CN101907089A - 一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法 - Google Patents

一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法 Download PDF

Info

Publication number
CN101907089A
CN101907089A CN 201010257659 CN201010257659A CN101907089A CN 101907089 A CN101907089 A CN 101907089A CN 201010257659 CN201010257659 CN 201010257659 CN 201010257659 A CN201010257659 A CN 201010257659A CN 101907089 A CN101907089 A CN 101907089A
Authority
CN
China
Prior art keywords
axle center
dimensional
sin
center locus
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010257659
Other languages
English (en)
Other versions
CN101907089B (zh
Inventor
温广瑞
臧廷朋
张西宁
田利凯
吴婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2010102576597A priority Critical patent/CN101907089B/zh
Publication of CN101907089A publication Critical patent/CN101907089A/zh
Application granted granted Critical
Publication of CN101907089B publication Critical patent/CN101907089B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于三维空间轴心轨迹的压缩机故障诊断方法,(1)检测压缩机转子的径向振动信号x(t)、y(t);(2)检测压缩机转子的轴向振动信号z(t);(3)将振动信号进行低通滤波剔除高频干扰信号;(4)获得三维轴心轨迹w(t);(5)形成三维轴心轨迹;(6)将三个方向的振动信号x(t)、y(t)和z(t)分别进行滤波后在时域内重新构造,得到三维滤波心轨迹;(7)利用频谱分析原理,进行合成得到合成轴心轨迹。本发明的基于三维空间轴心轨迹的压缩机故障诊断方法在全息谱技术的基础上,提出了三维振动分析方法,该方法包括合成三维振动分析与滤波三维振动分析,能够更加清楚、生动地反映设备的运行状态和故障特征。转子的振动包含水平、垂直以及轴向的三个方向振动。将三个方向的振动信号加以合成,构造出三维轴心轨迹,包含三维滤波轴心轨迹以及三维合成轴心轨迹。这种方法能够真实的反映转子轴心的运动情况,为故障诊断提供了更为全面的信息。

Description

一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法
技术领域:
本发明属于机械设备故障诊断等领域,涉及机械振动信号的分析及处理,具体涉及一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法。
背景技术:
转子是压缩机的主要部件,其运行速度高、故障危害大,一直是压缩机监测诊断技术研究的重点对象。转子在轴承中高速旋转时不仅围绕自身中心旋转,还环绕某一中心作涡动运动。在涡动的过程中,由于受到周期性的离心力的激励作用,转子将产生横向强迫振动,从而影响转子的平稳运转,甚至会引发严重的设备事故。转子的回转中心涡动运动的轨迹则称为轴心轨迹,因此常规的轴心轨迹是一个二维的图像。监测轴心轨迹并提取其特征是压缩机故障诊断的重要方法。轴心轨迹的获取一般采用两个互成90°安置的非接触式电涡流传感器,在各自的方向上测量转轴组件相对机座的振动,在复平面对其进行组合后即可得到轴心轨迹。
然而在实际中,转子运转中除了有X和Y两个方向的横向振动外,常常还包括轴向的振动。轴向的振动往往与横向振动相关,相互之间存在一定的耦合。事实上,现场机组除了在X和Y两个方向上安装了相应的传感器外,还沿轴向(Z方向)安装了传感器来检测转子运行过程中轴向位置的变化。本发明中公开的基于三维空间轴心轨迹的压缩机轴系故障诊断方法将三个传感器信号(X方向、Y方向和Z方向)合成得到三维空间轴心轨迹,三维空间轴心轨迹考虑了转子轴向振动这个重要诊断信息,将三个方向传感器获取的振动信号集成起来,能够更为全面的反映转子振动状态,可为检测和诊断提供更加丰富的信息。同时充分利用多源信息的功能,可以大大提高故障诊断的准确度和效率。
为了能让获得的振动信号更加清晰的表现压缩机轴系故障,我们将原始轴心轨迹进行了处理。即利用信号处理方法、对构成轴心轨迹的振动信号分别进行滤波和提纯的基础上,提出了三维滤波轴心轨迹和三维合成轴心轨迹。利用三维滤波轴心轨迹和三维合成轴心轨迹能够消弱信号中噪声的干扰,更好的突现压缩机轴系的实际振动特征,为故障诊断提供了更为全面的信息。
发明内容:
在全息谱技术的基础上,提出了三维振动分析方法,该方法包括合成三维振动分析与滤波三维振动分析,能够更加清楚、生动地反映设备的运行状态和故障特征。转子的振动包含水平、垂直以及轴向的三个方向振动。我们将三个方向的振动信号加以合成,构造出三维轴心轨迹,包含三维滤波轴心轨迹以及三维合成轴心轨迹。这种方法能够真实的反映转子轴心的运动情况,为故障诊断提供了更为全面的信息。
本发明的基本操作步骤如下:
(1)在压缩机转子轴颈处某一截面或同时在某几个截面上安装两支相互垂直的非接触式电涡流传感器,然后在压缩机转子轴轴向安装相同的电涡流传感器,得到一组振动信号x(t)、y(t)、z(t);
(2)按照轴心轨迹的合成方法,将三个传感器所获得信号的瞬时幅值一一对应地作为X-Y-Z空间上的坐标点(x,y,z)。随着转子的转动,该点即形成X-Y-Z空间中的三维轴心轨迹;
(3)将三个方向的振动信号x(t)、y(t)和z(t)分别进行滤波,然后再将滤波后的信号x′(n)、y′(n)和z′(n)在时域内重新构造,得到三维滤波心轨迹;
(4)利用频谱分析原理,将振动信号先分解为一系列的简谐振动分量,再将故障诊断时所需的频率分量复合起来,然后按照轴心轨迹的合成方法进行合成得到合成轴心轨迹;合成轴心轨迹中的频率分量不是固定的,是随着条件变化的,需要由诊断人员在诊断时根据条件自己确定。
具体操作步骤如下:
(1)根据需要在压缩机转子轴颈处某一截面或同时在某几个截面上安装非接触式电涡流传感器,得到一组振动信号x(t)、y(t);
(2)在压缩机转子轴轴向安装相同的电涡流传感器,得到振动信号z(t);
(3)将步骤(1)和(2)中得到的振动信号x(t)、y(t)、z(t)进行低通滤波剔除高频干扰信号;
(4)设w(t)为在X-Y-Z三维空间进行组合后的三维轴心轨迹,则其表达式为:w(t)=ix(t)+jy(t)+kz(t);
(5)按照轴心轨迹的合成方法,将三个传感器所获得信号的瞬时幅值一一对应地作为X-Y-Z空间上的坐标点(x,y,z)。随着转子的转动,该点即形成X-Y-Z空间中的三维轴心轨迹;
(6)将三个方向的振动信号x(t)、y(t)和z(t)分别进行滤波,然后再将滤波后的信号x′(n)、y′(n)和z′(n)在时域内按照三维滤波轴心轨迹的构造方法重新构造,得到三维滤波心轨迹;
(7)利用频谱分析原理,将振动信号x(t)、y(t)和z(t)分别先分解为一系列的简谐振动分量,再将故障诊断时所需的频率分量复合起来,然后按照三维合成轴心轨迹的构造方法进行构造得到三维合成轴心轨迹。
所述的三维滤波轴心轨迹的构造方法为:
(1)设信号x(t)、y(t)和z(t)经低通滤波后的采样量化值为x(n)、y(n)和z(n),滤波器的冲激响应为h(n);
(2)对步骤(1)中采样量化后的信号x(n)、y(n)和z(n)进行滤波,滤波后的信号为x′(n)、y′(n)和z′(n),其表达式为:
x ′ ( n ) = x ( n ) * h ( n ) y ′ ( n ) = y ( n ) * h ( n ) z ′ ( n ) = z ( n ) * h ( n ) - - - ( 1 )
(3)由此可得滤波后的轴心轨迹表达式为:
w′(n)=ix′(n)+jy′(n)+kz′(n)                     (2)
(4)滤波后轴心轨迹的向量表达式为:
W ′ → = X ′ → + Y ′ → + Z ′ → - - - ( 3 )
(5)按照轴心轨迹的合成方法,将滤波后的三组信号x′(n)、y′(n)和z′(n)的瞬时幅值一一对应地作为X-Y-Z空间上的坐标点(x,y,z)。随着转子的转动,该点即形成X-Y-Z空间中的三维轴心轨迹;
所述的三维合成轴心轨迹的构造方法为:
(1)设轴心轨迹X、Y和Z方向的振动信号分别为x(t)、y(t)和z(t);
(2)将上述三个方向上的信号分解为各频率分量下的一个个分量:
x(t)=A1sin(ω0t+φ1)+A2sin(2ω0t+φ2)+…+Ansin(nω0t+φn)
=x1(t)+x2(t)+…+xn(t)
                                                          (4)
y(t)=B1sin(ω0t+ψ1)+B2sin(2ω0t+ψ2)+…+Bnsin(nω0t+ψn)
=y1(t)+y2(t)+…+yn(t)
                                                          (5)
z(t)=C1sin(ω0t+ξ1)+C2sin(2ω0t+ξ2)+…+Cnsin(nω0t+ξn)
=z1(t)+z2(t)+…+zn(t)
                                                          (6)
其中,An,Bn,Cn,φn,ψn,ξn——水平、垂直和轴向信号的幅值与相位;
ω0——信号的旋转角频率;
n——频率分量的最高阶数;
(3)分别把分量xi(t)、yi(t)和zi(t)合成为方程组的形式:
x 1 ( t ) = A 1 sin ( ω 0 t + φ 1 ) y 1 ( t ) = B 1 sin ( ω 0 t + ψ 1 ) z 1 ( t ) = C 1 sin ( ω 0 t + ξ 1 ) x 2 ( t ) = A 2 sin ( 2 ω 0 t + φ 2 ) y 2 ( t ) = B 2 sin ( 2 ω 0 t + ψ 2 ) z 2 ( t ) = C 2 sin ( 2 ω 0 t + ξ 2 ) . . . . . . x n ( t ) = A n sin ( n ω 0 t + φ n ) y n ( t ) = B n sin ( n ω 0 t + ψ n ) z n ( t ) = C n sin ( n ω 0 t + ξ n ) - - - ( 7 )
(4)根据信号的各个振动分量信息,可以将各分量合成,从而得到合成的轴心轨迹的表达式:
c ( t ) = ix ( t ) + jy ( t ) + kz ( t )
= i · Σ l n A l sin ( l ω 0 t + φ l ) + j · Σ l n B l sin ( l ω 0 t + ψ l ) + k · Σ l n C l sin ( l ω 0 t + ξ l ) - - - ( 8 )
(5)使上述合成轴心轨迹的表达式在X、Y、Z三维空间展现即可得到三维合成轴心轨迹。
本发明所提出的基于三维空间轴心轨迹的压缩机轴系故障诊断方法,包括三维滤波轴心轨迹和三维合成轴心轨迹,考虑了转子轴向振动这个重要诊断信息,将三个方向传感器获取的振动信号集成起来,能够更为全面、生动的反映转子振动状态,可为检测和诊断提供更加丰富的信息。同时充分利用多源信息的功能,可以大大提高故障诊断的准确度和效率。
附图说明:
图1为轴心轨迹测试装置示意图。
图2为轴向位移测量时传感器安装方式示意图。
图3为单截面三维轴心轨迹图。
图4为二截面三维轴心轨迹图。
图5为三维滤波轴心轨迹的实现示意图。
图6为三维原始轴心轨迹与滤波轴心轨迹。
图7为三维原始轴心轨迹与三维合成轴心轨迹。
图8为三维空间轴心轨迹分析方法示意图。
具体实施方式
下面结合附图对本发明的内容作进一步详细说明
参见图1所示,利用安装在同一截面内相互垂直的两个电涡流传感器(X方向和Y方向)和安装在轴向的一个电涡流传感器(Z方向)对轴颈振动进行测量后,得到压缩机转轴的一组振动信号x(t)、y(t)、z(t),仿照轴心轨迹的构成方法,将三个传感器信号(X方向、Y方向和Z方向)进行合成即可得到三维空间轴心轨迹。
参见图2所示,测量轴向振动信号时传感器的安装方式。在实际的压缩机状态监测和故障诊断中,不仅要测量压缩机转轴径向的振动位移,其轴向位移也是非常重要的监测参量之一。因为转子的横向振动往往伴随着轴向的窜动,当机器的状态发生变化时,轴向位移也会发生变化。所以,在诊断分析中引入轴向振动位移量,对故障的确诊有重要的作用。
参见图3所示,设传感器测量得到振动信号分别为:x(t)、y(t)和z(t)。设w(t)为在X-Y-Z三维空间进行组合后的三维轴心轨迹,其表达式为:w(t)=ix(t)+jy(t)+kz(t),表示为向量的形式:
Figure BDA0000024740140000051
按照轴心轨迹的合成方法,将三个传感器所获得信号的瞬时幅值一一对应地作为X-Y-Z空间上的坐标点(x,y,z),随着转子的转动,该点即形成X-Y-Z空间中的三维轴心轨迹。由三维轴心轨迹的向量表达式,三维轴心轨迹包含着转子三个方向上的振动信息,形成了三维的空间图形。由于不同的故障在不同的测量方向上有着不同的反映,所以我们将三维轴心轨迹投影到二维平面上,就能对转子的三维轴心轨迹有更清晰的认识。
图4所示,为了考察转子整体的振动情况,可以显示出转子上多个支承面上的三维轴心轨迹图,其构造的方法和单截面三维轴心轨迹的方法类似,比如,二截面三维轴心轨迹可以用向量的形式表示为:
Figure BDA0000024740140000052
式中X1、Y1、Z1与X2、Y2、Z2分别对应于两个截面上水平方向、垂直方向和轴向方向的信号向量。由此,可以通过观察多个截面的三维轴心轨迹的合成,来分析转子系统的故障机理。
参见图5所示,由于信号采集和传输的过程中周围环境的干扰,模拟信号在传送的过程中往往夹杂着各种干扰,使采样后的数据产生一定的失真,这影响了振动的检测以及分析的正确性,因此必须采取一定的滤波手段去除噪声干扰。三维滤波轴心轨迹在构造上,首先将三个方向的振动信号x(t)、y(t)和z(t)分别进行滤波,然后再将滤波后的信号x′(n)、y′(n)和z′(n)在时域内重新构造出三维轴心轨迹。设信号x(t)、y(t)和z(t)经低通滤波后的采样量化值为x(n)、y(n)和z(n),滤波器的冲激响应为h(n),滤波后的信号为x′(n)、y′(n)和z′(n),其表达式为:
Figure BDA0000024740140000061
由此可得滤波后的轴心轨迹表达式为:w′(n)=ix′(n)+jy′(n)+kz′(n),根据轴心轨迹表达式即可构造出三维滤波轴心轨迹。
参见图6所示,左边为某转子的三维原始轴心轨迹,图中的线条繁杂混乱,图形特征不明显,给轴心轨迹的识别和故障诊断带来困难。而右边则为在低频区带通滤波后的三维滤波轴心轨迹,从图中可以明显的看到含有噪声的轨迹基本恢复了原貌,滤波后的轴心轨迹是由很多椭圆叠加而成,线条清晰。
参见图7、8所示,一般情况下,转子故障中存在着主次之分,其振动信号中除包含由不平衡引起的同步振动分量外,还存在频率低于转子转速的亚同步振动分量和频率为转子转速整数倍的高次谐波振动分量。这就使得转子轴心轨迹形状比较复杂、混乱,给轴心轨迹的识别带来了很大困难。为了克服原始轴心轨迹难以分析的缺点,我们可以利用频谱分析原理,将振动信号先分解为一系列的简谐振动分量,再将故障诊断时所需的频率分量复合起来,就可以通过合成的轴心轨迹为故障识别提供更为突出的特征信息。设轴心轨迹X、Y和Z方向的振动信号为x(t)、y(t)和z(t),将这三个方向上的信号分解为各频率分量下的一个个分量:
x(t)=A1sin(ω0t+φ1)+A2sin(2ω0t+φ2)+…+Ansin(nω0t+φn)=x1(t)+x2(t)+…+xn(t)
y(t)=B1sin(ω0t+ψ1)+B2sin(2ω0t+ψ2)+…+Bnsin(nω0t+ψn)=y1(t)+y2(t)+…+yn(t)
z(t)=C1sin(ω0t+ξ1)+C2sin(2ω0t+ξ2)+…+Cnsin(nω0t+ξn)=z1(t)+z2(t)+…+zn(t)
其中,An,Bn,Cn,φn,ψn,ξn——水平、垂直和轴向信号的幅值与相位,
ω0——信号的旋转角频率,n——频率分量的最高阶数;
分别把分量xi(t)、yi(t)和zi(t)合成为方程组的形式:
x 1 ( t ) = A 1 sin ( ω 0 t + φ 1 ) y 1 ( t ) = B 1 sin ( ω 0 t + ψ 1 ) z 1 ( t ) = C 1 sin ( ω 0 t + ξ 1 ) x 2 ( t ) = A 2 sin ( 2 ω 0 t + φ 2 ) y 2 ( t ) = B 2 sin ( 2 ω 0 t + ψ 2 ) z 2 ( t ) = C 2 sin ( 2 ω 0 t + ξ 2 ) . . . . . . x n ( t ) = A n sin ( n ω 0 t + φ n ) y n ( t ) = B n sin ( n ω 0 t + ψ n ) z n ( t ) = C n sin ( n ω 0 t + ξ n )
可以看到先前复杂的轴心轨迹是由不同频率、不同相位以及不同幅值的分量叠加而成。有了信号的各个振动分量信息,就可以很容易的将各分量合成,从而得到三维合成的轴心轨迹的表达式:
c ( t ) = ix ( t ) + jy ( t ) + kz ( t ) = i · Σ l n A l sin ( lω 0 t + φ l ) + j · Σ l n B l sin ( l ω 0 t + ψ l ) + k · Σ l n C l sin ( l ω 0 t + ξ l )
式中,l代表需要合成的频率分量。如图7显示的是某转子三维原始轴心轨迹以及按1X、2X和4X倍频分量合成后的三维合成轴心轨迹。从图中可以看到,合成后的图形线条非常清晰,可以利用轴心轨迹的形状识别方法来判断其故障特征。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。

Claims (3)

1.一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法,其特征在于:
(1)根据需要在压缩机转子轴颈处某一截面或同时在某几个截面上安装非接触式电涡流传感器,得到一组振动信号x(t)、y(t);
(2)在压缩机转子轴轴向安装相同的非接触式电涡流传感器,得到振动信号z(t);
(3)将步骤(1)和步骤(2)中得到的振动信号x(t)、y(t)、z(t)进行低通滤波剔除高频干扰信号;
(4)设w(t)为x(t)、y(t)、z(t)在X-Y-Z三维空间进行组合后的三维轴心轨迹,则其表达式为:w(t)=ix(t)+jy(t)+kz(t);
(5)按照轴心轨迹的合成方法,将三个传感器所获得信号的瞬时幅值一一对应地作为X-Y-Z空间上的坐标点(x,y,z);随着转子的转动,该点即形成X-Y-Z空间中的三维轴心轨迹;
(6)将三个方向的振动信号x(t)、y(t)和z(t)分别进行滤波,然后再将滤波后的信号x′(n)、y′(n)和z′(n)在时域内按照三维滤波轴心轨迹的构造方法重新构造,得到三维滤波心轨迹;
(7)利用频谱分析原理,将振动信号x(t)、y(t)和z(t)分别先分解为一系列的简谐振动分量,再将故障诊断时所需的频率分量复合起来,然后按照三维合成轴心轨迹的构造方法进行构造得到三维合成轴心轨迹。
2.如权利要求1所述基于三维空间轴心轨迹的压缩机轴系故障诊断方法,其特征在于,所述的三维滤波轴心轨迹的构造方法是:
(1)设信号x(t)、y(t)和z(t)经低通滤波后的采样量化值为x(n)、y(n)和z(n),滤波器的冲激响应为h(n);
(2)对步骤(1)中采样量化后的信号x(n)、y(n)和z(n)进行滤波,滤波后的信号为x′(n)、y′(n)和z′(n),其表达式为:
x ′ ( n ) = x ( n ) * h ( n ) y ′ ( n ) = y ( n ) * h ( n ) z ′ ( n ) = z ( n ) * h ( n ) - - - ( 1 )
(3)由此可得滤波后的轴心轨迹表达式为:
w′(n)=ix′(n)+jy′(n)+kz′(n)                      (2)
(4)滤波后轴心轨迹的向量表达式为:
W ′ → = X ′ → + Y ′ → + Z ′ → - - - ( 3 )
(5)按照轴心轨迹的合成方法,将滤波后的三组信号x′(n)、y′(n)和z′(n)的瞬时幅值一一对应地作为X-Y-Z空间上的坐标点(x,y,z),随着转子的转动,该点即形成X-Y-Z空间中的三维轴心轨迹。
3.如权利要求1所述基于三维空间轴心轨迹的压缩机轴系故障诊断方法,其特征在于,所述的三维合成轴心轨迹的构造方法是:
(1)设压缩机转轴X、Y和Z方向的振动信号分别为x(t)、y(t)和z(t);
(2)将上述三个方向上的信号分解为各频率分量下的一个个分量:
x(t)=A1sin(ω0t+φ1)+A2sin(2ω0t+φ2)+…+Ansin(nω0t+φn)
=x1(t)+x2(t)+…+xn(t)
                                                               (4)
y(t)=B1sin(ω0t+ψ1)+B2sin(2ω0t+ψ2)+…+Bnsin(nω0t+ψn)
=y1(t)+y2(t)+…+yn(t)
                                                               (5)
z(t)=C1sin(ω0t+ξ1)+C2sin(2ω0t+ξ2)+…+Cnsin(nω0t+ξn)
=z1(t)+z2(t)+…+zn(t)
                                                               (6)
其中,An,Bn,Cn,φn,ψn,ξn——水平、垂直和轴向信号的幅值与相位;
ω0——信号的旋转角频率;
n——频率分量的最高阶数;
(3)分别把分量xi(t)、yi(t)和zi(t)合成为方程组的形式:
x 1 ( t ) = A 1 sin ( ω 0 t + φ 1 ) y 1 ( t ) = B 1 sin ( ω 0 t + ψ 1 ) z 1 ( t ) = C 1 sin ( ω 0 t + ξ 1 ) x 2 ( t ) = A 2 sin ( 2 ω 0 t + φ 2 ) y 2 ( t ) = B 2 sin ( 2 ω 0 t + ψ 2 ) z 2 ( t ) = C 2 sin ( 2 ω 0 t + ξ 2 ) . . . . . . x n ( t ) = A n sin ( n ω 0 t + φ n ) y n ( t ) = B n sin ( n ω 0 t + ψ n ) z n ( t ) = C n sin ( n ω 0 t + ξ n ) - - - ( 7 ) ;
(4)根据信号的各个振动分量信息,可以将各分量合成,从而得到合成的轴心轨迹的表达式:
c ( t ) = ix ( t ) + jy ( t ) + kz ( t )
= i · Σ l n A l sin ( l ω 0 t + φ l ) + j · Σ l n B l sin ( l ω 0 t + ψ l ) + k · Σ l n C l sin ( l ω 0 t + ξ l ) - - - ( 8 ) ;
(5)使上述合成轴心轨迹的表达式在X、Y、Z三维空间展现即可得到三维合成轴心轨迹。
CN2010102576597A 2010-08-20 2010-08-20 一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法 Expired - Fee Related CN101907089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102576597A CN101907089B (zh) 2010-08-20 2010-08-20 一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102576597A CN101907089B (zh) 2010-08-20 2010-08-20 一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法

Publications (2)

Publication Number Publication Date
CN101907089A true CN101907089A (zh) 2010-12-08
CN101907089B CN101907089B (zh) 2012-11-28

Family

ID=43262640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102576597A Expired - Fee Related CN101907089B (zh) 2010-08-20 2010-08-20 一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法

Country Status (1)

Country Link
CN (1) CN101907089B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966526A (zh) * 2012-11-27 2013-03-13 西安陕鼓动力股份有限公司 基于轴向振动分析的压缩机低频流体激振类故障诊断方法
CN103344321A (zh) * 2013-07-17 2013-10-09 华北电力大学 基于静电传感器阵列的旋转体径向漂移的检测方法及装置
CN103559392A (zh) * 2013-10-28 2014-02-05 中国石油化工股份有限公司 一种基于多传感信息融合的机组状态评估方法
CN104483118A (zh) * 2014-12-08 2015-04-01 西安交通大学 基于瞬时频率轴心轨迹的转子动静碰磨故障诊断方法
CN105041631A (zh) * 2015-07-21 2015-11-11 莱芜钢铁集团电子有限公司 一种气体压缩机的驱动轴振动信号的检测方法和系统
CN106053034A (zh) * 2016-05-11 2016-10-26 西安交通大学 一种基于调频信息重构的旋转机械全息诊断方法
CN106769009A (zh) * 2016-12-12 2017-05-31 新疆大学 基于参数化时频分析的启停车故障特征提取及诊断方法
CN108412660A (zh) * 2018-02-24 2018-08-17 南方电网调峰调频发电有限公司 一种通过轴心轨迹分析水轮发电机组轴瓦状态的方法
CN108506216A (zh) * 2018-03-23 2018-09-07 四川长虹空调有限公司 转子式压缩机吸排气管路减振设计方法
CN108827574A (zh) * 2018-06-19 2018-11-16 南京中船绿洲机器有限公司 一种卧螺离心机的振动测试方法
CN108981895A (zh) * 2018-06-25 2018-12-11 吉林大学 一种空间多维度外力感知机械测量仪
CN109682538A (zh) * 2019-02-25 2019-04-26 长沙理工大学 一种砂轮不平衡量在位测量系统及方法
CN110231161A (zh) * 2019-07-12 2019-09-13 中国大唐集团科学技术研究院有限公司华东电力试验研究院 基于三维坐标系的单跨度转子故障位置诊断方法及系统
CN111337234A (zh) * 2020-03-09 2020-06-26 西南交通大学 一种基于实时监测的tbm刮刀寿命预测系统及方法
CN112504647A (zh) * 2020-11-24 2021-03-16 厦门理工学院 一种多盘转子系统振动信号检测装置及检测方法
CN116539296A (zh) * 2023-07-05 2023-08-04 利维智能(深圳)有限公司 基于三维轴心位置的采集诊断系统、方法、设备以及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256078A (ja) * 1994-03-18 1995-10-09 Hitachi Ltd 撹拌装置の振動監視システム
CN101038231A (zh) * 2006-03-17 2007-09-19 中国石油天然气股份有限公司 燃气轮机振动监测与故障诊断系统
CN101387575A (zh) * 2008-10-20 2009-03-18 兖矿国泰化工有限公司 一种转子轴承系统故障全信息分析方法及装置
CN101667307A (zh) * 2009-09-10 2010-03-10 南京大学 短时轴心轨迹阵列
CN101709995A (zh) * 2009-12-24 2010-05-19 浙江大学 电力变压器振动在线监测及故障诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256078A (ja) * 1994-03-18 1995-10-09 Hitachi Ltd 撹拌装置の振動監視システム
CN101038231A (zh) * 2006-03-17 2007-09-19 中国石油天然气股份有限公司 燃气轮机振动监测与故障诊断系统
CN101387575A (zh) * 2008-10-20 2009-03-18 兖矿国泰化工有限公司 一种转子轴承系统故障全信息分析方法及装置
CN101667307A (zh) * 2009-09-10 2010-03-10 南京大学 短时轴心轨迹阵列
CN101709995A (zh) * 2009-12-24 2010-05-19 浙江大学 电力变压器振动在线监测及故障诊断方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966526A (zh) * 2012-11-27 2013-03-13 西安陕鼓动力股份有限公司 基于轴向振动分析的压缩机低频流体激振类故障诊断方法
CN102966526B (zh) * 2012-11-27 2015-08-12 西安陕鼓动力股份有限公司 基于轴向振动分析的压缩机低频流体激振类故障诊断方法
CN103344321A (zh) * 2013-07-17 2013-10-09 华北电力大学 基于静电传感器阵列的旋转体径向漂移的检测方法及装置
CN103344321B (zh) * 2013-07-17 2016-02-24 华北电力大学 基于静电传感器阵列的旋转体径向漂移的检测方法及装置
CN103559392A (zh) * 2013-10-28 2014-02-05 中国石油化工股份有限公司 一种基于多传感信息融合的机组状态评估方法
CN104483118A (zh) * 2014-12-08 2015-04-01 西安交通大学 基于瞬时频率轴心轨迹的转子动静碰磨故障诊断方法
CN104483118B (zh) * 2014-12-08 2017-04-19 西安交通大学 基于瞬时频率轴心轨迹的转子动静碰磨故障诊断方法
CN105041631A (zh) * 2015-07-21 2015-11-11 莱芜钢铁集团电子有限公司 一种气体压缩机的驱动轴振动信号的检测方法和系统
CN106053034A (zh) * 2016-05-11 2016-10-26 西安交通大学 一种基于调频信息重构的旋转机械全息诊断方法
CN106769009A (zh) * 2016-12-12 2017-05-31 新疆大学 基于参数化时频分析的启停车故障特征提取及诊断方法
CN108412660A (zh) * 2018-02-24 2018-08-17 南方电网调峰调频发电有限公司 一种通过轴心轨迹分析水轮发电机组轴瓦状态的方法
CN108506216A (zh) * 2018-03-23 2018-09-07 四川长虹空调有限公司 转子式压缩机吸排气管路减振设计方法
CN108506216B (zh) * 2018-03-23 2020-01-10 四川长虹空调有限公司 转子式压缩机吸排气管路减振设计方法
CN108827574A (zh) * 2018-06-19 2018-11-16 南京中船绿洲机器有限公司 一种卧螺离心机的振动测试方法
CN108981895A (zh) * 2018-06-25 2018-12-11 吉林大学 一种空间多维度外力感知机械测量仪
CN108981895B (zh) * 2018-06-25 2023-09-29 吉林大学 一种空间多维度外力感知机械测量仪
CN109682538A (zh) * 2019-02-25 2019-04-26 长沙理工大学 一种砂轮不平衡量在位测量系统及方法
CN110231161A (zh) * 2019-07-12 2019-09-13 中国大唐集团科学技术研究院有限公司华东电力试验研究院 基于三维坐标系的单跨度转子故障位置诊断方法及系统
CN110231161B (zh) * 2019-07-12 2020-11-24 中国大唐集团科学技术研究院有限公司华东电力试验研究院 基于三维坐标系的单跨度转子故障位置诊断方法及系统
CN111337234A (zh) * 2020-03-09 2020-06-26 西南交通大学 一种基于实时监测的tbm刮刀寿命预测系统及方法
CN112504647A (zh) * 2020-11-24 2021-03-16 厦门理工学院 一种多盘转子系统振动信号检测装置及检测方法
CN116539296A (zh) * 2023-07-05 2023-08-04 利维智能(深圳)有限公司 基于三维轴心位置的采集诊断系统、方法、设备以及介质

Also Published As

Publication number Publication date
CN101907089B (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
CN101907089B (zh) 一种基于三维空间轴心轨迹的压缩机轴系故障诊断方法
CN101929917B (zh) 一种旋转机械的故障诊断方法
Elbhbah et al. Vibration-based condition monitoring of rotating machines using a machine composite spectrum
Chaudhury et al. Vibration monitoring of rotating machines using MEMS accelerometer
Xu et al. Orthogonal on-rotor sensing vibrations for condition monitoring of rotating machines
CN102262215B (zh) 一种大型发电机定转子气隙偏心故障检测方法
Yang et al. Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery
CN101403684A (zh) 基于盲源分析技术的旋转机械复合故障的诊断方法
CN111397877B (zh) 一种旋转机械拍振故障检测与诊断方法
Wei et al. Time-varying envelope filtering for exhibiting space bearing cage fault features
Li et al. Cyclic statistics in rolling bearing diagnosis
Wang et al. An empirical re-sampling method on intrinsic mode function to deal with speed variation in machine fault diagnostics
Ugwiri et al. Vibrations measurement and current signatures for fault detection in asynchronous motor
Elnady et al. Identification of critical speeds of rotating machines using on-shaft wireless vibration measurement
Peter et al. The sparsogram: A new and effective method for extracting bearing fault features
Wu et al. Vibration monitoring for fault diagnosis of helicopter planetry gears
CN101368870B (zh) 一种用于机械转子单截面轴振分析的幅值频谱的制作方法
Teng et al. Detection and quantization of bearing fault in direct drive wind turbine via comparative analysis
Wang et al. Tacholess order-tracking approach for wind turbine gearbox fault detection
Shi et al. A dual-guided adaptive decomposition method of fault information and fault sensitivity for multi-component fault diagnosis under varying speeds
JP5958932B2 (ja) 動的設備の状態監視システムとその方法とそのプログラム
Wang et al. Early rolling bearing fault diagnosis in induction motors based on on-rotor sensing vibrations
Wei et al. Two-level variational chirp component decomposition for capturing intrinsic frequency modulation modes of planetary gearboxes
Hassan et al. Condition monitoring of helicopter drive shafts using quadratic-nonlinearity metric based on cross-bispectrum
Ewert et al. Application of selected higher-order methods to detect rotor unbalance of drive system with PMSM

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121128

Termination date: 20180820

CF01 Termination of patent right due to non-payment of annual fee