CN101912256B - Method for processing dynamic spectral data based on single-edge extraction - Google Patents

Method for processing dynamic spectral data based on single-edge extraction Download PDF

Info

Publication number
CN101912256B
CN101912256B CN2010102534946A CN201010253494A CN101912256B CN 101912256 B CN101912256 B CN 101912256B CN 2010102534946 A CN2010102534946 A CN 2010102534946A CN 201010253494 A CN201010253494 A CN 201010253494A CN 101912256 B CN101912256 B CN 101912256B
Authority
CN
China
Prior art keywords
dynamic spectrum
template
pulsation wave
volume pulsation
photoelectricity volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102534946A
Other languages
Chinese (zh)
Other versions
CN101912256A (en
Inventor
李刚
熊婵
林凌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN2010102534946A priority Critical patent/CN101912256B/en
Publication of CN101912256A publication Critical patent/CN101912256A/en
Application granted granted Critical
Publication of CN101912256B publication Critical patent/CN101912256B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a method for processing dynamic spectral data based on single-edge extraction, and relates to the field of spectral analysis technology. The method comprises the following steps of: acquiring the all-band photoplethysmographic pulse wave; acquiring an all-band photoplethysmographic pulse wave template by using the all-band photoplethysmographic pulse wave and correcting the waveform of the photoplethysmographic pulse wave with each wavelength so as to eliminate the error introduced by the instability of the waveform of the photoplethysmographic pulse wave with each wavelength; removing single-edge dynamic spectrum comprising gross error by using the average effect of single-edge dynamic spectrums corresponding to a front edge and a rear edge of each pulse period according to a 3sigma rule; and superposing the remaining single-edge dynamic spectrums after the removal of the gross error to obtain dynamic spectral output. The method fully utilizes the acquired spectral data, improves the accuracy of the waveform of the photoplethysmographic pulse wave within each wavelength and each period, has higher accuracy, obviously improves the measurement speed, effectively improves the dynamic spectral signal-to-noise ratio and improves the accuracy of dynamic spectral method-based noninvasive blood component detection.

Description

A kind of based on single method for processing dynamic spectral data along extraction
Technical field
The present invention relates to field of spectral analysis technology, particularly a kind of method for processing dynamic spectral data based on the extraction of single edge that can improve dynamic spectrum analysis precision and efficient.
Background technology
The principle of dynamic spectrum obtains to contain the photoelectricity volume pulsation wave of pulsation part arterial blood information for adopting the rayed pad of finger in certain wave-length coverage.Can prove in theory, the variation of transmitted light intensity only with the full of pulsation part arterial blood with shrink relevantly, then can be reflected in the absorbance difference of different wavelengths of light on the amplitude of photoelectricity volume pulsation wave of corresponding wavelength.Therefore, dynamic spectrum can be eliminated the long-pending constant component of appearances (body) such as horny layer, subcutaneous fat, vein and blood thereof to measuring the spectrographic influence of pulsation part arterial blood.After each wavelength light Power Capacity pulse wave was taken the logarithm, its peak value was the absorbance amplitude of forming dynamic spectrum.
Extract the peak-to-peak value difficulty and the bigger problem of error of photoelectricity pulse volume ripple in order to eliminate time domain, adopt the frequency domain extraction method in the prior art usually, for example: fourier transform method.Fourier transform have linear character and in the ideal case the pairing photoelectricity volume pulsation wave of different wave length be similar; Thereby can substitute the peak-to-peak value of absorbance with the humorous wave amplitude of the maximum amplitude after the Fourier transformation, promptly extract first concentration of energy Frequency point k in the frequency spectrum of logarithm photoelectricity pulse volume ripple under each wavelength λAmplitude X (the k at place λ) substitute the peak-to-peak value of pulse wave, with X (k λ) arrange back composition dynamic spectrum by wavelength X.Be formulated as follows:
Σ i = 1 n a i c i d = A λ = ln I min λ I max λ = ln I λ min - ln I max λ ≈ X ( k λ )
A in the formula iBe each component absorbance coefficient, c iBe each concentration of component, d is an equivalent optical path length, A λBe the absorbance of pulsation arterial blood, I λ Max, I λ MinBe incident intensity and output intensity.According to the theory of dynamic spectrum, the frequency domain extraction method increases than the peak-to-peak value precision of directly extracting time-domain signal, but the required sampling time is longer.Under long-time measurement situation, the human body normal physiological activity can cause the instability of pulse wave period, amplitude and baseline, has certain difference thereby make between each pulse cycle waveform.The frequency domain extraction method is difficult to avoid these unusual waveforms and instantaneous interferential influence, can only after all measuring end, the data quality be estimated, and has influenced efficiency of measurement.Though existing quality of data evaluation criterion can be found the problem that spectroscopic data exists, and can't improve the spectroscopic data quality, the precision of spectroscopic data also receives the influence of quality of data evaluation criterion simultaneously.
Summary of the invention
In order to solve the influence that present dynamic spectrum frequency domain extraction method is brought, the invention provides a kind of method for processing dynamic spectral data that extracts based on single edge, said method comprising the steps of:
(1) obtains all band photoelectricity volume pulsation wave; Utilize said all band photoelectricity volume pulsation wave to constitute all band photoelectricity volume pulsation wave template; And proofread and correct each wavelength light Power Capacity pulse waveform with this, eliminate the unstable error of introducing of each wavelength light Power Capacity pulse waveform;
(2) according to 3 σ criterions; Utilize the corresponding list of each pulse cycle forward position and tailing edge along the average effect of dynamic spectrum remove contain gross error list along dynamic spectrum, with removing the dynamic spectrum output that remaining list obtains along the dynamic spectrum superposed average after the gross error.
Obtain all band photoelectricity volume pulsation wave described in the step (1); Utilize said all band photoelectricity volume pulsation wave to obtain all band photoelectricity volume pulsation wave template; And proofread and correct each wavelength light Power Capacity pulse waveform with this; Eliminate the unstable error of introducing of each wavelength light Power Capacity pulse waveform, specifically comprise:
Gather all band photoelectricity volume pulsation wave of detected part;
To said photoelectricity volume pulsation wave take the logarithm, superposed average, obtain all band photoelectricity volume pulsation wave template;
Said all band photoelectricity volume pulsation wave template is carried out segmentation and removed baseline and handle and obtain photoelectricity volume pulsation wave forward position template and tailing edge template;
Forward position and tailing edge waveform according to said each photoelectricity volume pulsation wave forward position template and the corresponding photoelectricity volume pulsation wave of tailing edge template calibration all wavelengths;
Obtain the ratio of each wavelength light Power Capacity pulse wave and photoelectricity volume pulsation wave forward position template and tailing edge template through least square fitting, said ratio is exported along dynamic spectrum as each pulse list.
Described in the step (2) according to 3 σ criterions; Utilize the corresponding list of each pulse cycle forward position and tailing edge along the average effect of dynamic spectrum remove contain gross error list along dynamic spectrum; Remaining list after removing gross error along the dynamic spectrum output that the dynamic spectrum superposed average obtains, is specifically comprised:
The wavelength ordering is pressed with the ratio of said corresponding photoelectricity volume pulsation wave forward position template and tailing edge template in said each photoelectricity volume pulsation wave forward position and tailing edge, carry out normalization and handle, obtain single along dynamic spectrum;
With all said lists along dynamic spectrum superposed average template as the dynamic spectrum of measuring;
Obtain the similarity degree of said list with Euclidean distance along dynamic spectrum and superposed average template;
In the measuring process of dynamic spectrum; According to 3 σ criterions; Judge whether each list exists gross error along dynamic spectrum, if the list that removal contains gross error is along dynamic spectrum; Until not existing the list that contains gross error till the dynamic spectrum, remaining list is added the dynamic spectrum output that on average obtains along dynamic spectrum; If not, all lists are added the dynamic spectrum output that on average obtains along dynamic spectrum, flow process finishes.
The beneficial effect of technical scheme provided by the invention is:
Method provided by the invention has made full use of the spectroscopic data that collects; Improved the accuracy of photoelectricity volume pulse waveform in each wavelength and each cycle; The list of dynamic spectrum is compared with the frequency domain extraction method along extraction method, not only has higher precision, can also improve measuring speed significantly; Effectively raise the signal to noise ratio of dynamic spectrum, thereby improved the precision that detects based on dynamic light spectrometry noinvasive blood constituent.
Description of drawings
Fig. 1 is provided by the invention based on the flow chart of photoelectricity volume pulsation wave list along the method for processing dynamic spectral data that extracts;
Fig. 2 is the flow chart with aligning step that obtains of all band photoelectricity volume pulsation wave provided by the invention;
Fig. 3 is the flow chart of rejecting step with gross error that obtains of dynamic spectrum provided by the invention.
The specific embodiment
For making the object of the invention, technical scheme and advantage clearer, will combine accompanying drawing that embodiment of the present invention is done to describe in detail further below.
In order to solve the influence that present dynamic spectrum frequency domain extraction method is brought, it is a kind of based on single method for processing dynamic spectral data along extraction that the embodiment of the invention provides, and referring to Fig. 1, Fig. 2 and Fig. 3, see hereinafter for details and describe,
101: obtain all band photoelectricity volume pulsation wave; Utilize all band photoelectricity volume pulsation wave to constitute all band photoelectricity volume pulsation wave template; And proofread and correct each wavelength light Power Capacity pulse waveform with this, eliminate the unstable error of introducing of each wavelength light Power Capacity pulse waveform;
This step specifically comprises step 1011-1015, sees hereinafter for details and describes:
1011: all band photoelectricity volume pulsation wave of gathering detected part;
Wherein, treat that the side can be finger or other position, when specifically realizing, the embodiment of the invention does not limit this.
1012: to photoelectricity volume pulsation wave data take the logarithm, superposed average, obtain all band photoelectricity volume pulsation wave template;
This step is specially: because synchronization has similarity at resulting each wavelength light Power Capacity pulse wave of same a part of pulsatile blood that same area collects, whole wavelength or the corresponding photoelectricity volume pulsation wave superposed average of part wavelength can be got access to all band photoelectricity volume pulsation wave template.
1013: all band photoelectricity volume pulsation wave template is carried out segmentation and removed baseline and handle and obtain photoelectricity volume pulsation wave forward position template and tailing edge template;
This segment processing is specially: " ideal " waveform that is shaped as photoelectricity volume pulsation wave in the corresponding pulse cycle of each wavelength of all band photoelectricity volume pulsation wave in a certain pulse cycle; Order is extracted maximum, the minima of being somebody's turn to do " ideal " waveform, and correspondence obtains the interval and trailing edge interval of some rising edges; The influence that this removal baseline is handled is specially the photoelectricity pulse volume wave datum in rising edge interval and the trailing edge interval is deducted its corresponding minima, obtains photoelectricity volume pulsation wave forward position template and tailing edge template.
1014: according to each photoelectricity volume pulsation wave forward position template and corresponding photoelectricity volume pulsation wave forward position of tailing edge template calibration all wavelengths and tailing edge waveform;
This step is specially: with the corresponding corresponding photoelectricity volume pulsation wave of each wavelength of dividing between photoelectricity volume pulsation wave forward position template and tailing edge template region, deduct the minima in the corresponding interval of each wavelength, obtain the corresponding photoelectricity volume pulsation wave of each wavelength.
1015: obtain the ratio of each wavelength light Power Capacity pulse wave and photoelectricity volume pulsation wave forward position template and tailing edge template through least square fitting, this ratio is as the dynamic spectrum output on each edge.
Because synchronization has similarity at resulting each wavelength dynamic photoelectric volume pulsation wave of same a part of pulsatile blood that same area collects, adopt linear function: y Data=k * x Data+ b describes corresponding interval relation with each wavelength between photoelectricity volume pulsation wave template region.Rising edge interval with in a certain pulse cycle of light Power Capacity pulse wave template is an example, with therebetween spectroscopic data as x Data, the corresponding interval interior spectroscopic data of each wavelength X is as y Data, obtain the photoelectricity volume pulsation wave of each wavelength X correspondence in this interval and the ratio k of forward position template and tailing edge template through least square fitting λ, these ratios have constituted each list along dynamic spectrum.
102: according to 3 σ criterions; Utilize the corresponding list of each pulse cycle forward position and tailing edge along the average effect of dynamic spectrum remove contain gross error list along dynamic spectrum, with removing the dynamic spectrum output that remaining list obtains along the dynamic spectrum superposed average after the gross error.
This step specifically comprises step 1021-1024, sees hereinafter for details and describes:
1021: the wavelength ordering is pressed with the ratio of corresponding photoelectricity volume pulsation wave forward position template and tailing edge template in each photoelectricity volume pulsation wave forward position and tailing edge, carry out normalization and handle, obtain single along dynamic spectrum;
Wherein, with each photoelectricity volume pulsation wave forward position and tailing edge ratio k with corresponding photoelectricity volume pulsation wave forward position template and tailing edge template λBy the wavelength X ordering, carry out after the normalization processing, obtain single along dynamic spectrum.
1022: all are single along the dynamic spectrum of dynamic spectrum superposed average template as measurement;
1023: obtain single similarity degree along dynamic spectrum and superposed average template with Euclidean distance;
Wherein, Describe single similarity degree along dynamic spectrum and superposed average template with Euclidean distance
Figure BSA00000230069800051
, Euclidean distance is more for a short time to show that list is high more along the similarity degree of dynamic spectrum and superposed average template.
1024: in the measuring process of dynamic spectrum; According to 3 σ criterions; Judge whether each list exists gross error along dynamic spectrum, if the list that removal contains gross error is along dynamic spectrum; Until not existing the list that contains gross error till the dynamic spectrum, the dynamic spectrum output that remaining list is obtained along the dynamic spectrum superposed average; If not, all lists are added the dynamic spectrum output that on average obtains along dynamic spectrum, flow process finishes.
Wherein, motion artifacts or interferential existence are arranged in the measuring process, can influence the certainty of measurement of dynamic spectrum, calculate the meansigma methods of Di
Figure BSA00000230069800052
Residual error
Figure BSA00000230069800053
Standard deviation
Figure BSA00000230069800054
If single residual error along dynamic spectrum is greater than 3 σ, promptly | v i|>3 σ, think to include gross error in this dynamic spectrum, should remove contain gross error list along dynamic spectrum; Otherwise, when | v i|≤3 σ, thinking does not have gross error in the dynamic spectrum, and with the dynamic spectrum output that all lists obtain along the dynamic spectrum superposed average, flow process finishes.
The least-square fitting approach that is applied in the embodiment of the invention method, 3 σ criterions are the known technology in the data processing method, and engineers and technicians are known for this area.
In sum; It is a kind of based on single method for processing dynamic spectral data along extraction that the embodiment of the invention provides; This method has compared with prior art at first been utilized the average effect of each wavelength in the single pulse cycle, rejects the unstable error of introducing of each wavelength light Power Capacity pulse waveform; Secondly utilized again the corresponding list of different pulse cycles along the average effect of dynamic spectrum deleted wherein contain gross error list along dynamic spectrum; Made full use of the photoelectricity pulse volume wave datum that collects; Improved the accuracy of photoelectricity volume pulse waveform in each wavelength and each cycle; Improve the signal to noise ratio of dynamic spectrum effectively, thereby improved the precision that detects based on dynamic light spectrometry noinvasive blood constituent.
It will be appreciated by those skilled in the art that accompanying drawing is the sketch map of a preferred embodiment, the invention described above embodiment sequence number is not represented the quality of embodiment just to description.The above is merely preferred embodiment of the present invention, and is in order to restriction the present invention, not all within spirit of the present invention and principle, any modification of being done, is equal to replacement, improvement etc., all should be included within protection scope of the present invention.

Claims (1)

1. a method for processing dynamic spectral data that extracts based on single edge is characterized in that, said method comprising the steps of:
(1) obtains all band photoelectricity volume pulsation wave; Utilize said all band photoelectricity volume pulsation wave to constitute all band photoelectricity volume pulsation wave template; And proofread and correct each wavelength light Power Capacity pulse waveform with this, eliminate the unstable error of introducing of each wavelength light Power Capacity pulse waveform;
Wherein, Obtain all band photoelectricity volume pulsation wave described in the step (1); Utilize said all band photoelectricity volume pulsation wave to obtain all band photoelectricity volume pulsation wave template; And proofread and correct each wavelength light Power Capacity pulse waveform with this, and eliminate the unstable error of introducing of each wavelength light Power Capacity pulse waveform, specifically comprise:
Gather all band photoelectricity volume pulsation wave of detected part;
To said photoelectricity volume pulsation wave take the logarithm, superposed average, obtain all band photoelectricity volume pulsation wave template;
Said all band photoelectricity volume pulsation wave template is carried out segmentation and removed baseline and handle and obtain photoelectricity volume pulsation wave forward position template and tailing edge template;
Forward position and tailing edge waveform according to said each photoelectricity volume pulsation wave forward position template and the corresponding photoelectricity volume pulsation wave of tailing edge template calibration all wavelengths;
Obtain the ratio of each wavelength light Power Capacity pulse wave and photoelectricity volume pulsation wave forward position template and tailing edge template through least square fitting, said ratio is as the dynamic spectrum output on each edge;
(2) according to 3 σ criterions; Utilize the corresponding list of each pulse cycle forward position and tailing edge along the average effect of dynamic spectrum remove contain gross error list along dynamic spectrum, with removing the dynamic spectrum output that remaining list obtains along the dynamic spectrum superposed average after the gross error;
Wherein, Described in the step (2) according to 3 σ criterions; Utilize the corresponding list of each pulse cycle forward position and tailing edge along the average effect of dynamic spectrum remove contain gross error list along dynamic spectrum; Remaining list after removing gross error along the dynamic spectrum output that the dynamic spectrum superposed average obtains, is specifically comprised:
The wavelength ordering is pressed with the ratio of said corresponding photoelectricity volume pulsation wave forward position template and tailing edge template in said each photoelectricity volume pulsation wave forward position and tailing edge, carry out normalization and handle, obtain single along dynamic spectrum;
With all said lists along dynamic spectrum superposed average template as the dynamic spectrum of measuring;
Obtain the similarity degree of said list with Euclidean distance along dynamic spectrum and superposed average template;
In the measuring process of dynamic spectrum; According to 3 σ criterions; Judge whether each list exists gross error along dynamic spectrum, if the list that removal contains gross error is along dynamic spectrum; Until not existing the list that contains gross error till the dynamic spectrum, the dynamic spectrum output that remaining list is obtained along the dynamic spectrum superposed average; If not, with the dynamic spectrum output that all lists obtain along the dynamic spectrum superposed average, flow process finishes.
CN2010102534946A 2010-08-13 2010-08-13 Method for processing dynamic spectral data based on single-edge extraction Expired - Fee Related CN101912256B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102534946A CN101912256B (en) 2010-08-13 2010-08-13 Method for processing dynamic spectral data based on single-edge extraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102534946A CN101912256B (en) 2010-08-13 2010-08-13 Method for processing dynamic spectral data based on single-edge extraction

Publications (2)

Publication Number Publication Date
CN101912256A CN101912256A (en) 2010-12-15
CN101912256B true CN101912256B (en) 2012-04-18

Family

ID=43320040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102534946A Expired - Fee Related CN101912256B (en) 2010-08-13 2010-08-13 Method for processing dynamic spectral data based on single-edge extraction

Country Status (1)

Country Link
CN (1) CN101912256B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389313B (en) * 2011-08-17 2014-05-28 天津大学 Device and method for measuring square wave modulated photoelectric volume pulse wave
CN102631198B (en) * 2012-04-20 2013-08-14 天津大学 Dynamic spectrum data processing method based on difference value extraction
CN103027692B (en) * 2012-12-27 2014-11-26 天津大学 Dynamic spectrum data processing method based on uncertainty
CN103263272B (en) * 2013-04-23 2015-01-28 天津大学 Single-edge multiple-spectrum dynamic spectrum data extraction method
CN104224196B (en) * 2014-09-24 2016-08-24 天津大学 The method of non-invasive measurement blood component concentration
CN104783768B (en) * 2015-04-23 2017-08-25 天津大学 A kind of triangular modulation photoplethysmographic measuring method
CN105388439A (en) * 2015-11-03 2016-03-09 山东浪潮华光光电子股份有限公司 Multiband calibration method for LED chip test
CN106073800B (en) * 2016-08-04 2019-03-22 天津大学 Method for processing dynamic spectral data and its device based on absolute difference and extraction
CN107913069A (en) * 2017-12-21 2018-04-17 天津科技大学 A kind of intelligent hemoglobin detection high in the clouds expert system based on dynamic spectrum
CN111631733B (en) * 2020-06-19 2024-01-26 浙江澍源智能技术有限公司 Arterial blood spectrum detection method and device
CN114767102B (en) * 2022-06-20 2022-11-29 天津大学 Dynamic spectrum data processing method based on waveform scale coefficient extraction
CN115040121A (en) * 2022-06-23 2022-09-13 天津大学 Dynamic spectrum data processing method using pulse wave rising edge optimization extraction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786277B1 (en) * 2006-04-17 2007-12-17 삼성전자주식회사 Apparatus for measuring pulse and method thereof
CN101632588B (en) * 2009-08-04 2011-07-20 中国人民解放军第四军医大学 Measurement method of blood oxygen saturation for eliminating motion interference

Also Published As

Publication number Publication date
CN101912256A (en) 2010-12-15

Similar Documents

Publication Publication Date Title
CN101912256B (en) Method for processing dynamic spectral data based on single-edge extraction
CN102631198B (en) Dynamic spectrum data processing method based on difference value extraction
US6701170B2 (en) Blind source separation of pulse oximetry signals
CN104224196B (en) The method of non-invasive measurement blood component concentration
CN103156599B (en) Detection method of electrocardiosignal R characteristic waves
CN101853070B (en) Man-machine interaction device for information fusion of forehead EEG and blood oxygen
CN102156541B (en) Prefrontal electroencephalogram information and blood oxygen information fused human-computer interaction method
CN104473631B (en) A kind of based on non-negative blind separation Fetal ECG instantaneous heart rate recognition methods and system
CN101779966A (en) Method for recognizing ultrasonic spectrum enveloped peaks by combining cardiac sound
CN103239239B (en) Fixed-amplitude dynamic spectrum data extraction method
CN103263272B (en) Single-edge multiple-spectrum dynamic spectrum data extraction method
CN103860167A (en) J-wave extraction and analysis method based on non-negative matrix factorization
US11540763B2 (en) Control method and system for filtering power line interferences
CN204666826U (en) The continuous safety check imaging device of a kind of Terahertz
CN101371783A (en) Apparatus for testing gastric electricity of body surface
US20140323831A1 (en) Measurement device, measurement method, program, and recording medium
Chen et al. A Raman peak recognition method based automated fluorescence subtraction algorithm for retrieval of Raman spectra of highly fluorescent samples
CN106073800B (en) Method for processing dynamic spectral data and its device based on absolute difference and extraction
CN103027692B (en) Dynamic spectrum data processing method based on uncertainty
CN109793509B (en) Nuclear radiation detection and heart rate measurement method and device
Frigo et al. Measuring cerebral activation from fNIRS signals: An approach based on compressive sensing and Taylor–Fourier model
CN111134634A (en) Photoelectric volume pulse wave analysis processing method based on cluster analysis
CN115969398B (en) Blink detection method and device
CN105105739A (en) Short-distance wireless heart rate and heart rate variability detection method
León-Bejarano et al. Fluorescence background removal method for biological Raman spectroscopy based on empirical mode decomposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120418

Termination date: 20210813

CF01 Termination of patent right due to non-payment of annual fee