CN101902417A - Super-exponential iterative blind equalization method based on ant colony optimization - Google Patents
Super-exponential iterative blind equalization method based on ant colony optimization Download PDFInfo
- Publication number
- CN101902417A CN101902417A CN 201010216298 CN201010216298A CN101902417A CN 101902417 A CN101902417 A CN 101902417A CN 201010216298 CN201010216298 CN 201010216298 CN 201010216298 A CN201010216298 A CN 201010216298A CN 101902417 A CN101902417 A CN 101902417A
- Authority
- CN
- China
- Prior art keywords
- weight vector
- equalizer
- sei
- ant
- exponential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000005457 optimization Methods 0.000 title claims description 31
- 239000013598 vector Substances 0.000 claims abstract description 58
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 57
- 239000003016 pheromone Substances 0.000 claims description 25
- 239000011159 matrix material Substances 0.000 claims description 14
- 230000002087 whitening effect Effects 0.000 claims description 7
- 241000257303 Hymenoptera Species 0.000 claims description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 238000004088 simulation Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 abstract description 6
- 230000009024 positive feedback mechanism Effects 0.000 abstract description 6
- 238000012545 processing Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 101000986989 Naja kaouthia Acidic phospholipase A2 CM-II Proteins 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
本发明公布了一种蚁群优化的正交小波超指数迭代盲均衡方法,该方法利用蚁群算法来寻找最优的权向量作为均衡器输入的初始权向量值,从而避免算法出现局部收敛的情况。该方法具有加快收敛速度的正反馈机制,利用超指数迭代(SEI)方法对数据的白化作用,利用正交小波变换对信号进行去相关,并充分利用了蚁群算法的全局收敛性。水声信道仿真结果表明,与正交小波超指数迭代盲均衡方法(WT-SEI-CMA)相比,该方法具有更好的收敛速度和稳态误差,且均衡后的眼图更加清晰、紧凑。因而,该方法具有一定的实用价值。
The invention discloses an ant colony optimized orthogonal wavelet super-exponential iterative blind equalization method, which uses an ant colony algorithm to find the optimal weight vector as the initial weight vector value of the equalizer input, thereby avoiding local convergence of the algorithm Condition. The method has a positive feedback mechanism to speed up the convergence speed, uses the super-exponential iteration (SEI) method to whiten the data, uses the orthogonal wavelet transform to decorrelate the signal, and makes full use of the global convergence of the ant colony algorithm. The underwater acoustic channel simulation results show that compared with the orthogonal wavelet super-exponential iterative blind equalization method (WT-SEI-CMA), this method has better convergence speed and steady-state error, and the eye diagram after equalization is clearer and more compact . Therefore, this method has certain practical value.
Description
技术领域technical field
本发明涉及一种正交小波变换超指数迭代盲均衡方法,尤其涉及一种基于蚁群优化的正交小波变换超指数迭代盲均衡方法。The invention relates to an orthogonal wavelet transform super-exponential iterative blind equalization method, in particular to an orthogonal wavelet transform super-exponential iterative blind equalization method based on ant colony optimization.
背景技术Background technique
在水下通信系统中,多径效应和有限带宽所带来的码间干扰(Inter-Symbol Inter-ferences,ISI),是影响通信质量的主要因素,需要采用均衡技术来消除(见文献:郭业才,杨超.基于正交小波变换的超指数迭代盲均衡器设计与仿真[J].系统仿真学报,2009,21(20)-:6556-6559)。不需要训练序列的盲均衡算法,仅利用接收信号本身的统计特性来均衡信号,但其收敛速度较慢、稳态误差也较大。文献(O Shalvi,E Weinstein.Super-Exponential Methods for Blind Deconvolution[J].IEEE Trans.Inform.Theory,1993,vol.39,504~519.)提出了一种以近乎超指数速度收敛的超指数盲均衡算法(Super-Exponential,SE)及其迭代算法(Super-Exponential Iterative,SEI)。与CMA算法相比,SEI算法引入白化矩阵Q,该矩阵对均衡器的输入信号起白化作用,加快了收敛速度,但其仍不能满足工程可实现性的要求。文献(郭业才,丁雪洁,郭福东,等.基于归一化常数模算法的级联自适应盲均衡算法[J].系统仿真学报,2008,20(17):4647-4650;韩迎鸽,郭业才,李保坤等.引入动量项的正交小波变换盲均衡算法[J].系统仿真学报;2008,20(6):1559-1562;Cooklev T An Efficient Architecture for Orthogonal Wavelet Transforms[J].IEEESignal Processing Letters(S1070-9980),2006,13(2):77~79.)表明:对均衡器的输入信号进行小波变换,并作能量归一化处理,可以降低信号与噪声的相关性,从而有效地加快收敛速度,但是小波盲均衡算法仍然是按梯度方向来寻找最优权向量,它对权向量的初始化比较敏感,不当的初始化会使算法收敛至局部极小值,甚至发散。而蚁群算法(ACO)是在对自然界中真实蚁群的集体行为的研究基础上,由意大利学者Dorigo M等首先提出来的,它是一种基于种群的启发式仿生类并行智能进化算法,具有智能搜索、全局优化、鲁棒性、正反馈、分布式计算,以及易于其他算法相结合等特点,它对函数不连续、不可微、局部极值点密集等苛刻的情况也具有很好的搜索能力。通过由候选解组成的群体的进化过程来寻求最优解;通过正反馈机制,加快算法的寻优过程,快速寻找到全局最优解,使得陷入局部收敛的可能性大大减少。In the underwater communication system, the inter-symbol interference (Inter-Symbol Inter-ferences, ISI) brought by the multipath effect and the limited bandwidth is the main factor affecting the communication quality, which needs to be eliminated by equalization technology (see literature: Guo Yecai , Chao Yang. Design and simulation of super-exponential iterative blind equalizer based on orthogonal wavelet transform [J]. Journal of System Simulation, 2009, 21(20)-: 6556-6559). The blind equalization algorithm that does not require training sequences only uses the statistical characteristics of the received signal itself to equalize the signal, but its convergence speed is slow and the steady-state error is also large. Literature (O Shalvi, E Weinstein. Super-Exponential Methods for Blind Deconvolution [J]. IEEE Trans. Inform. Theory, 1993, vol.39, 504-519.) proposed a super-exponential convergence at a nearly super-exponential speed Blind equalization algorithm (Super-Exponential, SE) and iterative algorithm (Super-Exponential Iterative, SEI). Compared with the CMA algorithm, the SEI algorithm introduces a whitening matrix Q, which whitens the input signal of the equalizer and accelerates the convergence speed, but it still cannot meet the requirements of engineering realizability. Literature (Guo Yecai, Ding Xuejie, Guo Fudong, etc. Cascade Adaptive Blind Equalization Algorithm Based on Normalized Constant Modulus Algorithm [J]. Journal of System Simulation, 2008, 20(17): 4647-4650; Han Yingge, Guo Yecai , Li Baokun et al. Blind equalization algorithm for Orthogonal Wavelet Transforms with momentum term[J]. Journal of System Simulation; 2008, 20(6): 1559-1562; Cooklev T An Efficient Architecture for Orthogonal Wavelet Transforms[J].IEEESignal Processing Letters (S1070-9980), 2006, 13(2): 77~79.) showed that: performing wavelet transform on the input signal of the equalizer and performing energy normalization processing can reduce the correlation between signal and noise, thus effectively Speed up the convergence speed, but the wavelet blind equalization algorithm still finds the optimal weight vector according to the gradient direction, it is sensitive to the initialization of the weight vector, improper initialization will make the algorithm converge to a local minimum, or even diverge. The Ant Colony Algorithm (ACO) was first proposed by Italian scholar Dorigo M on the basis of the research on the collective behavior of real ant colonies in nature. It is a heuristic bionic parallel intelligent evolutionary algorithm based on population. It has the characteristics of intelligent search, global optimization, robustness, positive feedback, distributed computing, and easy combination with other algorithms. It is also very good for harsh situations such as function discontinuity, non-differentiability, and local extreme points. search capability. The optimal solution is sought through the evolution process of the group composed of candidate solutions; through the positive feedback mechanism, the optimization process of the algorithm is accelerated, and the global optimal solution is quickly found, which greatly reduces the possibility of falling into local convergence.
发明内容Contents of the invention
本发明目的是针对传统的常数模盲均衡方法(CMA)收敛速度慢、稳态误差大和局部收敛的缺点,本文在分析蚁群优化、超指数迭代(Super-Exponential Iterative,SEI)方法和正交小波变换理论的基础上,提出了一种基于蚁群优化的正交小波超指数迭代盲均衡方法(ACO-WT-SEI)。该方法充分利用了蚁群算法的全局随机搜索和正反馈机制的特点,对均衡器的权向量进行初始化,利用SEI方法对数据的白化作用,并采用正交小波变换降低信号的自相关性。The purpose of the present invention is aimed at the shortcomings of the traditional constant modulus blind equalization method (CMA) with slow convergence speed, large steady-state error and local convergence. On the basis of orthogonal wavelet transform theory, a blind equalization method based on ant colony optimization with orthogonal wavelet super-exponential iteration (ACO-WT-SEI) is proposed. This method makes full use of the characteristics of the global random search and positive feedback mechanism of the ant colony algorithm, initializes the weight vector of the equalizer, uses the SEI method to whiten the data, and uses the orthogonal wavelet transform to reduce the autocorrelation of the signal.
本发明为实现上述目的,采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
本发明基于蚁群优化的正交小波变换超指数迭代盲均衡方法,包括如下步骤:The present invention is based on the ant colony optimization orthogonal wavelet transform super-exponential iterative blind equalization method, comprising the following steps:
a.)将发射信号a(k)经过脉冲响应信道得到信道输出向量x(k),其中k为时间序列,下同;a.) Pass the transmitted signal a(k) through the impulse response channel to obtain the channel output vector x(k), where k is a time series, the same below;
b.)采用信道噪声n(k)和步骤a所述的信道输出向量x(k)得到均衡器的输入信号:y(k)=x(k)+n(k);b.) Obtain the input signal of the equalizer by using the channel noise n(k) and the channel output vector x(k) described in step a: y(k)=x(k)+n(k);
c.)将误差信号e(k)通过SEI算法引入白化矩阵Q,采用白化矩阵Q对均衡器的输入信号y(k)白化;c.) The error signal e(k) is introduced into the whitening matrix Q through the SEI algorithm, and the input signal y(k) of the equalizer is whitened by using the whitening matrix Q;
d.)将步骤c.)所述白化后的输入信号y(k)经过正交小波变换得到正交小波的输出向量:R(k)=y(k)V,其中V为正交小波变换矩阵;d.) The input signal y(k) after step c.) is subjected to orthogonal wavelet transform to obtain the output vector of orthogonal wavelet: R(k)=y(k)V, wherein V is orthogonal wavelet transform matrix;
还包括如下步骤:Also include the following steps:
e.)随机产生初始种群W=[W1,W2,…,WM],其中第i个蚂蚁个体Wi对应均衡器的第i个权向量,其中0<i ≤M,i和M都为自然数,用其作为蚂蚁的初始化位置;e.) Randomly generate the initial population W=[W 1 , W 2 ,...,W M ], where the i-th ant individual W i corresponds to the i-th weight vector of the equalizer, where 0<i ≤ M, i and M Both are natural numbers, which are used as the initial position of ants;
f.)将均衡器的代价函数的倒数作为蚁群算法寻优的目标函数:f.) The reciprocal of the cost function of the equalizer is used as the objective function of the ant colony algorithm optimization:
式中,J(Wi)=JCMA是均衡器的代价函数;In the formula, J(W i )=J CMA is the cost function of the equalizer;
g.)每只蚂蚁采用步骤f.)所述的目标函数寻优一步或者完成对所有M个权向量的寻优后,对残留信息素进行更新处理:g.) Each ant uses the objective function described in step f.) to optimize one step or after completing the optimization of all M weight vectors, update the residual pheromone:
fij(t+1)=(1-ρ)fij(t)+Δfij,f ij (t+1)=(1-ρ)f ij (t)+Δf ij ,
式中, 表示第k只蚂蚁在本次循环中留在第i个权向量和第j个权向量之间的路径上的信息素,ρ为信息素挥发系数,取值范围为ρ∈[0,1),Δfij表示蚂蚁在本次循环中在第i个权向量和第j个权向量之间的路径上留下的信息素,fij(t)为信息素更新第t步所对应的信息素;In the formula, Indicates the pheromone left by the kth ant on the path between the i-th weight vector and the j-th weight vector in this cycle, ρ is the pheromone volatilization coefficient, and the value range is ρ∈[0, 1) , Δf ij represents the pheromone left by the ant on the path between the i-th weight vector and the j-th weight vector in this cycle, f ij (t) is the pheromone corresponding to the t-th step of pheromone update ;
h.)求取使目标函数最优时所对应的权向量值,并且把这个权向量作为均衡器的初始化权向量。h.) Obtain the corresponding weight vector value when the objective function is optimal, and use this weight vector as the initialization weight vector of the equalizer.
本发明公布了一种蚁群优化的正交小波超指数迭代盲均衡方法,该方法利用蚁群算法来寻找最优的权向量作为均衡器输入的初始权向量值,从而避免算法出现局部收敛的情况。该方法具有加快收敛速度的正反馈机制,利用超指数迭代(SEI)方法对数据的白化作用,利用正交小波变换对信号进行去相关,并充分利用了蚁群算法的全局收敛性。水声信道仿真结果表明,与正交小波超指数迭代盲均衡方法(WT-SEI-CMA)相比,该方法具有更好的收敛速度和稳态误差,且均衡后的眼图更加清晰、紧凑。因而,该方法具有一定的实用价值。The invention discloses an ant colony optimized orthogonal wavelet super-exponential iterative blind equalization method, which uses an ant colony algorithm to find the optimal weight vector as the initial weight vector value of the equalizer input, thereby avoiding local convergence of the algorithm Condition. The method has a positive feedback mechanism to speed up the convergence speed, uses the super-exponential iteration (SEI) method to whiten the data, uses the orthogonal wavelet transform to decorrelate the signal, and makes full use of the global convergence of the ant colony algorithm. The underwater acoustic channel simulation results show that compared with the orthogonal wavelet super-exponential iterative blind equalization method (WT-SEI-CMA), this method has better convergence speed and steady-state error, and the eye diagram after equalization is clearer and more compact . Therefore, this method has certain practical value.
附图说明Description of drawings
图1:基于正交小波变换的SEI方法原理框图;Figure 1: Block diagram of SEI method based on orthogonal wavelet transform;
图2:蚁群优化的正交小波变换盲均衡原理图;Figure 2: Schematic diagram of blind equalization with orthogonal wavelet transform for ant colony optimization;
图3:(a)均方误差曲线,(b)SEI的输出信号,(c)WT-SEI输出,(d)ACA-WT-SEI输出;Figure 3: (a) mean square error curve, (b) output signal of SEI, (c) WT-SEI output, (d) ACA-WT-SEI output;
图4:(a)均方误差曲线,(b)SEI的输出信号,(c)WT-SEI输出,(d)ACA-WT-SEI输出。Figure 4: (a) mean square error curve, (b) output signal of SEI, (c) WT-SEI output, (d) ACA-WT-SEI output.
具体实施方式Detailed ways
将正交小波超指数迭代引入到盲均衡方法(CMA),得到正交小波超指数迭代盲均衡方法(WT-SEI)。其原理图,如图1所示。该方法通过SEI算法引入白化矩阵Q,该矩阵对均衡器的输入信号起白化作用,再利用小波对信号进行正交小波变换,并作能量归一化处理,之后在变换域中,利用小波变换后的信号对均衡器权系数进行调整,降低了这些信号的自相关性,加快了收敛速度。The orthogonal wavelet super-exponential iteration is introduced into the blind equalization method (CMA), and the orthogonal wavelet super-exponential iterative blind equalization method (WT-SEI) is obtained. Its schematic diagram is shown in Figure 1. This method introduces the whitening matrix Q through the SEI algorithm, which whitens the input signal of the equalizer, and then uses the wavelet to perform orthogonal wavelet transform on the signal, and performs energy normalization processing, and then in the transform domain, uses the wavelet transform The final signals adjust the weight coefficients of the equalizer, which reduces the autocorrelation of these signals and speeds up the convergence speed.
图1中,a(k)表示发射机发射信号,是方差为1的白色独立同分布序列;c(k)为信道脉冲响应向量;n(k)为信道噪声,一般假设为高斯白噪声序列,且与信号统计独立。y(k)为均衡器的输入序列,且y(k)=[y(k),y(k-1),…,y(k-L+1)]T;W(k)为均衡器权向量;ψ(·)是产生误差e(k)的非线性函数;z(k)是均衡器的输出序列。均衡器输入信号为In Figure 1, a(k) represents the signal transmitted by the transmitter, which is a white IID sequence with a variance of 1; c(k) is the channel impulse response vector; n(k) is the channel noise, which is generally assumed to be a Gaussian white noise sequence , and is independent of the signal statistics. y(k) is the input sequence of the equalizer, and y(k)=[y(k), y(k-1),..., y(k-L+1)] T ; W(k) is the equalizer Weight vector; ψ(·) is a nonlinear function that produces error e(k); z(k) is the output sequence of the equalizer. The equalizer input signal is
y(k)=x(k)+n(k)=cT(k)a(k)+n(k) (1)y(k)=x(k)+n(k)=c T (k)a(k)+n(k) (1)
设V为正交小波变换矩阵, 式中,为小波变换系数、为尺度变换系数,和为均衡器的权系数,J为最大尺度;kJ=N/2j-1(j=1,2,…,J)为尺度j下小波函数的最大平移。则Let V be the orthogonal wavelet transform matrix, In the formula, is the wavelet transform coefficient, is the scaling coefficient, and is the weight coefficient of the equalizer, J is the maximum scale; k J =N/2 j -1 (j=1, 2,..., J) is the maximum translation of the wavelet function at scale j. but
R(k)=y(k)V (2)R(k)=y(k)V (2)
z(k)=WH(k)R(k) (3)z(k)=W H (k)R(k) (3)
式中H为共轭转置,这时,Q矩阵的计算迭代公式为In the formula, H is the conjugate transpose. At this time, the iterative formula for calculating the Q matrix is
式中,μm表示Q矩阵计算的迭代步长。权向量的迭代公式为In the formula, μ m represents the iteration step size of Q matrix calculation. The iterative formula of the weight vector is
式中,e(k)=y(k)(|y(k)|2-R)是误差函数,R=E[|a(k)|4]/E[|a(k)|2]是发射序列a(k)的模,μ为步长。 分别表示对小波变换系数rj,n(k)、尺度变换系数sJ,n(k)平均功率估计,可由下式递推得到In the formula, e(k)=y(k)(|y(k)| 2 -R) is the error function, R=E[|a(k)| 4 ]/E[|a(k)| 2 ] is the modulus of the emission sequence a(k), and μ is the step size. represent the average power estimation of wavelet transform coefficient r j, n (k) and scale transform coefficient s J, n (k) respectively, which can be obtained recursively by the following formula
式中,β为平滑因子,rj,n(k)为小波空间j层分解的第n个信号的小波变换系数、sj,n(k)表示尺度空间中最大分解层数j时的第n个信号的尺度变换系数。式(2)~(7)就构成了基于正交小波变换的超指数迭代盲均衡方法(Super-Exponential Iterative Based onOrthogonal Wavelet Transform,WT-SEI)。In the formula, β is the smoothing factor, r j,n (k) is the wavelet transform coefficient of the nth signal decomposed in wavelet space j layer, s j,n (k) represents the maximum decomposition layer j in the scale space Scaling coefficients for n signals. Equations (2)-(7) constitute a super-exponential iterative blind equalization method based on orthogonal wavelet transform (Super-Exponential Iterative Based on Orthogonal Wavelet Transform, WT-SEI).
本发明蚁群优化的正交小波超指数迭代盲均衡算法如下:The orthogonal wavelet super-exponential iterative blind equalization algorithm of the ant colony optimization of the present invention is as follows:
传统的正交小波超指数迭代盲均衡方法(WT-SEI-CMA)是利用超指数迭代算法在权向量每次迭代时计算Q矩阵,通过该矩阵来优化步长因子,对均衡器的输入信号起白化作用,并对其进行正交小波变换,信号自相关矩阵近似成带状分布(见文献:Guo Yecai,HanYingge.Orthogonal Wavelet Transform Based Sign Decision Dual-mode Blind EqualizationAlgorithm[C]//2008 9th International Conference on Signal ProcessingProceedings,Beijing,China.USA:The Institute of Electrical and Electronics EngineersInc.2009:80-83。韩迎鸽,郭业才,吴造林,等.基于正交小波的多模盲均衡器设计与算法仿真研究[J].仪器仪表学报,2008,29(7):1441-1445),其自相关性下降。传统的盲均衡算法先构造一个代价函数,并利用这个代价函数对均衡器权向量求梯度,从而确定均衡器权值的迭代方程,但这种方法本质是一种只考虑局部区域的梯度下降搜索法,缺乏全局搜索能力,易收敛到局部极小解。The traditional orthogonal wavelet super-exponential iterative blind equalization method (WT-SEI-CMA) uses the super-exponential iterative algorithm to calculate the Q matrix at each iteration of the weight vector, and optimizes the step factor through the matrix, and the input signal of the equalizer It plays the role of whitening, and performs orthogonal wavelet transform on it, and the signal autocorrelation matrix approximates a banded distribution (see literature: Guo Yecai, HanYingge. Orthogonal Wavelet Transform Based Sign Decision Dual-mode Blind Equalization Algorithm[C]//2008 9 th International Conference on Signal Processing Proceedings, Beijing, China. USA: The Institute of Electrical and Electronics Engineers Inc. 2009: 80-83. Han Yingge, Guo Yecai, Wu Zuolin, etc. Design and Algorithm of Multi-mode Blind Equalizer Based on Orthogonal Wavelet Simulation research [J]. Journal of Instrumentation, 2008, 29(7): 1441-1445), its autocorrelation decreased. The traditional blind equalization algorithm first constructs a cost function, and uses this cost function to calculate the gradient of the equalizer weight vector, so as to determine the iterative equation of the equalizer weight, but this method is essentially a gradient descent search that only considers the local area method, lack of global search ability, easy to converge to local minimum solution.
本发明采用蚁群算法来寻找最优解,来克服WT-SEI-CMA的缺陷。先用蚁群优化盲均衡方法对很小一段的数据进行均衡,利用蚁群算法的正反馈机制和信息素更新特点,寻找到目标函数最优时的权向量,并将这组权向量作为正交小波盲均衡方法的初始化权向量。The invention adopts the ant colony algorithm to find the optimal solution to overcome the defects of WT-SEI-CMA. First use the ant colony optimization blind balance method to balance a very small piece of data, use the positive feedback mechanism of the ant colony algorithm and the pheromone update characteristics to find the weight vector when the objective function is optimal, and use this set of weight vectors as positive The initialization weight vector of the intersection wavelet blind equalization method.
如图2所示。本发明随机产生一组权向量,每只蚂蚁依次对应各组权向量,把此权向量作为蚁群算法的决策变量,把均衡器输入信号作为蚁群算法的输入,并结合CMA算法的代价函数,确定蚁群算法的进化目标函数,利用蚁群算法来求解均衡器的代价函数,搜索最佳的均衡器权值。这样,将蚁群算法引入到正交小波超指数迭代盲均衡方法中,称为基于蚁群优化的正交小波超指数迭代盲均衡方法(ACO-WT-SEI)。在这种方法中,利用蚁群算法全局性搜索和正反馈机制的特点,寻找最佳的均衡器权值,而不像CMA算法那样,依赖梯度信息的指导来调整均衡器权值。as shown in picture 2. The present invention randomly generates a group of weight vectors, each ant corresponds to each group of weight vectors in turn, uses the weight vector as the decision variable of the ant colony algorithm, uses the equalizer input signal as the input of the ant colony algorithm, and combines the cost function of the CMA algorithm , determine the evolutionary objective function of the ant colony algorithm, use the ant colony algorithm to solve the cost function of the equalizer, and search for the best equalizer weight. In this way, the ant colony algorithm is introduced into the orthogonal wavelet super-exponential iterative blind equalization method, which is called the ant colony optimization-based orthogonal wavelet super-exponential iterative blind equalization method (ACO-WT-SEI). In this method, the characteristics of the ant colony algorithm's global search and positive feedback mechanism are used to find the best equalizer weight, unlike the CMA algorithm, which relies on the guidance of gradient information to adjust the equalizer weight.
蚁群算法优化过程如下:The optimization process of ant colony algorithm is as follows:
无论是常数模盲均衡方法还是正交小波盲均衡方法的代价函数,均为:Whether it is the constant modulus blind equalization method or the orthogonal wavelet blind equalization method, the cost function is:
式中,z(k)是均衡器的输出、是均衡器的模值。现结合式(8)式来说明优化过程。1初始化权向量的产生where z(k) is the output of the equalizer, is the modulus value of the equalizer. Now combine formula (8) to illustrate the optimization process. 1 Generation of initialization weight vector
蚁群算法是对群体的各个蚂蚁寻优进行操作,寻优操作前要初始化蚁群起始搜索点的初始数据,即初始化每只蚂蚁所对应的权向量,确定其初始值为[-1,1],并用随机方法产生一定数目的权向量。其中每个蚂蚁个体对应均衡器的一个权向量,权向量的个数为蚂蚁的规模。设随机产生的初始种群W=[W1,W2,…,WM],其中的一个蚂蚁个体Wi(0<i≤M)对应均衡器一个权向量,用其作为蚂蚁的初始化位置。The ant colony algorithm operates on the optimization of each ant in the group. Before the optimization operation, the initial data of the initial search point of the ant colony must be initialized, that is, the weight vector corresponding to each ant is initialized, and its initial value is determined to be [-1, 1 ], and use a random method to generate a certain number of weight vectors. Each individual ant corresponds to a weight vector of the equalizer, and the number of weight vectors is the size of the ants. Assume that the randomly generated initial population W=[W 1 , W 2 ,...,W M ], one ant individual W i (0<i≤M) corresponds to a weight vector of the equalizer, which is used as the initial position of the ant.
2目标函数的产生2 Generation of objective function
盲均衡方法的目的是使代价函数迭代至最小值,得到最佳的均衡器权值,而蚁群算法寻优的目的是得到目标函数值最大时所对应的个体,为此,将均衡器的代价函数的倒数作为蚁群算法寻优的目标函数,则有The purpose of the blind equalization method is to iterate the cost function to the minimum value to obtain the best equalizer weight, while the purpose of the ant colony algorithm optimization is to obtain the individual corresponding to the maximum value of the objective function. The reciprocal of the cost function is used as the objective function of the ant colony algorithm optimization, then there is
式中,J(Wi)=JCMA是均衡器的代价函数,Wi是蚁群算法产生的均衡器权向量个体,用其作为蚁群算法寻优的初始信息素。In the formula, J(W i )=J CMA is the cost function of the equalizer, W i is the weight vector individual of the equalizer generated by the ant colony algorithm, which is used as the initial pheromone for the optimization of the ant colony algorithm.
3信息素的更新3 Update of pheromones
蚁群算法的每一次寻优都要接收一定的输入信号,这些信号是由输入信号提供的,其进入蚁群算法后首先根据转移概率来决定是进行局部寻优还是全局寻优,并将新位置限定在可行域内(见文献:周建新,杨卫东,李擎.求解连续函数优化问题的改进蚁群算法及仿真[J].系统仿真学报,2009,21(6):1685-1688)。蚂蚁每移动到一个新位置前,它都会比较新的位置,会使信息素是增强或减弱。如果增强就移动到新位置,同时向环境释放新位置的信息素,否则就继续试探别的位置(见文献:汪镭,吴启迪.蚁群算法在连续空间寻优问题解中的应用[J].控制与决策,2003,18(1):45-48)。为避免残留信息素淹没启发信息,在每只蚂蚁寻优一步或者完成对所有M个权向量的寻优后,对残留信息素进行更新处理,如下式所示:Each optimization of the ant colony algorithm must receive a certain input signal, which is provided by the input signal. After entering the ant colony algorithm, it first decides whether to perform local optimization or global optimization according to the transition probability, and the new The location is limited within the feasible region (see literature: Zhou Jianxin, Yang Weidong, Li Qing. Improved ant colony algorithm and simulation for solving continuous function optimization problems [J]. Journal of System Simulation, 2009, 21(6): 1685-1688). Every time an ant moves to a new location, it will compare the new location, which will strengthen or weaken the pheromone. If it is enhanced, move to a new position, and release the pheromone of the new position to the environment at the same time, otherwise continue to test other positions (see literature: Wang Lei, Wu Qidi. Application of ant colony algorithm in continuous space optimization problem [J ]. Control and Decision Making, 2003, 18(1): 45-48). In order to prevent the residual pheromone from submerging the heuristic information, after each ant optimizes one step or completes the optimization of all M weight vectors, the residual pheromone is updated, as shown in the following formula:
fij(t+1)=(1-ρ)fij(t)+Δfij, (10)f ij (t+1)=(1-ρ)f ij (t)+Δf ij , (10)
式中, 表示第k只蚂蚁在本次循环中留在路径ij上的信息素,ρ为信息素挥发系数,取值范围为ρ∈[0,1),Δfij表示蚂蚁在本次循环中在第i个权向量和第j个权向量之间的路径上留下的信息素,fij(t)为信息素更新第t步所对应的信息素;In the formula, Indicates the pheromone left by the kth ant on the path ij in this cycle, ρ is the pheromone volatilization coefficient, and the value range is ρ∈[0, 1), Δf ij represents the pheromone of the ant in the ith cycle in this cycle The pheromone left on the path between the weight vector and the jth weight vector, f ij (t) is the pheromone corresponding to the tth step of pheromone update;
4最佳权向量的选择4 Selection of the best weight vector
通过蚁群算法的转移概率进行局部寻优和全局寻优,并将寻优结果限定在可行域内,保留最优解,再经过信息素的更新求解最优的权向量,将每代中目标函数最大的权向量个体选择出来,考虑到算法在抽取最佳个体时的实时性和盲均衡算法要满足迫零条件,最后求取使目标函数最优时所对应的权向量值,并且把这个权向量作为ACO-WT-SEI的初始化权向量。Local optimization and global optimization are performed through the transition probability of the ant colony algorithm, and the optimization results are limited to the feasible region, the optimal solution is retained, and then the optimal weight vector is solved by updating the pheromone, and the objective function in each generation The individual with the largest weight vector is selected, considering the real-time performance of the algorithm when extracting the best individual and the fact that the blind equalization algorithm must satisfy the zero-forcing condition, and finally obtain the corresponding weight vector value when the objective function is optimal, and use this weight The vector serves as the initialization weight vector of ACO-WT-SEI.
实施例1两径水声信道仿真
两径水声信道的单位冲激响应为c=[-0.35,0,0,1],发射信号为8PSK,均衡器权长均为16,信噪比25dB,SEI算法中,第4个抽头系数设置为1,其余为0,步长μSEI=0.00015,μm=0.02;WT-SEI算法中,第11个抽头系数设置为1,其余为0,步长μWT-SEI=0.01,μm=0.002;ACA-WT-SEI的步长μACA-WT-SEI=0.004,μm=0.004。对每个信道的输入信号采用DB4正交小波进行分解,分解层次是2层,功率初始值设置为4,遗忘因子β=0.9999;500次蒙特卡诺仿真结果,如图3所示。The unit impulse response of the two-path underwater acoustic channel is c=[-0.35, 0, 0, 1], the transmitted signal is 8PSK, the weight length of the equalizer is 16, and the signal-to-noise ratio is 25dB. In the SEI algorithm, the fourth tap The coefficient is set to 1, the rest are 0, the step size μ SEI =0.00015, μ m =0.02; in the WT-SEI algorithm, the 11th tap coefficient is set to 1, the rest are 0, the step size μ WT-SEI =0.01, μ m =0.002; step size of ACA-WT-SEI μ ACA-WT-SEI =0.004, μ m =0.004. The input signal of each channel is decomposed by DB4 orthogonal wavelet, the decomposition level is 2 layers, the initial value of power is set to 4, and the forgetting factor β=0.9999; 500 Monte Carlo simulation results are shown in Figure 3.
图3(a)表明:在收敛速度上,ACA-WT-SEI比SEI大约快了8000步,比WT-SEI大约快了4000步。在稳态误差上,ACA-WT-SEI与SEI相比,减小了近7dB,与WT-SEI相比,减小了近6dB。图3(b、c、d)表明:ACA-WT-SEI的输出星座图比SEIA和WT-SEI更为清晰、紧凑。Figure 3(a) shows that ACA-WT-SEI is about 8000 steps faster than SEI and about 4000 steps faster than WT-SEI in terms of convergence speed. In terms of steady-state error, ACA-WT-SEI reduces nearly 7dB compared with SEI, and reduces nearly 6dB compared with WT-SEI. Figure 3(b, c, d) shows that the output constellation diagram of ACA-WT-SEI is clearer and more compact than that of SEIA and WT-SEI.
实施例2混合相位信道Embodiment 2 mixed phase channel
混合相位信道为c=[0.3132 -0.1040 0.8908 0.3134],发射信号为16QAM,均衡器权长均为16,信噪比25dB,SEI算法中,第3个抽头系数设置为1,其余为0,步长μSEI=0.00005,μm=0.02;WT-SEI算法中,第4个抽头系数设置为1,其余为0,步长μWT-SEI=0.0005,μm=0.02;ACA-WT-SEI的步长μACA-WT-SEI=0.0006,μm=0.0006。对每个信道的输入信号采用DB4正交小波进行分解,分解层次是2层,功率初始值设置为4,遗忘因子β=0.9999;500次蒙特卡诺仿真结果,如图4所示。The mixed phase channel is c=[0.3132 -0.1040 0.8908 0.3134], the transmitted signal is 16QAM, the weight length of the equalizer is 16, and the signal-to-noise ratio is 25dB. In the SEI algorithm, the third tap coefficient is set to 1, and the rest are set to 0. Long μ SEI =0.00005, μ m =0.02; in the WT-SEI algorithm, the fourth tap coefficient is set to 1, the rest are 0, the step size μ WT-SEI =0.0005, μ m =0.02; ACA-WT-SEI Step size μ ACA-WT-SEI = 0.0006, μ m = 0.0006. The input signal of each channel is decomposed by DB4 orthogonal wavelet, the decomposition level is 2 layers, the initial value of power is set to 4, and the forgetting factor β = 0.9999; 500 Monte Carlo simulation results are shown in Figure 4.
图4(a)表明:在收敛速度上,ACA-WT-SEI比SEI和WT-SEI大约快了4000步。在稳态误差上,ACA-WT-SEI与SEI相比,减小了近2.2dB,与WT-SEI相比,减小了近1.8dB。图4(b、c、d)表明:ACA-WT-SEI的输出星座图比SEI和WT-SEI更为清晰、紧凑。Figure 4(a) shows that ACA-WT-SEI is about 4000 steps faster than SEI and WT-SEI in terms of convergence speed. In the steady-state error, compared with SEI, ACA-WT-SEI has reduced by nearly 2.2dB, and compared with WT-SEI, it has reduced by nearly 1.8dB. Figure 4(b, c, d) shows that the output constellation of ACA-WT-SEI is clearer and more compact than that of SEI and WT-SEI.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010216298 CN101902417B (en) | 2010-06-30 | 2010-06-30 | Orthogonal wavelet transformation super-exponential iteration (SEI) blind equalization algorithm based on ant colony optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010216298 CN101902417B (en) | 2010-06-30 | 2010-06-30 | Orthogonal wavelet transformation super-exponential iteration (SEI) blind equalization algorithm based on ant colony optimization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101902417A true CN101902417A (en) | 2010-12-01 |
CN101902417B CN101902417B (en) | 2013-04-03 |
Family
ID=43227630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010216298 Expired - Fee Related CN101902417B (en) | 2010-06-30 | 2010-06-30 | Orthogonal wavelet transformation super-exponential iteration (SEI) blind equalization algorithm based on ant colony optimization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101902417B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102123115A (en) * | 2011-04-15 | 2011-07-13 | 南京信息工程大学 | Particle swarm optimization based orthogonal wavelet blind equalization method |
CN102185808A (en) * | 2011-04-15 | 2011-09-14 | 南京信息工程大学 | Rapidly-convergent immune-clone-based orthogonal wavelet transform constant modulus blind equalization algorithm |
CN102263714A (en) * | 2011-07-25 | 2011-11-30 | 南京信息工程大学 | Orthogonal wavelet multi-mode blind equalization method based on chaos optimization |
CN103475608A (en) * | 2013-06-13 | 2013-12-25 | 南京信息工程大学 | Simulation annealing and fruit fly hybrid optimization wavelet generalized discrete multi-modulus blind equalization method |
CN105072588A (en) * | 2015-08-06 | 2015-11-18 | 北京大学 | Fully Linear Multimedia Multicast Method Without Error Correction Protection |
CN107018103A (en) * | 2017-04-07 | 2017-08-04 | 淮南职业技术学院 | A kind of small echo norm blind balance method based on the group's optimization of adaptive step monkey |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101478350A (en) * | 2009-01-20 | 2009-07-08 | 南京信息工程大学 | Combined super-exponential iteration blind equalization algorithm based on orthogonal wavelet transform |
-
2010
- 2010-06-30 CN CN 201010216298 patent/CN101902417B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101478350A (en) * | 2009-01-20 | 2009-07-08 | 南京信息工程大学 | Combined super-exponential iteration blind equalization algorithm based on orthogonal wavelet transform |
Non-Patent Citations (1)
Title |
---|
《系统仿真学报》 20100228 孙云山等 蚁群算法在盲均衡问题中的应用研究 第395-398页 1 第22卷, 第2期 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102123115A (en) * | 2011-04-15 | 2011-07-13 | 南京信息工程大学 | Particle swarm optimization based orthogonal wavelet blind equalization method |
CN102185808A (en) * | 2011-04-15 | 2011-09-14 | 南京信息工程大学 | Rapidly-convergent immune-clone-based orthogonal wavelet transform constant modulus blind equalization algorithm |
CN102185808B (en) * | 2011-04-15 | 2013-11-27 | 南京信息工程大学 | A Fast Convergent Immune Cloning Orthogonal Wavelet Transform Blind Equalization Method |
CN102123115B (en) * | 2011-04-15 | 2014-04-16 | 南京信息工程大学 | Particle swarm optimization based orthogonal wavelet blind equalization method |
CN102263714A (en) * | 2011-07-25 | 2011-11-30 | 南京信息工程大学 | Orthogonal wavelet multi-mode blind equalization method based on chaos optimization |
CN103475608A (en) * | 2013-06-13 | 2013-12-25 | 南京信息工程大学 | Simulation annealing and fruit fly hybrid optimization wavelet generalized discrete multi-modulus blind equalization method |
CN105072588A (en) * | 2015-08-06 | 2015-11-18 | 北京大学 | Fully Linear Multimedia Multicast Method Without Error Correction Protection |
CN105072588B (en) * | 2015-08-06 | 2018-10-16 | 北京大学 | The multi-medium data method of multicasting that full linear is protected without error correction |
CN107018103A (en) * | 2017-04-07 | 2017-08-04 | 淮南职业技术学院 | A kind of small echo norm blind balance method based on the group's optimization of adaptive step monkey |
CN107018103B (en) * | 2017-04-07 | 2020-02-14 | 淮南职业技术学院 | Wavelet constant modulus blind equalization method based on adaptive step size monkey swarm optimization |
Also Published As
Publication number | Publication date |
---|---|
CN101902417B (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102123115B (en) | Particle swarm optimization based orthogonal wavelet blind equalization method | |
CN111464465B (en) | A Channel Estimation Method Based on Integrated Neural Network Model | |
CN101902417A (en) | Super-exponential iterative blind equalization method based on ant colony optimization | |
CN107124379B (en) | An Orthogonal Wavelet Norm Blind Equalization Method Based on Improved Wolf Pack Optimization | |
Tan et al. | Improving massive MIMO belief propagation detector with deep neural network | |
CN113381828B (en) | Sparse code multiple access random channel modeling method based on condition generation countermeasure network | |
CN103888391B (en) | Signal blind detection method based on double Sigmoid chaotic neural network | |
CN111614584B (en) | Transform domain adaptive filtering channel estimation method based on neural network | |
CN102289719A (en) | Orthogonal wavelet blind equalization method based on optimization of simulated annealing genetic algorithm (SA-GA-WTCMA) | |
CN113364528B (en) | Underwater wireless optical communication receiver for generating countermeasure network based on depth condition | |
Rahman et al. | Deep learning-based improved cascaded channel estimation and signal detection for reconfigurable intelligent surfaces-assisted MU-MISO systems | |
CN112422208A (en) | Signal detection method based on antagonistic learning under unknown channel model | |
CN107018103B (en) | Wavelet constant modulus blind equalization method based on adaptive step size monkey swarm optimization | |
CN105007246B (en) | The multi-mode blind equalization method that a kind of mould optimizes by method | |
CN107070825B (en) | A Wavelet Weighted Multimode Blind Equalization Method Based on Simulated Annealing Wolf Pack Optimization | |
CN114938232A (en) | LSTM-based simultaneous co-frequency full-duplex digital domain self-interference suppression method | |
CN103475608B (en) | Simulated annealing and fruit bat hybrid optimization small echo GENERALIZED DISCRETE LINEAR RANDOM SYSTEM multi-mode blind equalization method | |
CN102299875B (en) | A Wavelet Multi-mode Blind Equalization Method Introducing Immune Optimization Support Vector Machine | |
Yuan et al. | Channel estimation and pilot design for uplink sparse code multiple access system based on complex-valued sparse autoencoder | |
CN102118332A (en) | Orthogonal wavelet blind equalization method based on immune clone particle swarm optimization | |
Yang et al. | Federated dynamic neural network for deep MIMO detection | |
CN107018104B (en) | Wavelet weighted multi-mode blind equalization method based on mixed monkey swarm optimization | |
CN102185808B (en) | A Fast Convergent Immune Cloning Orthogonal Wavelet Transform Blind Equalization Method | |
Abdelkareem | Performance Analysis of Deep Learning based Signal Constellation Identification Algorithms for Underwater Acoustic Communications | |
Guo et al. | Blind equalization algorithm based on adaptive genetic algorithm and wavelet transform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20161226 Address after: 225400 Jiangsu Province, Taixing City Industrial Park Xiangrong Road No. 18 Patentee after: JIANGSU QIANJING INFORMATION TECHNOLOGY CO., LTD. Address before: 210044 Nanjing Ning Road, Jiangsu, No. six, No. 219 Patentee before: Nanjing IT Engineering Univ. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180111 Address after: 210044 Nanjing Ning Road, Jiangsu, No. six, No. 219 Patentee after: Nanjing University of Information Science and Technology Address before: 225400 Jiangsu Province, Taixing City Industrial Park Xiangrong Road No. 18 Patentee before: JIANGSU QIANJING INFORMATION TECHNOLOGY CO., LTD. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130403 Termination date: 20180630 |