CN101894812A - 芯片冷却用蒸发器及其制作方法 - Google Patents

芯片冷却用蒸发器及其制作方法 Download PDF

Info

Publication number
CN101894812A
CN101894812A CN 201010201295 CN201010201295A CN101894812A CN 101894812 A CN101894812 A CN 101894812A CN 201010201295 CN201010201295 CN 201010201295 CN 201010201295 A CN201010201295 A CN 201010201295A CN 101894812 A CN101894812 A CN 101894812A
Authority
CN
China
Prior art keywords
evaporator
cooling
upper cover
cover plate
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010201295
Other languages
English (en)
Inventor
张莉
孙岩
徐宏
钟晓城
徐鹏
刘宇
许佳寅
李建民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN 201010201295 priority Critical patent/CN101894812A/zh
Publication of CN101894812A publication Critical patent/CN101894812A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明涉及一种芯片冷却用蒸发器及其制作方法,该蒸发器将微多孔表面涂层与小尺度通道相结合,本蒸发器主体由上盖板和下底板构成。蒸发器上盖板两端有一冷却液入口和一冷却液出口。蒸发器下底板两端各有一空腔,在下底板加工出多条平行肋片,形成多条平行小尺度通道,供冷却液流动。每条小通道的底面覆有一层微多孔表面涂层,以用于大幅强化冷却液的沸腾相变传热。本蒸发器通过一层导热硅脂与发热电子芯片贴合,流过其内部通道的冷却液受热,以流动沸腾传热的形式吸收电子芯片的耗散功率。具有流动阻力小、结构紧凑、成本低廉的特点,冷却能力强,适用于高耗散功率的电子芯片的冷却。

Description

芯片冷却用蒸发器及其制作方法
技术领域
本发明涉及一种芯片冷却用蒸发器,特别是涉及一种将微多孔表面涂层与小尺度通道相结合的蒸发器,作为电子芯片冷却环路装置的核心部件,通过强化传热来冷却中央处理器等电子芯片。 
背景技术
电子芯片的应用遍及日常生活、生产乃至国家安全的各个层面,在现代文明中扮演着极其重要的角色。芯片发展的趋势是进一步提高集成度、减小芯片尺寸及增大时钟频率。2010年芯片上晶体管的数量已超过20亿。与晶体管集成度迅速提高趋势相伴随的是,芯片耗散功率与热流密度也急剧增加。由此带来的过高温度会降低芯片的工作稳定性、可靠性,增加出错率,影响芯片寿命。如何提高芯片的冷却效率,以保证芯片的正常工作,一直是芯片热设计领域的研究热点和难题。 
传统的电子芯片冷却技术采用由肋片及风扇组成的强迫对流风冷系统。这种技术的冷却能力有限,在允许温差(从元件表面到环境的温升)为100℃时,最大仅能提供1W/cm2的传热能力,当前的近200W的耗散功率已达风冷散热的极限,且高转速的风扇产生的噪音令人难以忍受。尽管结构简单、价格低廉,随着电子芯片的不断发展,这种冷却技术必将被淘汰。 
随着芯片功耗耗散功率的增加,液冷技术引起越来越多研究人员的重视。冷板可以通过液体在通道中强迫对流带走电子元件的耗散热,是无相变液冷技术,传热能力约为5W/cm2。液体相变冷却技术允许通过的热流密度较大。浸没式冷却利用含氟化合物液体的池沸腾,可以传走的 热流密度可达到10W/cm2,但所需空间较大,不适用于单芯片冷却。微尺度冷却器的冷却能力较强,可以超过100W/cm2,但其显著缺点是造价高昂、系统复杂,并且通道内压降大,对泵提出了很高要求,从而难以广泛推广应用。热管冷却技术虽然有结构简单等诸多优点,但是存在毛细限和声速限等限制条件,使得可以承受的热流密度范围有限(<10W/cm2)。毛细抽吸回路和环路热管的传热能力强且不需要泵驱动介质,然而启动时间较长(5~20分钟),并且在启动过程中,热管温度会不断上升,影响了其安全性和可靠性。 
从现有的计算机芯片的发展及其冷却的方法来看:传统的风冷技术虽然仍占据目前普通电子芯片冷却的主流地位,但随着芯片技术的发展,这种技术必将被淘汰;现有的单相液体冷却技术冷却能力不足;微通道、热管等两相流体冷却技术也存在着加工难度大、成本高、可靠性差等问题。 
近年来,研究发现小尺度通道在强化液体强迫对流相变的同时,并不会像微尺度通道那样带来很高的压力损失,在电子芯片冷却应用方面具有潜力。但这种强化作用仅限于小热流密度条件,在高热流密度下强化效果不明显甚至反而恶化。另一方面,微多孔表面涂层可以大幅强化液体的相变传热过程,研究表明施加这种涂层后,液体的池沸腾传热系数可以提高近10倍,并且在很高热流密度下仍能表现出可观的强化能力。因此,如果在小尺度通道内施加这种涂层,可以将小尺度的强化作用与多孔结构的强化作用结合,进一步强化传热;同时还可以克服小通道在高热流密度下传热迅速恶化的缺点,保证高发热功率下的优秀冷却性能。 
发明内容
本发明要解决的技术问题是提出了一种为电子芯片冷却系统提供高效可靠的蒸发器及其制造方法。此蒸发器将小通道的优势和微多孔表面 涂层的沸腾强化能力结合,获得稳定可靠的高热流冷却系统。 
为解决上述技术问题,本发明的技术方案是: 
一种芯片冷却用蒸发器,该蒸发器为一矩形体,主体包括上盖板和下底板,下底板的下底面为导热硅脂连接层,与电子芯片封装层贴合,蒸发器上盖板两端有冷却液入口和冷却液出口,蒸发器两端各有一空腔,其中冷却液入口一侧的空腔为液体缓冲区,冷却液出口一侧的空腔为汽液汇合区,蒸发器中间的冷却液通道为多条。 
所述的冷却液通道是多条平行的通道。 
所述冷却液通道的底面覆有一层金属微多孔表面涂层。 
所述蒸发器使用的冷却液是水或含氟电介质。 
所述下底板的材料选择铜或铝。 
构成所述微多孔表面涂层的颗粒是铜粉或铝粉。 
一种芯片冷却用蒸发器的制造方法,包括以下步骤: 
步骤1、制造蒸发器下底板; 
步骤2、制备微多孔表面涂层; 
步骤3、制备蒸发器上盖板; 
步骤4、将上盖板和下底板焊接在一起,上盖板密封住下底板的槽道,形成冷却液通道,在进出口缓冲区处开垂直圆孔,用于连接蒸发器进出口管路。 
与现有技术相比,本发明的有益效果可以是: 
本发明蒸发器结合了微多孔表面涂层和小尺度通道的优点。微多孔表面通过大幅强化沸腾传热过程,具有很强的冷却能力。小尺度通道在强化沸腾传热的同时,还可以满足有限空间的紧凑性要求。 
与毛细抽吸回路和环路热管冷却相比,本发明蒸发器无启动时间,因此更加安全可靠。冷却液在蒸发器中受热沸腾后,蒸发器壁面温度不随芯片加热功率的提高而提高。从而解决了毛细抽吸回路和环路热管冷却中启动时间长,温升大,工作不稳定的问题。 
与微通道冷却技术相比,本发明蒸发器具有管路阻力小,压降低,造价低廉的优点。本蒸发器采用小尺度通道作为冷却液通道,压降比微通道小了一个数量级。本蒸发器各部件均可采用普通机加工等方法加工获得,并且微多孔表面涂层制备工艺简单。 
由这种制造成本低廉的蒸发器构成的冷却系统能够适应未来几年内芯片集成度和频率飞速提高的需求,确保芯片能够长期高速、稳定工作。 
附图说明
图1为本发明蒸发器的结构分解示意图。 
1:蒸发器上盖板;2:微多孔表面涂层;3:冷却液通道侧壁; 
4:蒸发器下底板;5:导热硅脂连接层;6:电子芯片封装层; 
图2-A为本发明蒸发器轴向剖视图。 
8:冷却液通道;9:蒸发器进口;10:液体缓冲区; 
11:蒸发器出口;12:汽液汇合区。 
图2-B为图2-A的A-A截面剖视图。 
图3为本发明包含本蒸发器的芯片冷却环路装置示意图。 
13:蒸发器;14:蒸发器出口管路;15:风扇; 
16:肋片;17:冷却液灌装口;18:微型蠕动泵; 
19:蒸发器进口管路。 
具体实施方式
下面结合附图和实施例对本发明的具体实施方式做进一步详细的说明,但不应以此限制本发明的保护范围。 
请参阅图1和图2-1、图2-2。本发明芯片冷却用蒸发器为一矩形 体,主体包括上盖板1和下底板4,下底板的下底面为矩形的导热硅脂连接层5,与电子芯片封装层6贴合,蒸发器上盖板两端有蒸发器进口9和蒸发器出口10,分别做为冷却液入口和冷却液出口,蒸发器两端各有一空腔,其中冷却液入口一侧的空腔为液体缓冲区10,用于将冷却液分流向各个液体通道;冷却液出口一侧的空腔为汽液汇合区12,用于汇合冷却液,以流向冷却液出口。蒸发器中间的冷却液通道8为多条平行小尺度通道,200μm<水力直径<3mm,相比于宏观通道可明显强化沸腾传热,相比于微通道又具有流动阻力小、压降小的优点。每条小通道的底面覆有一层金属微多孔表面涂层2,以用于大幅强化冷却液的沸腾相变传热。本蒸发器的冷却液可根据实际需要自由选择,可以是水(成本低,传递的功率大),也可以是含氟电介质,如FC-72(可保持芯片表面温度较低),通过冷却液在通道中的沸腾带走芯片的耗散热,使芯片温度稳定在安全水平。本蒸发器的实施可通过一冷却环路装置实现。该冷却环路装置包含本蒸发器、一微型蠕动泵、一冷凝器、一段液体管路、一段气液混合管路。冷却液在蒸发器中沸腾,部分液体汽化带走芯片耗散的热量,已变成汽液混合物的冷却液经汽液混合管路回到冷凝器重新冷凝成液态,之后在蠕动泵驱动下经液体管路流回蒸发器。如此反复循环,达到冷却的目的。 
本发明芯片冷却用蒸发器的制造方法,包括以下步骤: 
步骤1、制造蒸发器下底板;下底板材料选择高导热性能的金属材料如铜、铝等。通过普通机加工获得多片平行肋片,构成小通道的侧壁,即冷却液通道侧壁3。 
步骤2、制备微多孔表面涂层;在下底板的小通道底面施加微多孔表面涂层。构成微多孔结构的颗粒是高导热性能的金属粉末如铜粉、铝粉等,将金属粉末通过烧结、喷涂或粘结的工艺施加在小通道底面。 
步骤3、制备蒸发器上盖板;上盖板是一块金属平板,与下底板焊接 形成小通道。 
步骤4、将上盖板和下底板焊接在一起,上盖板密封住下底板的槽道,形成冷却液通道,在进出口缓冲区处开垂直圆孔,用于连接蒸发器进出口管路。把加工好的蒸发器同冷凝器、蠕动泵等通过管路连接在一起,然后灌装冷却液并密封,即完成了环路冷却装置的制作。 
实际应用中,蒸发器的大小形状可根据发热电子芯片的实际尺寸需要而更改。本实施例中根据2010年初问世的高端计算机CPU英特 
Figure BSA00000164442900061
酷睿TMi7-920的封装尺寸,设计蒸发器的表面尺寸为40mm×38mm,从而最大限度地利用有限的空间。发热芯片水平放置,蒸发器通过导热硅脂与芯片粘合,水平置于芯片之上。蒸发器厚度仅为3mm,完全符合有限空间提出的紧凑性要求。 
蒸发器制造步骤实施例如下: 
1、制造蒸发器下底板4 
选择高导热性能的无氧铜作为蒸发器下底板材料,下底板外形尺寸40mm×38mm×2mm。利用铣床在下底板上表面加工出6条27mm长、5mm宽、1mm深的槽道,以及两个35mm宽、5mm长、1mm深的矩形槽,分别用来形成蒸发器入口侧的液体缓冲区10和出口侧的汽液汇合区12,如图2-A所示。 
2、制备微多孔表面涂层2 
构成微多孔表面涂层的颗粒选择高导热性能的球形铜粉(粒径~50μm),通过金属粉末烧结工艺,在下底板槽道内形成100μm厚的微多孔表面涂层。现有工艺可以精确控制涂层厚度,100μm厚的涂层在1mm槽道内所增加的流动阻力和压力降可以忽略不计。 
3、制备蒸发器上盖板1 
上盖板是一块无氧铜板,外形尺寸40mm×38mm×1mm。 
4、将上盖板和下底板焊接在一起,上盖板密封住下底板的6条槽道, 形成6条供冷却剂流过的小尺度通道。在进出口缓冲区处开直径3mm的垂直圆孔,用于连接蒸发器进出口管路。 
本蒸发器的实际运作可通过一电子芯片冷却环路装置实现。如图3所示,本冷却环路装置包含本设计的蒸发器13、一段蒸发器出口管路(汽液混合管路)14、冷凝器(包括风扇15和肋片16)、冷却液灌装口17、微型蠕动泵18以及一段蒸发器入口管路(单相液体管路)19。本实施例中的冷却液选用去离子水和含氟制冷剂FC-72,分别单独灌装并测试。冷却液灌装密封后在微型蠕动泵18的驱动下,经蒸发器入口管路19流向蒸发器13。冷却液在蒸发器13中沸腾,吸收芯片的耗散热,同时冷却液变成汽液混合状态。汽液混合态的冷却液经过蒸发器出口管路14流入冷凝器的风扇15与肋片16冷凝,冷却液冷凝过程放热,从而把热量释放到外部环境中。冷却液通过冷凝器后完全变成单相液体,之后进入泵18开始下一轮循环。如此反复循环,可以为芯片提供一个可靠、稳定的工作温度环境。冷凝器采用风扇15和铝制的肋片16结合的强迫风冷方式。和传统风冷冷却技术不同,本冷却装置的冷凝器无需直接与发热芯片贴合,而是可以布置在较远处的任意位置。因此可以通过加大散热肋片数量与面积的方法来提高冷凝功率,无需提高风扇的转速,从而可以保证风扇运行时安静,无噪音。 
实际测试中,通道的小尺度特性与微多孔表面涂层相结合表现出优秀的冷却能力。以水为冷却液时,该蒸发器的冷却功率可达700W以上,并且最大热流密度超过45W/cm2的同时,芯片表面温度不超过110℃。这一冷却能力大幅超过2010年初问世的高端计算机CPU英特 
Figure BSA00000164442900071
酷睿TMi7-920满载工作时的约250W耗散功率(对应热流密度约15W/cm2),以及中端的酷睿TM i5-750的最大200W耗散功率(对应热流密度约12W/cm2)。以含氟化合物FC-72为冷却液,热流密度超过30W/cm2时,芯 片表面温度不到90℃,适用于对温度要求严格、发热量不太大(小于400W)的场合。蒸发器进出口端的压降最大为10kPa量级,比微通道小了一个数量级以上,因此可以使用小尺寸、轻重量的微型蠕动泵,既满足空间限制要求,又实现了低泵功消耗。 
以上所述仅为本发明的较佳实施例而已,并非用来限定本发明的实施范围。任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围应当视权利要求书所界定范围为准。 

Claims (7)

1.一种芯片冷却用蒸发器,其特征在于该蒸发器为一矩形体,主体包括上盖板和下底板,下底板的下底面为导热硅脂连接层,与电子芯片封装层贴合,蒸发器上盖板两端有冷却液入口和冷却液出口,蒸发器两端各有一空腔,其中冷却液入口一侧的空腔为液体缓冲区,冷却液出口一侧的空腔为汽液汇合区,蒸发器中间的冷却液通道为多条。
2.根据权利要求1所述的芯片冷却用蒸发器,其特征在于所述的冷却液通道是多条平行的通道。
3.根据权利要求1所述的芯片冷却用蒸发器,其特征在于所述冷却液通道的底面覆有一层金属微多孔表面涂层。
4.根据权利要求1所述的芯片冷却用蒸发器,其特征在于所述蒸发器使用的冷却液是水或含氟电介质。
5.根据权利要求1所述的芯片冷却用蒸发器,其特征在于所述下底板的材料选择铜或铝。
6.根据权利要求3所述的芯片冷却用蒸发器,其特征在于构成所述微多孔表面涂层的颗粒是铜粉或铝粉。
7.一种芯片冷却用蒸发器的制造方法,其特征在于包括以下步骤:
步骤1、制造蒸发器下底板;
步骤2、制备微多孔表面涂层;
步骤3、制备蒸发器上盖板;
步骤4、将上盖板和下底板焊接在一起,上盖板密封住下底板的槽道,形成冷却液通道,在进出口缓冲区处开垂直圆孔,用于连接蒸发器进出口管路。
CN 201010201295 2010-06-13 2010-06-13 芯片冷却用蒸发器及其制作方法 Pending CN101894812A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010201295 CN101894812A (zh) 2010-06-13 2010-06-13 芯片冷却用蒸发器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010201295 CN101894812A (zh) 2010-06-13 2010-06-13 芯片冷却用蒸发器及其制作方法

Publications (1)

Publication Number Publication Date
CN101894812A true CN101894812A (zh) 2010-11-24

Family

ID=43103958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010201295 Pending CN101894812A (zh) 2010-06-13 2010-06-13 芯片冷却用蒸发器及其制作方法

Country Status (1)

Country Link
CN (1) CN101894812A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683306A (zh) * 2012-05-21 2012-09-19 孙正军 一种高效微通道蒸发冷头
WO2013091142A1 (zh) * 2011-12-21 2013-06-27 武汉飞恩微电子有限公司 用于髙功率电子元件封装含微通道的引线框架焊盘及封装结构和工艺
CN104465560A (zh) * 2014-11-21 2015-03-25 广西智通节能环保科技有限公司 一种电子器件用循环液体冷却系统
CN104662656A (zh) * 2012-09-19 2015-05-27 日本电气株式会社 冷却装置、在其中使用的受热部和沸腾部、及制造沸腾部的方法
CN105188324A (zh) * 2015-11-04 2015-12-23 天津商业大学 一种液冷散热器
CN105374767A (zh) * 2015-09-24 2016-03-02 无锡佰利兄弟能源科技有限公司 一种高性能微槽道散热结构
CN108022893A (zh) * 2017-11-13 2018-05-11 中国航空工业集团公司西安航空计算技术研究所 一种三维堆叠高性能微冷却装置
CN108287604A (zh) * 2018-04-08 2018-07-17 江南大学 一种移动超级计算中心
CN108919922A (zh) * 2018-07-11 2018-11-30 北京工业大学 微通道相变散热器
CN110058663A (zh) * 2018-01-18 2019-07-26 阮琳 一种散热装置及具有该散热装置的电子设备
CN110342454A (zh) * 2019-07-11 2019-10-18 电子科技大学 一种惯性导航模块散热装置
CN111777996A (zh) * 2020-07-16 2020-10-16 杭州师范大学 一种含相变组分的有机硅冷却液及其制备方法和应用
CN113507817A (zh) * 2021-06-04 2021-10-15 北京国科环宇科技股份有限公司 散热板、模块及机箱
CN114415802A (zh) * 2021-11-23 2022-04-29 西安交通大学 一种采用内外两相散热循环耦合的笔记本散热系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313178A (ja) * 1995-05-19 1996-11-29 Mitsubishi Alum Co Ltd 熱交換器用蒸発器
JP2004238672A (ja) * 2003-02-05 2004-08-26 Fujikura Ltd 平板型ヒートパイプの製造方法
JP2005077052A (ja) * 2003-09-03 2005-03-24 Hitachi Metals Ltd 平面型ヒートパイプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313178A (ja) * 1995-05-19 1996-11-29 Mitsubishi Alum Co Ltd 熱交換器用蒸発器
JP2004238672A (ja) * 2003-02-05 2004-08-26 Fujikura Ltd 平板型ヒートパイプの製造方法
JP2005077052A (ja) * 2003-09-03 2005-03-24 Hitachi Metals Ltd 平面型ヒートパイプ

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988295B (zh) * 2011-12-21 2016-08-17 南京皓赛米电力科技有限公司 用于高功率电子元件封装含微通道的引线框架焊盘及封装结构和工艺
WO2013091142A1 (zh) * 2011-12-21 2013-06-27 武汉飞恩微电子有限公司 用于髙功率电子元件封装含微通道的引线框架焊盘及封装结构和工艺
CN103988295A (zh) * 2011-12-21 2014-08-13 武汉飞恩微电子有限公司 用于高功率电子元件封装含微通道的引线框架焊盘及封装结构和工艺
CN102683306A (zh) * 2012-05-21 2012-09-19 孙正军 一种高效微通道蒸发冷头
US9696068B2 (en) 2012-09-19 2017-07-04 Nec Corporation Cooling apparatus, heat receiving section and boiling section used therein, and method of manufacturing the same
EP2899753A4 (en) * 2012-09-19 2016-06-15 Nec Corp COOLING DEVICE, HEAT RECEIVING UNIT AND BOILING UNIT USED THEREIN, AND METHOD FOR MANUFACTURING THE SAME
CN104662656A (zh) * 2012-09-19 2015-05-27 日本电气株式会社 冷却装置、在其中使用的受热部和沸腾部、及制造沸腾部的方法
EP2899753A1 (en) * 2012-09-19 2015-07-29 Nec Corporation Cooling device, heat reception unit and boiling unit used therein, and method for manufacturing same
JP2018115858A (ja) * 2012-09-19 2018-07-26 日本電気株式会社 冷却装置、それに使用される受熱部、沸騰部、その製造方法
CN104465560A (zh) * 2014-11-21 2015-03-25 广西智通节能环保科技有限公司 一种电子器件用循环液体冷却系统
CN105374767A (zh) * 2015-09-24 2016-03-02 无锡佰利兄弟能源科技有限公司 一种高性能微槽道散热结构
CN105188324A (zh) * 2015-11-04 2015-12-23 天津商业大学 一种液冷散热器
CN105188324B (zh) * 2015-11-04 2017-08-04 天津商业大学 一种液冷散热器
CN108022893A (zh) * 2017-11-13 2018-05-11 中国航空工业集团公司西安航空计算技术研究所 一种三维堆叠高性能微冷却装置
CN110058663A (zh) * 2018-01-18 2019-07-26 阮琳 一种散热装置及具有该散热装置的电子设备
CN108287604A (zh) * 2018-04-08 2018-07-17 江南大学 一种移动超级计算中心
CN108919922A (zh) * 2018-07-11 2018-11-30 北京工业大学 微通道相变散热器
CN110342454A (zh) * 2019-07-11 2019-10-18 电子科技大学 一种惯性导航模块散热装置
CN111777996A (zh) * 2020-07-16 2020-10-16 杭州师范大学 一种含相变组分的有机硅冷却液及其制备方法和应用
CN111777996B (zh) * 2020-07-16 2021-07-27 杭州师范大学 一种含相变组分的有机硅冷却液及其制备方法和应用
CN113507817A (zh) * 2021-06-04 2021-10-15 北京国科环宇科技股份有限公司 散热板、模块及机箱
CN114415802A (zh) * 2021-11-23 2022-04-29 西安交通大学 一种采用内外两相散热循环耦合的笔记本散热系统及方法

Similar Documents

Publication Publication Date Title
CN101894812A (zh) 芯片冷却用蒸发器及其制作方法
CN111642103B (zh) 高热流密度多孔热沉流动冷却装置
US7191820B2 (en) Phase-change heat reservoir device for transient thermal management
CN102034773B (zh) 构形树状式热管散热器
CN100437004C (zh) 环路式热交换装置
US20020144811A1 (en) Phase-change heat reservoir device for transient thermal management
CN201226636Y (zh) 一种带有蒸发腔体的液冷散热装置
US20110088873A1 (en) Support structure for flat-plate heat pipe
US20070230128A1 (en) Cooling apparatus with surface enhancement boiling heat transfer
CN103997877B (zh) 一种高热流密度均温散热装置
CN100506004C (zh) 一种远程被动式循环相变散热方法和散热系统
CN104613440B (zh) 一种远距离led灯具的散热装置
TWM309091U (en) Heat sink
CN101210785A (zh) 仿生动力驱动型热管散热器
CN204923989U (zh) 一种环路热管的蒸发器和散热装置
CN103188912A (zh) 使用液态金属工质的藕状规则多孔金属微通道热沉
CN201044554Y (zh) 水冷式微槽群与热电组合激光器热控制系统
CN104676545A (zh) 吸热装置、散热装置和led工矿灯散热系统
CN102997729A (zh) 相变驱动环路热管散热器
CN104613439B (zh) 一种led灯具的散热装置
CN104613801B (zh) 一种环路热管的蒸发器和散热装置
CN201044553Y (zh) 风冷式微槽群与热电组合激光器热控制系统
CN220341216U (zh) 一种相变液冷耦合散热结构及电子芯片散热装置
CN202485508U (zh) 一种两相散热片
CN104949557B (zh) 抗重力毛细泵环

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20101124