A1/zh
Publication of CN101915755A publication Critical patent/CN101915755A/zh
Application granted granted Critical
Publication of CN101915755B publication Critical patent/CN101915755B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种水下的拉曼-荧光光谱联合探测装置。包括作为密封舱的外壳,外壳上的光学窗口与电缆接头,和外壳内由激光器、前置光路、光纤、光栅、探测器构成的光谱仪,以及电子控制模块,其特征在于上述的是组合光栅:高分辨率的上光栅、低分辨率的下光栅,且上述的上光栅、下光栅的夹角θ。上述激光器同时作为拉曼光谱和荧光光谱的激光光源,且其波长为220~260nm之间的深紫外波长。上述的上光栅是3600grooves/mm。上述的下光栅是300grooves/mm。本发明采用相同的一个激光器作为激发光源,并同时获得水中物质的拉曼光谱和荧光光谱,不但体积小,而且激发效率高,适应面广,可广泛应用于近海环境污染物监测和深海油气资源探测等,为海洋化学探测提供更全面信息。

Description

水下拉曼-荧光光谱联合探测装置
技术领域
本发明属于海洋化学光谱探测装置,具体涉及一种水下拉曼-荧光光谱联合探测装置。
背景技术
目前,大部分海洋化学探测都需要采集样品送回水上的实验室进行分析,缺乏用于水下现场探测的化学传感器,现有的现场探测化学传感器多是针对特定组分的实时、原位分析,缺少多参数同时分析的现场探测化学传感器。
近年来发展了一些采用激光光谱手段的多参数海洋化学探测技术,如拉曼光谱、荧光光谱等,但都是单一光谱探测技术的应用。对于通常的水下原位探测,以近岸海水为例,由于存在大量的荧光物质,采用紫外、可见光波段激发拉曼,荧光的干扰非常严重,甚至会完全掩盖拉曼信号,采用近红外波长激发,可以较好的抑制荧光,但激发效率较低。而采用荧光光谱只能探测到海水中有色可溶有机物等一些主要的有机物成分,对于一些含量较低但危害巨大的物质,如多环芳烃,其荧光信号被完全湮没在有色可溶有机物荧光光谱中。
鉴于海水中物质成分具有复杂性和多样性的特点,对于海洋物质化学成分的探测需要综合多方面的信息,而且由于海洋作业条件的限制,希望能够一次布放测量仪器获得尽可能多的数据,因此迫切需要具有综合测量或探测能力的仪器。
发明内容
本发明的目的是提供一水下拉曼-荧光光谱联合探测装置,可同时实现海水成分的拉曼光谱和荧光光谱探测,以弥补现有技术在海洋化学实时探测中的不足。
本发明将拉曼光谱技术和荧光光谱技术结合。采用深紫外波长(220~270nm)激发拉曼光谱,由于拉曼光谱信号与激发波长的四次方成反比,与通常的可见光和近红外波长的激发相比,信号强度会有几十倍甚至上百倍的提高,即激发效率高,而且由于海水中的物质荧光发射波长通常大于300nm,采用深紫外波长激光光源激发,拉曼光谱范围小于300nm,与荧光发射光谱没有重叠,可获得理想的拉曼光谱。另外,由于紫外光的光子能量与电子能级间的能量差相当,深紫外波长激发容易得到共振拉曼光谱,可使信号进一步增强。对荧光光谱探测来说,海水中溶解的很多有机物其吸收波长集中在220~270nm,采用深紫外波长具有更高的激发效率。
如上所述,采用深紫外波长激发,无论对拉曼光谱还是荧光光谱激发,都有着更高的激发效率,而且对这两种光谱的激发波长范围具有较好的一致性,都在220~270nm范围内,激发产生的拉曼光谱和荧光光谱光谱范围不同,即拉曼光谱<300nm,荧光光谱>300nm,易于分离,这就是本发明的构建基础。
本发明的技术方案包括作为密封舱的外壳,外壳上的光学窗口与电缆接头,和外壳内由激光器、前置光路、光纤、光栅、探测器构成的光谱仪,以及电子控制模块,其特征在于上述的光栅是组合光栅:高分辨率的上光栅、低分辨率的下光栅,且上述的上光栅、下光栅有一定的夹角θ。
上述的上光栅分辨率是3600grooves/mm,尺寸为32×16mm。
上述的下光栅分辨率是300grooves/mm,尺寸为32×16mm。
上述激光器同时作为拉曼光谱和荧光光谱的激光光源,且其波长为220~270nm。
上述的光电探测器为紫外增强型面阵CCD或EMCCD。
本发明的技术关键最主要的部分为光谱仪中作为分光装置的组合光栅,同时实现拉曼光谱与荧光光谱分离与探测。组合光栅由上、下两块不同分辨率、有一定夹角的光栅组成,激光照射目标物产生的拉曼、荧光混合光谱照射到组合光栅,由于上下两块光栅分辨率不同、入射角度不同,因此就可以从空间上将拉曼光谱和荧光光谱进行分离,分别获得拉曼光谱和荧光光谱,然后分离的光谱通过面阵光电探测器探测,将光谱信号转化为电信号输入计算机进行处理。又由于拉曼和荧光光谱激发波长一致,可采用相同的一个激光器作为激发光源,不但体积小,而且激发效率高。
显然采用本发明可同时获得水中物质的拉曼光谱和荧光光谱,即实现了水下拉曼光谱和荧光光谱的联合探测,适应面广,可应用于近海环境污染物监测和深海油气资源探测等,为海洋化学探测提供一种可获得更全面信息的探测手段。
附图说明
图1为本发明的总体结构示意图。
图2为本发明的光谱仪的分光装置中的组合光栅的立体结构示意图。
其中,1.外壳,2.激光器,3.光学窗口,4.前置光路,5.光纤,6.光栅,7.探测器,8.电子控制模块,9.电缆接头,10.上光栅,11.下光栅。
具体实施方式
如图1所示,本发明包括密封舱的外壳1,外壳1上的光学窗口3与电缆接头9,和外壳1内由激光器2、前置光路4、光纤5、光栅6、探测器7构成的光谱仪,以及相应的电子控制模块8,其特征在于上述的光栅6是组合光栅:高分辨率的上光栅10、低分辨率的下光栅11,且在上、下光栅10、11之间夹角为θ,θ由公式θ=|(α12)+(β12)|/2确定。
其中α1和β1分别为上光栅(10)的入射角和出射角,α2和β2分别为下光栅(11)的入射角和出射角。
通常光栅的角度由光栅方程确定,根据已有的光栅方程可得:
(m/d)λ=sinα+sinβ
上式中,m为衍射级次,d为光棚刻痕之间的距离,即光栅每毫米刻痕数(线对)的倒数,λ为衍射光的中心波长,α和β分别是光栅的入射角和出射角。
对于上光栅10设其入射角和出射角为α1和β1,对于下光栅11设其入射角和出射角为α2和β2,那么上述夹角θ=|(α12)+(β12)|/2。例如采用248nm激光器作为激发光源,上光栅10和下光栅11之间的夹角θ为26.04°。
上述的上光栅10是3600grooves/mm(线对/mm),尺寸为32×16mm,光栅的角度随选择的激光器波长而变,光栅的角度由光栅方程确定。例如采用248nm激光器作为激发光源,光栅入射角α1为6.75°。
上述的下光栅11是300grooves/mm,尺寸为32×16mm,中心波长为565nm,光栅角度固定在入射角α2为19.31°。
上述激光器2同时作为拉曼光谱和荧光光谱的激光光源,且其波长为220~270nm。
上述探测器7为紫外增强型面阵CCD或EMCCD,为获得较好的分辨率,面阵的像素是2048×2048为宜,例如可采用Princeton Instruments公司的PIXIS:2048BUVCCD,其拉曼光谱和荧光光谱分别位于面阵探测器不同位置,通过分别读取不同位置探测器的数值,即可获得拉曼光谱和荧光光谱信号。
本发明以波长为248nm激光器,150mm焦距光谱仪和2048×2048像素的CCD为例,上光栅对应的光谱范围为29nm(248.5~277.5nm),光谱分辨率为0.035nm,下光栅对应的光谱范围为531nm(299.5~830.5nm),光谱分辨率为0.65nm。可同时满足拉曼光谱和荧光光谱的对光谱探测范围和光谱分辨率的要求。
本发明的具体实施中,以激发光源选择248nm激光器为例,部分多环芳烃在这个波长会产生共振,大大增强探测灵敏度,从而可利用共振拉曼光谱实现多环芳烃的探测,同时由于采用深紫外激发,不仅可获得通常的海水有色可溶有机物信号,而且还可以进一步获得色氨酸等蛋白类的有机物荧光信号。这样利用深紫外波长作为激发光源的水下拉曼-荧光光谱联合探测装置一方面提高了探测灵敏度,实现了低含量成分的检测,另一方面,拓宽了物质探测范围,获得更全面的信息。

Claims (4)

1.一种水下拉曼-荧光光谱联合探测装置,包括密封舱的外壳(1),外壳(1)上的光学窗口(3)与电缆接头(9),和外壳(1)内由激光器(2)、前置光路(4)、光纤(5)、光栅(6)、探测器(7)构成的光谱仪,以及电子控制模块(8),其特征在于上述的光栅(6)是组合光栅:高分辨率的上光栅(10)、低分辨率的下光栅(11),且在上、下光栅(10、11)之间夹角为θ,由公式θ=|(α12)+(β12)|/2确定,
其中α1和β1分别为上光栅(10)的入射角和出射角,α2和β2分别为下光栅(11)的入射角和出射角;通常光栅的入射角和出射角根据已有的光栅方程确定:
(m/d)λ=sinα+sinβ
其中,m为衍射级次,d为光栅刻痕之间的距离,即光栅每毫米刻痕数的倒数,λ为衍射光的中心波长,α和β分别是光栅的入射角和出射角,
上述激光器(2)同时作为拉曼光谱和荧光光谱的激光光源,且其波长为220~270nm。
2.根据权利要求1所述的水下拉曼-荧光光谱联合探测装置,其特征在于上述的上光栅(10)是3600grooves/mm。
3.根据权利要求1所述的水下拉曼-荧光光谱联合探测装置,其特征在于上述的下光栅(11)是300grooves/mm,中心波长为565nm。
4.根据权利要求1所述的水下拉曼-荧光光谱联合探测装置,其特征在于上述的探测器(7)为面阵CCD或EMCCD。
CN2010102278507A 2010-07-16 2010-07-16 水下拉曼-荧光光谱联合探测装置 Expired - Fee Related CN101915755B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010102278507A CN101915755B (zh) 2010-07-16 2010-07-16 水下拉曼-荧光光谱联合探测装置
PCT/CN2010/077805 WO2012006826A1 (zh) 2010-07-16 2010-10-16 水下拉曼-荧光光谱联合探测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102278507A CN101915755B (zh) 2010-07-16 2010-07-16 水下拉曼-荧光光谱联合探测装置

Publications (2)

Publication Number Publication Date
CN101915755A CN101915755A (zh) 2010-12-15
CN101915755B true CN101915755B (zh) 2011-08-31

Family

ID=43323316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102278507A Expired - Fee Related CN101915755B (zh) 2010-07-16 2010-07-16 水下拉曼-荧光光谱联合探测装置

Country Status (2)

Country Link
CN (1) CN101915755B (zh)
WO (1) WO2012006826A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048851A1 (en) * 2014-09-22 2016-03-31 Gallager Scott M Continuous particle imaging and classification system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EE01321U1 (et) * 2013-11-25 2015-10-15 Ldi Innovation Oü Seade nafta avastamiseks kaugseirel
CN103822908A (zh) * 2014-02-27 2014-05-28 江苏大学 一种荧光、拉曼、激光诱导原子发射光谱联用系统
CN105301574A (zh) * 2015-11-11 2016-02-03 中国科学院半导体研究所 避免水下激光测探器被杂散光损伤的装置
CN105675498B (zh) * 2016-03-22 2018-08-28 上海理工大学 荧光拉曼同步块状物探测装置
CN106404745B (zh) * 2016-11-24 2019-09-10 中国科学院长春光学精密机械与物理研究所 一种CaF2光学基底深紫外激光辐射诱导表面变化检测方法
FR3077642B1 (fr) * 2018-02-02 2021-05-14 Ouro Negro Tecnologias Em Equipamentos Ind S/A Dispositif permettant la detection de matieres photoluminescentes dans l'eau de mer
CN108827460A (zh) * 2018-04-25 2018-11-16 中国科学院南海海洋研究所 辐亮度探头和光学测量系统
CN109520983B (zh) * 2018-11-20 2021-02-12 山东船舶技术研究院 一种基于dom的水质评价方法及装置
CN109580581A (zh) * 2018-12-12 2019-04-05 哈尔滨工业大学(威海) 一种基于复合光栅的激光拉曼光谱仪
CN109342404A (zh) * 2018-12-24 2019-02-15 江西农业大学 基于荧光与拉曼光谱的禽肉中兽药残留检测装置
CN111122541B (zh) * 2019-12-25 2023-03-14 桂林电子科技大学 一种区分拉曼信号和荧光信号的光纤探针系统
CN111122540A (zh) * 2019-12-25 2020-05-08 桂林电子科技大学 基于时间相关单光子探测技术的多功能光纤探针系统
CN111521599B (zh) * 2020-06-15 2021-05-28 中国海洋大学 一种近海沉积物中微塑料的快速检测系统与方法
CN113981981B (zh) * 2021-10-25 2023-05-09 中铁工程装备集团有限公司 基于激光导向的沉井掘进机导向系统
CN113984668A (zh) * 2021-12-06 2022-01-28 华中师范大学 一种基于拉曼光谱的土壤地下水石油类污染物便携式检测仪与快速检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231938A (ja) * 1991-02-07 1993-09-07 Res Dev Corp Of Japan 高感度多波長分光装置
JPH07225186A (ja) * 1994-02-10 1995-08-22 Hitachi Ltd 蛍光/ラマン分光光度計
US6373567B1 (en) * 1999-12-17 2002-04-16 Micron Optical Systems Dispersive near-IR Raman spectrometer
US6791099B2 (en) * 2001-02-14 2004-09-14 Applied Materials, Inc. Laser scanning wafer inspection using nonlinear optical phenomena
CN1267713C (zh) * 2001-12-05 2006-08-02 财团法人工业技术研究院 红外光谱、拉曼光谱及荧光光谱的量测光谱装置
US7292333B2 (en) * 2003-06-24 2007-11-06 Corning Incorporated Optical interrogation system and method for 2-D sensor arrays
CN101275905A (zh) * 2008-04-18 2008-10-01 浙江大学 一种多源光谱融合便携式水质分析仪
CN201477049U (zh) * 2009-09-07 2010-05-19 上海镭立激光科技有限公司 利用紫外激光拉曼荧光联合光谱的防伪系统
CN101692046A (zh) * 2009-09-29 2010-04-07 济南大学 纳米增效的细菌毒素糖基功能化分子印迹柱的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048851A1 (en) * 2014-09-22 2016-03-31 Gallager Scott M Continuous particle imaging and classification system
US10222688B2 (en) 2014-09-22 2019-03-05 Woods Hole Oceanographic Institution Continuous particle imaging and classification system

Also Published As

Publication number Publication date
CN101915755A (zh) 2010-12-15
WO2012006826A1 (zh) 2012-01-19

Similar Documents

Publication Publication Date Title
CN101915755B (zh) 水下拉曼-荧光光谱联合探测装置
Hossain et al. Combined “dual” absorption and fluorescence smartphone spectrometers
Meyer-Jacob et al. Independent measurement of biogenic silica in sediments by FTIR spectroscopy and PLS regression
Rosén et al. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments
Puiu et al. Submersible spectrofluorometer for real-time sensing of water quality
KR101139401B1 (ko) 시료 표면의 잔류 화학물질 검출용 라만 분광기 및 이를 이용한 라만 분광 분석법
Gilerson et al. Retrieval of chlorophyll fluorescence from reflectance spectra through polarization discrimination: modeling and experiments
Qiu et al. Broadband transmission Raman measurements using a field-widened spatial heterodyne Raman spectrometer with mosaic grating structure
Fuchs Separating the fluorescence and reflectance components of coral spectra
Choi et al. Demonstrating a Filter-free wavelength sensor with double-well structure and its application
CN106706584A (zh) 一种可应用于海水中痕量铵氮分析的便携式荧光检测器
Cai et al. Prism‐Based Surface Plasmon Coupled Emission Imaging
Sakamoto et al. Raman studies of Japanese art objects by a portable Raman spectrometer using liquid crystal tunable filters
Andrew et al. Flow methods for the determination of polycyclic aromatic hydrocarbons using low power photomultiplier tube and charge coupled device chemiluminescence detection
Li et al. Underwater in situ dissolved gas detection based on multi-reflection Raman spectroscopy
Teuber et al. Robust Attenuated Total Reflection Infrared Spectroscopic Sensors Based on Quantum Cascade Lasers for Harsh Environments
Lee et al. Active and passive optical remote sensing of the aquatic environment: Introduction to the feature issue
CN114324281A (zh) 一种土壤有机污染物原位监测分析用荧光收集装置
Utkin et al. Laser induced fluorescence technique for environmental applications
Xue et al. Underwater hyperspectral imaging system for deep-sea exploration
Yan et al. Towards field detection of polycyclic aromatic hydrocarbons (PAHs) in environment water using a self-assembled SERS sensor
Martín et al. Optoelectronic instrumentation and measurement strategies for optical chemical (bio) sensing
Liu et al. Multipurpose optical fiber smartphone spectrometer: A point-of-care testing platform for on-site biochemical sensing
Yang et al. Multi-wavelength excitation Raman spectrometers and microscopes for measurements of real-world samples
Yellampalle et al. Dual-excitation wavelength resonance Raman explosives detector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110831

Termination date: 20140716

EXPY Termination of patent right or utility model