CN101901342B - 影像目标区域的提取方法和装置 - Google Patents

影像目标区域的提取方法和装置 Download PDF

Info

Publication number
CN101901342B
CN101901342B CN200910107726.4A CN200910107726A CN101901342B CN 101901342 B CN101901342 B CN 101901342B CN 200910107726 A CN200910107726 A CN 200910107726A CN 101901342 B CN101901342 B CN 101901342B
Authority
CN
China
Prior art keywords
image
pixel
edge
statistics
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910107726.4A
Other languages
English (en)
Other versions
CN101901342A (zh
Inventor
徐启飞
孙文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Mindray Bio Medical Electronics Co Ltd
Original Assignee
Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Mindray Bio Medical Electronics Co Ltd filed Critical Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority to CN200910107726.4A priority Critical patent/CN101901342B/zh
Publication of CN101901342A publication Critical patent/CN101901342A/zh
Application granted granted Critical
Publication of CN101901342B publication Critical patent/CN101901342B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种影像目标区域的提取方法和装置。其中所述方法主要包括:读取影像数据;检测影像目标区域的完整边缘;将满足灰度和相对平滑度条件的像素点识别为影像中的背景标志点;以背景标志点为种子点,目标区域的完整边缘为约束条件,对影像进行区域生长,获得背景区域;最后将区域生长获得的背景区域进行反取,从而获得影像中的目标区域。按照本发明实施例的影像目标区域的提取方法和装置,将影像中影响影像显示的背景区域剔除,以获得影像的目标区域,然后再对目标区域进行优化显示,降低背景区域的影响,改善影像的显示效果。

Description

影像目标区域的提取方法和装置
技术领域
本发明涉及数字影像的处理与识别技术,具体涉及影像目标区域的提取方法和装置。
背景技术
在数字影像的处理与识别技术中,背景分割的目的在于从影像的背景中分割出感兴趣的前景对象,即影像的目标区域。阈值分割法是一种常用的背景分割方法,在阈值分割法中,通常通过对影像直方图分析后获得背景分割阈值点,然后利用阈值分割(如整体阈值、坐标的阈值以及区域阈值等)手段获取背景区域或直接获取目标影像区域。但对于背景灰度变化明显的影像,例如某些医学DR影像,阈值分割法很难通过直方图分析获得,而且工程稳定性较差。
阈值分割法有直接阈值法,也有和区域生长结合的背景分割法。其中,后者实现的难点在于背景标志点的正确且完美的选取,以及完整轮廓的获得;尤其是背景标志点的选择,容易造成漏选或者错选。当背景区域被解剖区域分开而不能联通时,若某块背景区域无背景标志点,则该块背景无法剔除,使得背景剔除不完整。
在背景变化较剧烈的影像中,常用的背景分割方法容易导致影像的目标区域缺省显示较白,对比度较差。需要通过调节增强曲线或\和窗宽窗位才能改善显示效果。上述问题和现象经过进一步分析,表明是一个缺省窗的选择问题,虽然在算法上通过直方图分析能够解决压缩一部分背景区域的动态范围,但是如果背景区域比较大,而且背景像素灰度变化较大,那么这一方法并不可靠。
可见现有技术中存在一定的缺陷,需要进一步地改进。
发明内容
本发明提出一种影像目标区域的提取方法和装置,以及影像目标区域的边缘检测方法和装置。为了实现这一目的,本发明所采取的技术方案如下。
按照本发明实施例的第一方面,提供一种影像目标区域的提取方法,包括以下步骤:读取步骤,用于读取影像数据;边缘检测步骤,用于检测影像目标区域的完整边缘;识别步骤,将满足灰度和相对平滑度条件的像素点识别为影像中的背景标志点;区域生长步骤,以背景标志点为种子点,目标区域的完整边缘为约束条件,对影像进行区域生长,获得背景区域;目标提取步骤,将区域生长获得的背景区域进行反取,从而获得影像中的目标区域。
按照本发明实施例的第二方面,提供一种影像目标区域的边缘检测方法,包括以下步骤:计算影像中像素点的统计学近似边缘参数;根据预设的阈值对统计学近似边缘参数进行阈值判断;将满足判断条件的像素点定义为边缘点。
按照本发明实施例的第三方面,提供一种影像目标区域的提取装置,包括以下模块:读取模块,用于读取影像数据;边缘检测模块,用于检测影像目标区域的完整边缘;识别模块,将满足灰度和相对平滑度条件的像素点识别为影像中的背景标志点;区域生长模块,以背景标志点为种子点,目标区域的完整边缘为约束条件,对影像进行区域生长,获得背景区域;目标提取模块,将区域生长获得的背景区域进行反取,从而获得影像中的目标区域。
按照本发明实施例的第四方面,提供一种影像目标区域的边缘检测装置,包括以下模块:计算模块,用于计算影像中像素点的统计学近似边缘参数;判断模块,根据预设的阈值对统计学近似边缘参数进行阈值判断;检测模块,用于将满足判断条件的像素点定义为边缘点,并将边缘点的集合定义为目标区域的边缘。
按照本发明实施例的方法和装置,将影像中影响影像显示的背景区域剔除,以获得影像的目标区域,然后再对目标区域进行优化显示,降低背景区域的影响,改善影像的显示效果。
附图说明
图1为本发明实施例的影像目标区域提取的基本技术方案流程图;
图2为待处理的人体头颅影像;
图3为待处理的人体大腿影像;
图4为边缘检测Canny算子处理后的人体头颅影像边缘;
图5为边缘检测Canny算子处理后的人体大腿影像边缘;
图6为本发明实施例的边缘检测方法处理后的人体头颅影像边缘;
图7为本发明实施例的边缘检测方法处理后的人体大腿影像边缘;
图8为本发明实施例的识别背景标志点的人体头颅影像图;
图9为本发明实施例的识别背景标志点的人体大腿影像图;
图10为本发明实施例的背景分割后提取的人体头颅区域影像图;
图11为本发明实施例的背景分割后提取的人体大腿区域影像图;
图12为本发明实施例的影像目标区域的提取装置结构示意图;
图13为本发明实施例的影像目标区域的边缘检测装置结构示意图;
具体实施方式
如图1所示,按照本实施例的影像目标区域的提取方法主要包括读取步骤101、边缘检测步骤103、识别步骤105、区域生长步骤107、以及目标提取步骤109。采用按照本实施例的影像目标区域的提取方法对影像进行处理的具体过程如下:
读取步骤101
读入的影像是经过限束器处理程序后的,和经过了坏点、坏线的校正。少量的坏点、坏线,可能不影响该项处理的最终结果,但是大量的坏点、坏线,可能影响检测准确性。可以将限束器以内的影像区域选取为感兴趣区域,以供后续处理,选取感兴趣区域可以降低计算量,便于识别。图2、3中分别为头颅影像和大腿影像,影像感兴趣区域中,由于滤线栅放置错误,导致背景灰度变化剧烈,而且影像中包含单薄衣物及其他异物的成像像素区域。
边缘检测步骤103
现有的边缘检测方法中,一般利用边缘检测算子进行边缘检测;边缘检测算子包括Sobel、Prewitt、Roberts、LOG、Zerocross、以及Canny算子。现有的边缘检测方法很难保证获得物体的完整边缘轮廓,而且假阳性边缘检出率较高。比如检测边缘较佳算子Canny算子(见图4、5),其检测出的边缘并非具有完美的连续性,在边缘较弱的地方会出现断点,而且会出现大量的非物体真正边缘的假边缘,导致背景分割错误。为此将采用具有连续性的统计学手段,间接获得完整目标区域的边缘轮廓。其方法如下:
将影像中的一行像素行向量设为:
Xj={x|x1,j,x2,j,...,xi,j,...,xM,j},其中,i=1,2,3,...,M,j=1,2,3,...,N,i,j分别为图像的行与列,xi,j为坐标(i,j)处的像素灰度值
整幅影像像素矩阵为:
X=(X1,X2,...,Xj)T
xi,j的8邻域为:
xN(i,j)={x|xi+m,j+n},其中,m=-1,0,1;n=-1,0,1
xi,j的8邻域标准差为:
σ i , j = 1 9 Σ m = - 1 1 Σ n = - 1 1 ( x i + m , j + n - μ i , j ) 2 , 其中, μ i , j = 1 9 Σ m = - 1 1 Σ n = - 1 1 ( x i + m , j + n ) 为8邻域均值
xi,j的8邻域灰度中值为:
Mi,j=Median(xN(i,j)),即将xN(i,j)按像素灰度值从小到大(或从大到小)依次排序后取其中间值
根据统计学中评价产品质量的方法(CV=S/Y,S为样本标准差,Y为样本均值),设计影像边缘检测方案。在产品质量评价中,其指标参数通常成正态分布,其平均值更具统计学判断依据。而在影像分析中,只有在局部小的区域中具有一定的正态分布特性。由于图像中噪声干扰不可避免,像素中强噪声点的干扰会较大幅度的改变平均值μi,j,而且平均值也会对边缘有一定的平滑作用,从而影响最终判断结果。为此将采用中值作为图像边缘过渡检查的一个指标。综上分析将图像边缘信息的统计学近似边缘参数定义为:Edgi,j=σi,j/Mi,j,即像素点的8邻域标准差-灰度中值比。
为降低运算复杂度,节约时间,通过大量的实验,发现在一定的边缘精度要求范围内,可以将统计学近似边缘参数简化为:Edgi,j=σi,j/xi,j,即该像素点的8邻域标准差-像素灰度比。统计学近似边缘参数的计算方法中,标准差不限于所述的8邻域标准差,还可以使用其他多邻域标准差,例如4邻域标准差等,计算方法与8邻域标准差类似。可以当出现黑点时,即该点像素灰度值为0,直接将该点定义为边缘。通过阈值法,当像素点的统计学近似边缘参数大于阈值时,定义为边缘点,其中,统计学近似边缘参数阈值是与影像有关的经验值。最后将边缘点的集合定义为目标区域的边缘。检测结果如图6、7。虽然边缘比较粗,并非单像素边缘,但是该方法获得轮廓完整,而且假边缘性干扰较少,对背景分割极为有利。
识别步骤105。
识别步骤用于识别影像中的背景标志点。
为提高算法的抗干扰能力,首先可以采用直方图分析法,获得影像灰度的最大值和最小值。最大(最小)值定义为:将感兴趣区域像素依次累计,取其较大(较小)灰度像素数占总像素数的一定比例作为最大(最小)值Max_Gray(Min_Gray)。该比例可根据需要选择适当百分比,典型情况下可取5%。
为减小计算量,加快处理速度,可以根据影像的高灰度特性进行直接判断,将影像中灰度大于灰度最大值Max_Gray的像素点直接作为背景标志点。但对于背景像素点很少或没有背景像素点的影像会出现错误,如腰椎等部位成像。针对该类特殊情况,将前述灰度最大值Max_Gray的获取百分比降低为1%到0.5%中的某一特定值,可将背景假阳性率进一步降低。经过大量实验表明,在将灰度最大值获取降为1%可满足该类影像增强的需求。
通过大量影像分析发现,背景区域由于没有物体,X射线直接照射到成像设备,基本为0衰减,使得成像灰度较高且在局部区域内具有均匀性,与物体成像灰度特性有着较大区别。X射线分布不均匀,因此只有在局部背景区域具有均匀性。因此在不考虑噪声的情况下,背景区域成像灰度,在一定的区域内可以认为是均匀的,即统计学标准差为0。由于在实际成像中噪声的影响不可避免,在自动获取背景标志点时,可根据统计学噪声分布特性或高灰度特性进行判断。然而,球管发出的X射线分布不均匀,滤线栅在局部区域对射线的过度阻断,使得在背景区域也可出现较低灰度像素区域;同时高致密物体由于X射线的穿透性差,在一定的条件,其灰度信息也可以呈现出较高的均匀性,类似与背景像素灰度的统计学特性。
对于上述要求背景提取精确的情况,为将上述假阳性特点加以区别,可以不采用根据影像的高灰度特性进行直接判断的方法,而是采用高灰度特性与统计学噪声分布特性综合判断的方法,对每个像素点进行灰度与相对平滑度判断,将满足灰度与相对平滑度判断条件的像素点定义为背景标志点,从而降低背景标志点的假阳性率。具体判断方法如下:
首先进行灰度判断:根据灰度最大值Max_Gray自适应选择灰度阈值。若像素灰度满足灰度阈值条件,则进行相对平滑度判断;
然后计算相对平滑度:考虑到影像中具有的均匀性的影像(背景与高致密物体)具有类似的标准差特性,及同类影像由于X射线分布不均、噪声、低密度衣物等的影响因素使得其统计学特性具有较大差异性,为将前类影像(背景与高致密物体)的均匀性进行拉伸异化,同时将后类影像(背景像素灰度差异变化剧烈的影像)统计学差异特性进行压缩同化,本算法中的相对平滑度定义为8邻域标准差-灰度中值比,即σi,j/Mi,j,与上文中的统计学近似边缘参数相同。为降低运算复杂度,节约时间,可以将相对平滑度简化为:σi,j/xi,j,即该像素点的8邻域标准差-像素灰度比。相对平滑度的计算方法中,标准差不限于所述的8邻域标准差,还可以使用其他多邻域标准差,例如4邻域标准差等,计算方法与8邻域标准差类似。
最后进行相对平滑度判断:若该像素点的相对平滑度满足相对平滑度阈值条件,则将其定义为背景标志点;背景标志点的相对平滑度通常小于0.005,在算法中相对平滑度阈值可以取小于0.005的点,为避免低密度均匀物体干扰,在算法中相对平滑度阈值可以适当降低,典型值取0.0022。
背景标志点自动识别的影像实例图见图8、9,其中高亮度点即为自动识别出的背景标志点。
区域生长步骤107
区域生长的基本思想是将具有相似性质的像素集合起来构成区域。首先对每一个需要分割的区域找一个或多个种子点像素,作为生长起始点,然后将种子点像素周围邻域中与种子点像素具有相同或相似性质的像素合并到种子点所在的区域内。将这些新像素当作新的种子点,继续进行以上寻找过程,直到没有满足条件的像素点被包括进来为止。
本发明实施例中,以识别步骤105获得的背景标志点为种子点,边缘检测步骤103获得的目标区域的完整边缘为约束条件,对影像进行区域生长,获得背景区域。
由于每幅影像间的差异性较大,其统计学边缘阈值也存在一定的差异;为确保获得完整边缘轮廓,防止区域生长泄露,可以采用自适应阈值法自动调整边缘信息。自适应约束条件可以包括但不限于灰度约束和背景区域面积约束,其中:灰度约束为:采用全局灰度阈值约束,大于阈值时自适应调整边缘阈值;背景区域面积约束为:当获得的背景区域面积大于其阈值时,则需要自适应调整边缘阈值。其中,全局灰度阈值和背景区域面积阈值均是与影像有关的经验值。
目标提取步骤109
将上述步骤获取的背景影像反取,然后对反取后获得的影像区域进行腐蚀去噪,进而取得影像的目标区域。从图10、11,可以看出影像中的衣物等其他低密度干扰物影像基本去除,将解剖区域完整保留。
如图12所示,按照本实施例的影像目标区域提取装置主要包括读取模块1201、边缘检测模块1203、识别模块1205、区域生长模块1207、以及目标提取模块1209。其中,读取模块1201用于读取影像数据;边缘检测模块1203用于检测影像目标区域的完整边缘;识别模块1205用于将满足灰度和相对平滑度条件的像素点识别为影像中的背景标志点;区域生长模块1207用于以背景标志点为种子点,目标区域的完整边缘为约束条件,对影像进行区域生长,获得背景区域;目标提取模块1209用于将区域生长获得的背景区域进行反取,从而获得影像中的目标区域。其中,边缘检测模块1203包括计算单元1211用于计算影像中像素点的统计学近似边缘参数;判断单元1213用于根据预设的阈值对统计学近似边缘参数进行阈值判断;检测单元1215用于将满足判断条件的像素点定义为边缘点。
如图13所示,按照本实施例的影像目标区域边缘检测装置主要包括计算模块1301、判断模块1303、以及检测模块1305。其中计算模块1301用于计算影像中像素点的统计学近似边缘参数;判断模块1303用于根据预设的阈值对统计学近似边缘参数进行阈值判断;检测模块1305用于将满足判断条件的像素点定义为边缘点。
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,例如将上述实施例中的一个步骤或模块分为两个或更多个步骤或模块来实现,或者相反,将上述实施例中的两个或更多个步骤或模块的功能放在一个步骤或模块中来实现。在边缘检测步骤或模块中,可以采用不同的边缘检测方法检测边缘。在识别步骤或模块中,进行灰度和相对平滑度判断的前后顺序可以互换。在区域生长步骤或模块中,可以采用不同的约束条件进行区域生长。但是,只要未背离本发明的精神,都应在本发明的保护范围之内。

Claims (5)

1.一种影像目标区域的提取方法,其特征在于,包括以下步骤:
读取步骤,用于读取影像数据;
边缘检测步骤,用于检测影像目标区域的完整边缘;
识别步骤,将满足灰度和相对平滑度条件的像素点识别为影像中的背景标志点;
区域生长步骤,以背景标志点为种子点,目标区域的完整边缘为约束条件,对影像进行区域生长,获得背景区域;
目标提取步骤,将区域生长获得的背景区域进行反取,从而获得影像中的目标区域;其中,所述边缘检测步骤包括:
计算影像中像素点的统计学近似边缘参数;
根据预设的阈值对统计学近似边缘参数进行阈值判断;
将满足判断条件的像素点定义为边缘点;
所述统计学近似边缘参数为多邻域标准差-灰度中值比或者多邻域标准差-像素灰度比;
所述相对平滑度为多邻域标准差-灰度中值比或者多邻域标准差-像素灰度比。
2.根据权利要求1所述的影像目标区域的提取方法,其特征在于,所述区域生长步骤还包括:采用自适应阈值法自动调整所述目标区域的完整边缘。
3.一种影像目标区域的边缘检测方法,其特征在于,包括以下步骤:
计算影像中像素点的统计学近似边缘参数;
根据预设的阈值对统计学近似边缘参数进行阈值判断;
将满足判断条件的像素点定义为边缘点;
所述统计学近似边缘参数为多邻域标准差-灰度中值比或者多邻域标准差-像素灰度比。
4.一种影像目标区域的提取装置,其特征在于,包括以下模块:
读取模块,用于读取影像数据;
边缘检测模块,用于检测影像目标区域的完整边缘,所述边缘检测模块包括计算单元、判断单元和检测单元,所述计算单元用于计算影像中像素点的统计学近似边缘参数,判断单元用于根据预设的阈值对统计学近似边缘参数进行阈值判断,检测单元用于将满足判断条件的像素点定义为边缘点;
识别模块,将满足灰度和相对平滑度条件的像素点识别为影像中的背景标志点;
区域生长模块,以背景标志点为种子点,目标区域的完整边缘为约束条件,对影像进行区域生长,获得背景区域;
目标提取模块,将区域生长获得的背景区域进行反取,从而获得影像中的目标区域;
其中,所述统计学近似边缘参数为多邻域标准差-灰度中值比或者多邻域标准差-像素灰度比;
所述相对平滑度为多邻域标准差-灰度中值比或者多邻域标准差-像素灰度比。
5.一种影像目标区域的边缘检测装置,其特征在于,包括以下模块:
计算模块,用于计算影像中像素点的统计学近似边缘参数;
判断模块,根据预设的阈值对统计学近似边缘参数进行阈值判断;
检测模块,用于将满足判断条件的像素点定义为边缘点;
其中,所述统计学近似边缘参数为多邻域标准差-灰度中值比或者多邻域标准差-像素灰度比。
CN200910107726.4A 2009-05-27 2009-05-27 影像目标区域的提取方法和装置 Expired - Fee Related CN101901342B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910107726.4A CN101901342B (zh) 2009-05-27 2009-05-27 影像目标区域的提取方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910107726.4A CN101901342B (zh) 2009-05-27 2009-05-27 影像目标区域的提取方法和装置

Publications (2)

Publication Number Publication Date
CN101901342A CN101901342A (zh) 2010-12-01
CN101901342B true CN101901342B (zh) 2014-05-07

Family

ID=43226865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910107726.4A Expired - Fee Related CN101901342B (zh) 2009-05-27 2009-05-27 影像目标区域的提取方法和装置

Country Status (1)

Country Link
CN (1) CN101901342B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509290B (zh) * 2011-10-25 2013-12-25 西安电子科技大学 基于显著性的sar图像机场跑道边缘检测方法
CN102930274B (zh) * 2012-10-19 2016-02-03 上海交通大学 一种医学图像的获取方法及装置
TWI465699B (zh) * 2012-11-01 2014-12-21 Univ Ishou 水位量測方法
TWI481824B (zh) * 2013-01-29 2015-04-21 Univ Ishou 水位監控方法
TWI487884B (zh) * 2013-06-13 2015-06-11 Univ Ishou 多區塊水位量測方法
CN103578108B (zh) * 2013-11-07 2017-09-15 北京京东尚科信息技术有限公司 一种图像背景的去除方法
CN104320654B (zh) * 2014-10-28 2017-04-05 小米科技有限责任公司 测光方法及装置
CN105931244B (zh) * 2016-04-29 2019-01-22 中科院成都信息技术股份有限公司 一种无监督抠图方法及装置
US11379958B2 (en) * 2016-09-02 2022-07-05 Casio Computer Co., Ltd. Diagnosis assisting device, and image processing method in diagnosis assisting device
CN108520500B (zh) * 2018-04-02 2020-07-17 北京交通大学 基于禁忌搜索的图像中天空区域的识别方法
CN108961291A (zh) * 2018-08-10 2018-12-07 广东工业大学 一种图像边缘检测的方法、系统及相关组件
CN110060267B (zh) * 2019-03-05 2023-04-11 天津大学 一种证件照换背景方法及装置
CN111787389B (zh) * 2020-07-28 2022-11-08 北京百度网讯科技有限公司 转置视频识别方法、装置、设备及存储介质
CN112577859B (zh) * 2020-12-02 2023-05-30 苏州海狸生物医学工程有限公司 一种测量磁性微球基本物理参数的实验装置及测量方法
CN112801915A (zh) * 2021-02-21 2021-05-14 张燕 一种dr四肢影像骨肉分离优化影像显像方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1620990A (zh) * 2003-11-25 2005-06-01 通用电气公司 在ct血管造影术中分割结构的方法及设备
CN101002228A (zh) * 2004-05-18 2007-07-18 医学视像上市公司 结节边界检测
CN101357067A (zh) * 2007-05-01 2009-02-04 韦伯斯特生物官能公司 超声图像中的边缘检测

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1620990A (zh) * 2003-11-25 2005-06-01 通用电气公司 在ct血管造影术中分割结构的方法及设备
CN101002228A (zh) * 2004-05-18 2007-07-18 医学视像上市公司 结节边界检测
CN101357067A (zh) * 2007-05-01 2009-02-04 韦伯斯特生物官能公司 超声图像中的边缘检测

Also Published As

Publication number Publication date
CN101901342A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
CN101901342B (zh) 影像目标区域的提取方法和装置
CN107657606B (zh) 一种显示装置的亮度缺陷检测方法与装置
CN110210448B (zh) 一种智能人脸皮肤老化程度的识别与评估方法
CN110717888A (zh) 一种血管内光学相干层析成像血管壁内轮廓自动识别方法
CN101897592B (zh) X射线影像中金属异物的提取方法和装置
CN111369523B (zh) 显微图像中细胞堆叠的检测方法、系统、设备及介质
CN104486618A (zh) 视频图像的噪声检测方法及装置
CN114926407A (zh) 一种基于深度学习的钢材表面缺陷检测系统
CN114495098B (zh) 一种基于显微镜图像的盘星藻类细胞统计方法及系统
CN115908415B (zh) 基于边缘的缺陷检测方法、装置、设备及存储介质
CN109614900A (zh) 图像检测方法及装置
Ng et al. An improved method for image thresholding based on the valley-emphasis method
CN112085700A (zh) X射线图像中焊缝区域的自动化提取方法、系统及介质
CN115546232A (zh) 一种肝脏超声图像工作区域提取方法、系统及电子设备
CN113435460A (zh) 一种亮晶颗粒灰岩图像的识别方法
CN114298985B (zh) 缺陷检测方法、装置、设备及存储介质
CN117011291B (zh) 一种手表外壳质量视觉检测方法
US20200193212A1 (en) Particle boundary identification
CN1323545C (zh) 医学影像坏点自动检测门限确定方法
CN117036348A (zh) 基于图像处理和裂纹识别模型的金属疲劳裂纹检测方法
CN116228706A (zh) 基于深度学习的细胞自噬免疫荧光图像分析系统和方法
CN113940702A (zh) 一种甲状腺结节回声分析装置
WO2021139447A1 (zh) 一种宫颈异常细胞检测装置及方法
CN113940704A (zh) 一种基于甲状腺的肌肉和筋膜检测装置
CN114359115B (zh) 一种提高缺陷检测准确性的方法、计算机设备及可读介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140507

Termination date: 20160527