CN101893674A - Pollution flashover index forecasting method for regional power grid - Google Patents

Pollution flashover index forecasting method for regional power grid Download PDF

Info

Publication number
CN101893674A
CN101893674A CN201010224050XA CN201010224050A CN101893674A CN 101893674 A CN101893674 A CN 101893674A CN 201010224050X A CN201010224050X A CN 201010224050XA CN 201010224050 A CN201010224050 A CN 201010224050A CN 101893674 A CN101893674 A CN 101893674A
Authority
CN
China
Prior art keywords
mrow
msub
pollution flashover
equivalent salt
salt deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010224050XA
Other languages
Chinese (zh)
Other versions
CN101893674B (en
Inventor
滕云
徐建源
林莘
苏蔚
李永祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Liaoning Electric Power Co Ltd
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201010224050A priority Critical patent/CN101893674B/en
Publication of CN101893674A publication Critical patent/CN101893674A/en
Application granted granted Critical
Publication of CN101893674B publication Critical patent/CN101893674B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention relates to a pollution flashover index forecasting method for a regional power grid, belonging to the technical field of transmission and distribution monitoring. The method of the invention comprises the following steps: (1) forecasting the current value of the equivalent salt deposit density in real time by an insulator surface equivalent salt deposit density forecasting model; (2) forecasting pollution flashover critical voltage by an insulator pollution flashover critical voltage forecasting model; (3) forecasting the insulator pollution flashover index of the power grid by a pollution flashover graded forecasting and prewarning model; and (4) judging the state. The invention has the advantages of providing a multivariable equivalent salt deposit density time sequence forecasting model based on phase space reconstruction, solving by a supporting vector machine model, solving the forecasting problem under the conditions of small sample of equivalent salt deposit density data and noise, and improving the forecasting prediction.

Description

Regional power grid pollution flashover index prediction method
Technical Field
The invention belongs to the technical field of power transmission and distribution monitoring, and particularly relates to a regional power grid pollution flashover index prediction method.
Background
In the operation process of a power grid, as the pollution flashover on the surface of an insulator has adverse effect on a power supply system, at present, a plurality of prediction methods for the pollution flashover on the surface of the insulator are provided, and the prediction methods mainly focus on the aspects of prediction of equivalent salt deposit density on the surface of the insulator, prediction of pollution flashover voltage of the insulator and pollution flashover prediction based on leakage current.
Wherein, the neural network prediction of equivalent salt deposit density and the support vector machine prediction of pollution flashover voltage are to fit the multidimensional nonlinear relation between the two parameters describing pollution flashover and environmental meteorological parameters by a nonlinear modeling method, the prediction method is in the leading position at home and abroad, however, the two methods still have single modeling object, certain difference exists between the established prediction model and the prediction function thereof and the antifouling work requirement of the power grid, the method can not be practically applied to the pollution flashover prevention operation management of the power grid, the pollution flashover prediction method based on leakage current has rich basic data, on the basis, the method of applying the artificial neural network and the like can obtain the fitting effect which is closer to the actual engineering, however, the distribution range of the monitoring points of the leakage current is limited, and the pollution flashover state of the power grid cannot be comprehensively monitored and predicted in real time.
Disclosure of Invention
Aiming at the defects of the prior art, the invention provides a regional power grid pollution flashover index prediction method.
The invention discloses a regional power grid pollution flashover index prediction method, which comprises the following steps:
step 1, applying an equivalent salt deposit density prediction model on the surface of an insulator to predict the current value of the equivalent salt deposit density in real time;
inputting the environmental parameters and the equivalent salt deposit density historical values collected on the site of the power grid into an insulator surface equivalent salt deposit density prediction model, wherein the output of the insulator surface equivalent salt deposit density prediction model is the current value of the real-time predicted equivalent salt deposit density;
step 2, applying an insulator pollution flashover critical voltage prediction model to predict pollution flashover critical voltage;
inputting the current value of the real-time predicted equivalent salt deposit density and the current collected environmental parameters into a pollution flashover critical voltage prediction model of the insulator, wherein the output of the pollution flashover critical voltage prediction model of the insulator is a pollution flashover critical voltage prediction value;
step 3, applying a pollution flashover grading prediction early warning model to predict a pollution flashover index of the power grid insulator;
inputting the pollution flashover critical voltage predicted value into a pollution flashover grading prediction early warning model, wherein the output of the pollution flashover grading prediction early warning model is a predicted power grid pollution flashover index;
step 4, when the pollution flashover index of the power grid is 0% and 5%, carrying out no pollution flashover early warning; when the pollution flashover index of the power grid is 20%, issuing a pollution flashover grade III early warning; when the pollution flashover index of the power grid is 50% and 85%, the pollution flashover occurrence probability is greater than 50%, and a pollution flashover II-level early warning is issued; when the pollution flashover index of the power grid is 100%, the pollution flashover occurrence probability is quite large, pollution flashover is likely to occur in the regional power grid at any time, and a pollution flashover I-level early warning is issued.
The application of the insulator surface equivalent salt deposit density prediction model is carried out according to the following steps:
1) establishing a multivariable equivalent salt deposit density time sequence;
the equivalent salt deposit density data is measured at regular time intervals and at a series of moments t1,t2,...,tnResulting discrete ordered set { x1,x2,...,xnThe time sequence is called discrete equivalent salt deposit density time sequence, and is called the equivalent salt deposit density time sequence for short;
the multivariable equivalent salt deposit density time sequence is a multidimensional equivalent salt density time sequence which is composed of an equivalent salt density time sequence and a meteorological parameter time sequence in the same moment and is a representation form of a multidimensional equivalent salt density nonlinear dynamics system comprising the equivalent salt density time sequence;
m-dimensional equivalent salt deposit density time series: x1,X2,...,XNN stands for the number of moments, where Xi=(x1,i,x2,i,...,xM,i) I.e. by
x 1,1 x 1,2 . . . x 1 , i . . . x 1 , N x 2,1 x 2,2 . . . x 2 , i . . . x 2 , N . . . x M , 1 x M , 2 . . . x M , i . . . x M , N
Wherein i is 1, 2M,NRepresenting the value of the Mth variable at time N, xM,iThe value of the Mth variable at the moment i is shown;
2) reconstructing the phase space of the multivariate equivalent salt deposit time series:
the phase points of the multivariate equivalent salt deposit density time sequence phase space reconstruction are as follows:
<math><mfenced open='{' close=''><mtable><mtr><mtd><msub><mi>V</mi><mi>n</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi>V</mi><mi>N</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr></mtable></mfenced></math>
denotes that the Mth variable is delayed by tau at time NMEmbedding dimension mMThe reconstructed phase space of (a);
where n denotes the time of the nth time instant,
Figure BSA00000184744100024
τiand miFor the delay time and the embedding dimension of the ith time series, the embedding dimension m of the reconstructed phase space is m1+m2+...+mMM is the dimension of the time series;
the phase space reconstruction parameter delay time tau of the multivariable equivalent salt deposit density time sequence is selected by adopting a mutual information method, the mutual information method takes the delay when the mutual information reaches the minimum for the first time as the delay time of the phase space reconstruction, and the method comprises the following steps of
Figure BSA00000184744100025
Determination of Rxx((i +1) τ) is an autocorrelation function with an equivalent salt deposit time series time span of (i +1) τ, τ being the phase space reconstruction parameter delay time; the embedding dimension m is defined by:
<math><mrow><mi>E</mi><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mi>N</mi><mo>-</mo><mi>m&tau;</mi></mrow></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mi>m&tau;</mi></mrow></munderover><mi>&alpha;</mi><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></math>
determining, wherein:
<math><mrow><mi>&alpha;</mi><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>|</mo><mo>|</mo><msub><mi>X</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><msub><mi>X</mi><mrow><mi>n</mi><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>|</mo><mo>|</mo></mrow><mrow><mo>|</mo><mo>|</mo><msub><mi>X</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>X</mi><mrow><mi>n</mi><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>|</mo><mo>|</mo></mrow></mfrac></mrow></math>
Xi(m +1) is the ith phase point in the (m +1) -dimensional reconstructed iso-salt deposit system phase space, and n (i, m) is the phase point X in the m-dimensional iso-salt deposit system phase spacen(i,m)(m) is the phase point Xi(m) nearest integer, | | · | |, is the euclidean distance over the equivalent salt deposit system phase space;
3) and (3) testing the certainty of the equivalent salt deposit density time series:
in the invention, a Lyapunov exponent method is adopted to carry out deterministic test on an equivalent salt deposit time sequence, the exponent is a numerical representation of the average exponent divergence rate of adjacent orbits in a phase space and is used for depicting the initial state sensitivity of chaotic motion, and the exponent is an integral characteristic as a long-term average result along the orbits and is always real;
the non-linear characteristic of the equivalent salt deposit density time sequence is judged by calculating the maximum Lyapunov exponent, and the method calculates the slope of the regression line of the y (k) curveIs the maximum index, wherein,
Figure BSA00000184744100034
li(k) representing each pair of nearest points in the reconstructed equivalent salt dense-phase space, and calculating Euclidean distances after k discrete times, wherein M is the dimension of a time sequence;
4) global prediction multivariable equivalent salt deposit time series:
according to the Thanksgiving time-delay embedding theorem, as long as the embedding dimension m and the delay time tau are reasonably selected, the track of the reconstructed phase space in the embedding space is equivalent to an equivalent salt deposit kinetic system in the differential homoembryo sense, and a smooth mapping f exists:
Figure BSA00000184744100035
such that: vi+1=f(Vi),Vi+1Representing the (i +1) th phase point in the reconstruction phase space, and applying a nonlinear approximation method to construct a mapping
Figure BSA00000184744100036
To approximate f and make
Figure BSA00000184744100037
Satisfies the following conditions:
Figure BSA00000184744100038
at a minimum, wherein
Figure BSA00000184744100039
Figure BSA000001847441000310
The expression indicates that the Mth variable is delayed by tau at the time nMEmbedding dimension mMTo reconstruct the value in phase space, τMDenotes the delay time of the Mth variable, MMAn embedding dimension representing an Mth variable;
5) solving a multivariate equivalent salt deposit density time sequence prediction model by using a support vector machine model:
by solving non-linear mappings in the prediction model
Figure BSA00000184744100041
Determining an equivalent salt deposit density time series prediction model and mapping the prediction model on the obtained nonlinear
Figure BSA00000184744100042
The lower prediction error meets the requirement, and the support vector machine theory can effectively solve the problem of nonlinear mapping in the equivalent salt deposit density nonlinear time sequence prediction model under the condition that the equivalent salt deposit density data sample capacity is small
Figure BSA00000184744100043
The support vector machine method for approximating the non-linear mapping relationship in the equivalent salt deposit density time series prediction model is support vector regression;
a sample set formed by phase space phase points of an equivalent salt density system is set as follows: s { (x)i,yi),i=1,2,...,M},(xi,yi) Representing any phase point in the reconstructed phase space, if there is one hyperplane g (x) ═ g<w·x>+b,w∈RnB ∈ R, w, b denote vector parameters, in order to construct a hyperplane g (x), such that: | yi-g(xi) If | ≦ ε, wherein,<·>representing the vector inner product, i { (x) }, 1, 2, M being the dimension of the equivalent salt-dense time series, then the sample set S { (x)i,yi) 1, 2, M is an approximate set of epsilon, with: non-viable cells<w·x>+b-yi|≤Epsilon, i.e.
Figure BSA00000184744100044
i=1,2,...,M;
Wherein,
Figure BSA00000184744100045
distance d from point of S to hyperplane f (x)iThen, there are:1, 2, M, i.e. the maximum distance of a point in the set S to the hyperplane is
Figure BSA00000184744100047
The optimal approximation hyperplane of set S can be obtained by maximizing the upper bound of the point-to-hyperplane distance in S, and the optimal approximation hyperplane can be obtained by a maximization formula
Figure BSA00000184744100048
Get, thus solve | | w | | non-woven phosphor2The optimal approximate hyperplane of the set S can be obtained by the minimization problem, and a nonlinear mapping is needed because the equivalent salt deposit density system is a nonlinear system
Figure BSA00000184744100049
Dividing phase point x in equivalent salt deposit density system phase spaceiMapping to a high-dimensional space, and performing linear regression in the high-dimensional space, wherein a kernel function psi (x) is used to avoid inner product operation due to the inner product operation of the high-dimensional space involved in the optimization processi,xi+1) Substitute for inner product
Figure BSA000001847441000410
To realize the non-linear regression in the equivalent salt density system phase space, at this time, the problem of the support vector regression in the equivalent salt density system phase space can be converted into | | w | | computationally2Optimizing the problem:
Figure BSA000001847441000411
where, i ═ 1, 2., M, the above equation is a quadratic programming problem, and its Lagrange function is:
<math><mfenced open='{' close=''><mtable><mtr><mtd><munder><mi>min</mi><mrow><mi>&alpha;</mi><mo>,</mo><msup><mi>&alpha;</mi><mo>*</mo></msup></mrow></munder><mfrac><mn>1</mn><mn>2</mn></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><msub><mi>&alpha;</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>*</mo></msup><mo>-</mo><msub><mi>&alpha;</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mi>&Psi;</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>&epsiv;</mi><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><msub><mi>y</mi><mi>j</mi></msub><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>,</mo><mi>j</mi><mo>=</mo><mn>1,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>M</mi></mtd></mtr><mtr><mtd><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mi>i</mi></mrow><mo>=</mo><mn>1,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>M</mi></mtd></mtr></mtable></mfenced></math>
wherein alpha isiAnd
Figure BSA00000184744100052
known as lagrange multipliers, there is an equation for any i 1, 2
Figure BSA00000184744100053
αi≥0,
Figure BSA00000184744100054
If true;
when the nonlinear mapping function approximation in the equivalent salt density system phase space is carried out, because the obtained regression function and the actual function have inevitable errors, a relaxation variable is introduced:
ξi≥0,
Figure BSA00000184744100055
i=1,2,...,M,ξirepresents a relaxation variable;
the optimization at this time is as follows:
Figure BSA00000184744100056
wherein c is a penalty parameter, and c is more than 0;
the Lagrange dual problem can be found as:
<math><mfenced open='{' close=''><mtable><mtr><mtd><munder><mi>min</mi><mrow><mi>&alpha;</mi><mo>,</mo><msup><mi>&alpha;</mi><mo>*</mo></msup></mrow></munder><mfrac><mn>1</mn><mn>2</mn></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><msub><mi>a&alpha;</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>*</mo></msup><mo>-</mo><msub><mi>a&alpha;</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mi>&Psi;</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>&epsiv;</mi><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mrow><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>&GreaterEqual;</mo><mi>c</mi><mo>,</mo><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mi>i</mi></mrow><mo>=</mo><mn>1,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>M</mi></mtd></mtr></mtable></mfenced></math>
the above formula is used for predicting the equivalent salt deposit density of the surface of the insulator;
solving the above formula to obtain the non-linear mapping in the phase space of the equivalent salt deposit density system
Figure BSA00000184744100058
The regression function g (x), the kernel function and yiThe equivalent salt deposit density value at the next moment can be obtained as input quantity, and the parameters in the kernel function and the penalty factors in the model parameters of the support vector machine are nonlinear mappings obtained by a method for determining the support vector machine
Figure BSA00000184744100059
The most main factor of the predictive performance is the selection of the support vector machine model parameters by adopting a cross-validation method.
The application of the pollution flashover critical voltage prediction model of the insulator is carried out according to the following steps:
1) determination of pollution flashover threshold voltage:
the pollution flashover critical voltage value is the data U obtained by a 50% pollution flashover voltage test50%Equivalent salt deposit density, meteorological parameters and pollution flashover critical voltage value U50%The multi-dimensional nonlinear relation between the three-dimensional parameters is subjected to artificial neural network modeling, and the insulator pollution flashover critical voltage U with known equivalent salt deposit density and meteorological parameters is realized50%Carrying out prediction;
2) establishing an artificial neural network model:
the invention adopts a pollution flashover critical voltage prediction artificial neural network model based on a BP method;
determining three layers of an input layer, a hidden layer and an output layer of a pollution flashover critical voltage prediction BP artificial neural network model;
the pollution flashover critical voltage prediction BP artificial neural network model comprises an input layer, a hidden layer and an output layer, wherein the hidden layer is composed of two or three layers of nodes according to different artificial pollution experimental data;
x1,x2,...,xnis an input layer node, including equivalent salt density value, temperature, humidity, air pressure, wind speed and rainfall, h1,h2,...,hmIs a hidden layer node, o is an output layer node, and is a predicted value of the pollution flashover critical voltage of the insulator; v1,V2,...,VmIs the weight from the input layer to the hidden layer, W1,W2,...,WmThe method comprises the following steps that a weight value from a hidden layer to an output layer is obtained, artificial pollution voltage withstand test data are used as training data for training of an artificial neural network model of pollution flashover critical voltage, the structure and parameters of the whole network are optimized through training, the dimension of an input layer of the network is n, the output dimension is one dimension, namely the output of a relevant predicted value, the hidden layer unit dimension m is determined in an optimized mode in network training learning, the predicted value of a prediction model is compared with the result of an actual artificial pollution voltage withstand test, and then the network structure and the weight value are corrected and perfected;
3) adding momentum items on the basis of the artificial neural network model and adaptively adjusting the learning rate of the BP method:
in order to improve the training speed of the artificial neural network for predicting the pollution flashover critical voltage, a momentum item is added in a weight value adjusting formula, if W represents a weight value matrix of a certain layer in the artificial neural network for predicting the pollution flashover critical voltage and X represents an input vector of the certain layer, the expression of the weight value adjusting vector of the artificial neural network for predicting the pollution flashover critical voltage containing the momentum item is as follows:
Δ W (t) ═ η δ X + α Δ W (t-1), where the letter in the formula means α is a momentum coefficient, and α ∈ (0, 1) is set, η is the learning rate of the neural network, Δ W (t-1) is the previous weight adjustment amount, Δ W (t) is the current weight adjustment amount, the momentum term reflects the previous adjustment experience, and plays a role in damping the adjustment at time t, when the error surface suddenly fluctuates, the oscillation trend can be reduced, and the training speed can be increased;
self-adaptive adjustment is carried out on the learning rate of the BP method in the artificial neural network modeling of pollution flashover critical voltage prediction, the learning rate eta belongs to (0, 1) to represent a proportionality coefficient, an initial learning rate is set, and if the total error is increased after one-time weight adjustment, the adjustment is invalid; if the total error is reduced after the weight is adjusted once, the adjustment is effective;
4) introducing a gradient factor on the basis of the artificial neural network model to enable weight adjustment to be separated from a flat area:
introducing a gradient factor in the process of training an artificial neural network model for predicting the pollution flashover critical voltage, wherein a flat area exists on an error curved surface, weight adjustment entering the flat area represents that the output of neurons of the artificial neural network for predicting the pollution flashover critical voltage enters a saturated area of a transfer function, if the net input of the neurons is compressed after the neurons enter the flat area, the net input of the neurons is output and exits the saturated area of the transfer function, the shape of the error function can be changed, and the adjustment is separated from the flat area, specifically, introducing a gradient factor zeta in an original transfer function to ensure that the output is:
<math><mrow><mi>o</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mi>net</mi><mi>&xi;</mi></mfrac></mrow></msup></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mi>net</mi><mi>&xi;</mi></mfrac></mrow></msup></mrow></mfrac></mrow></math>
wherein net is the output value of each layer of nodes, when the delta E is close to zero and the d-o value is still larger, the node is considered to enter a flat area, and the zeta is larger than 1; when zeta > 1, the net coordinate is compressed by times, the sensitive segment of the transfer function curve of the neuron of the artificial neural network predicted by the pollution flashover critical voltage is lengthened, so that the net value is withdrawn from the saturation value, and when zeta equals 1, the transfer function is recovered to the original state, so that the sensitivity is higher for smaller net values;
an improved BP artificial neural network prediction model is established, a formula O (j) f (net (j)) is solved, and then a pollution flashover critical voltage prediction value of the insulator can be obtained, wherein j (1, 2.. the sum of the input of a pollution flashover critical voltage prediction neuron j is represented by l, the number of nodes of an output layer is represented by net (j), and f represents a nonlinear mapping relation.
The application of the pollution flashover grading prediction early warning model is carried out according to the following steps:
determining pollution flashover index of the insulator, and predicting the pollution flashover index by a formula
Figure BSA00000184744100072
Determining, wherein κ is a pollution flashover index; u shapeFFThe predicted value of the pollution flashover critical voltage is; u shapeOPThe predicted value of the pollution flashover critical voltage is the input of the model, and kappa is the output of the model, namely the predicted pollution flashover index.
The invention has the advantages that: a multivariate equivalent salt deposit density time sequence prediction model based on phase space reconstruction is provided, and a support vector machine model is used for solving the multivariate equivalent salt deposit density time sequence prediction model, so that the prediction problem under the conditions of small samples of equivalent salt deposit density data and noise is solved, and the prediction precision is improved.
Description of the drawings:
FIG. 1(a) is a flow chart of a regional power grid pollution flashover index prediction method of the present invention;
FIG. 1(b) is a flow chart of a prediction model for applying equivalent salt deposit density on the surface of an insulator according to the present invention;
FIG. 1(c) is a flow chart of a pollution flashover critical voltage prediction model of the insulator of the present invention;
FIG. 2 is a diagram of an artificial neural network model of the present invention;
FIG. 3 is a comparison of the equivalent salt deposit density measurement values and calculated values for the equivalent salt deposit density monitoring points of the present invention;
FIG. 4 is a graph comparing the measured and calculated values of the contamination flash threshold voltage of the present invention;
FIG. 5 is a model diagram of the pollution flashover index prediction and early warning.
The specific implementation mode is as follows:
the invention discloses a regional power grid pollution flashover index prediction method which is described by combining an embodiment and an attached drawing.
The method comprises the following steps as shown in figure 1 (a):
step 1, applying an equivalent salt deposit density prediction model on the surface of an insulator to predict the current value of the equivalent salt deposit density in real time;
inputting the environmental parameters and the equivalent salt deposit density historical values collected on the site of the power grid into an insulator surface equivalent salt deposit density prediction model, wherein the output of the insulator surface equivalent salt deposit density prediction model is the current value of the real-time predicted equivalent salt deposit density;
the environment parameters collected on site comprise a wind speed value, a temperature value, an air pressure value, a rain amount value, a humidity value and an equivalent salt deposit density historical value; the measured data of wind speed, temperature, air pressure, rainfall and humidity and the historical value of equivalent salt deposit form a six-dimensional equivalent salt deposit multivariable time sequence, and 20 different time values of the same time period of the six variables are selected to form the time sequence
The specific parameters are shown in the following formula
1.980 2.017 . . . 2.583 . . . 1.679 27.14 26.170 . . . 18.048 . . . 14.798 . . . 0.283 0.0489 . . . 0.1061 . . . 0.1687
In the above formula: the first is the wind speed value in m/s; a second behavior temperature value in units of; the third row is the barometric pressure value in hPa; the fourth line is the rainfall value, in mm; the fifth element is the relative humidity value in%;
sixth line is the equivalent salt density in mg/cm2
Step 2, applying a pollution flashover critical voltage prediction model to predict pollution flashover critical voltage;
inputting the current value of the real-time predicted equivalent salt deposit density and the current collected environmental parameters into a pollution flashover critical voltage prediction model of the insulator, wherein the output of the pollution flashover critical voltage prediction model of the insulator is a pollution flashover critical voltage prediction value;
step 3, applying a pollution flashover grading prediction early warning model to predict a pollution flashover index of the power grid insulator;
inputting the pollution flashover critical voltage predicted value into a pollution flashover grading prediction early warning model, wherein the output of the pollution flashover grading prediction early warning model is a predicted power grid pollution flashover index;
step 4, when the pollution flashover index of the power grid is 0% and 5%, carrying out no pollution flashover early warning; when the pollution flashover index of the power grid is 20%, issuing a pollution flashover grade III early warning; when the pollution flashover index of the power grid is 50% and 85%, the pollution flashover occurrence probability is greater than 50%, and a pollution flashover II-level early warning is issued; when the pollution flashover index of the power grid is 100%, the pollution flashover occurrence probability is quite large, the pollution flashover is likely to occur in the regional power grid at any time, and a pollution flashover I-level early warning is issued, as shown in fig. 5.
The total input conditions of the pollution flashover prediction model are meteorological data, including historical data and forecasts, the output is pollution flashover voltage grade, and the pollution flashover risk can be judged according to the pollution flashover voltage grade.
The application of the insulator surface equivalent salt deposit density prediction model is carried out according to the following steps, as shown in FIG. 1 (b):
1) establishing a multivariable equivalent salt deposit density time sequence;
the environment parameters collected on site comprise a wind speed value, a temperature value, an air pressure value, a rain amount value, a humidity value and an equivalent salt deposit density historical value; the measured data of wind speed, temperature, air pressure, rainfall and humidity and the historical value of equivalent salt deposit form a six-dimensional equivalent salt deposit multivariable time sequence, and 20 different time values of the same time period of the six variables are selected to form the time sequence
The specific parameters are shown in the following formula
1.980 2.017 . . . 2.583 . . . 1.679 27.14 26.170 . . . 18.048 . . . 14.798 . . . 0.283 0.0489 . . . 0.1061 . . . 0.1687
In the above formula: the first is the wind speed value in m/s; a second behavior temperature value in units of; the third row is the barometric pressure value in hPa; the fourth line is the rainfall value, in mm; the fifth element is the relative humidity value in%;
sixth line is the equivalent salt density in mg/cm2
2) Reconstructing the phase space of the multivariate equivalent salt deposit time series:
performing phase space reconstruction by using a salt density multivariable time sequence with equivalent value of delay time tau 3 and embedding dimension m 6, forming a training sample of an equivalent salt density time sequence support vector machine model by using all phase points in the phase space in a reconstructed equivalent salt dense phase space, establishing the support vector machine model, and performing nonlinear mapping in an equivalent salt density time sequence global prediction model
Figure BSA00000184744100092
Fitting is carried out;
the training samples composed of all the phase points in the phase space are:
<math><mfenced open='{' close=''><mtable><mtr><mtd><msub><mi>V</mi><mi>n</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi>V</mi><mi>N</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr></mtable></mfenced></math>
wherein the total number of phase points is N ═ 6(N- (m-1) τ);
3) and (3) testing the certainty of the equivalent salt deposit density time series:
calculating the maximum Lyapunov index by an improved method, wherein the result is approximately equal to 0.047, and the maximum Lyapunov index is larger than zero to judge that: the equivalent salt deposit density time sequence is a nonlinear chaotic time sequence;
4) global prediction multivariable equivalent salt deposit density time series
Based on the three steps, a multivariate equivalent salt deposit density time sequence global prediction model is established;
5) multivariate equivalent salt deposit density time sequence prediction model solved by using support vector machine model
According to the capacity of a training sample set of a support vector machine model formed by reconstructing phase space phase points of an equivalent salt density time sequence and the characteristics of an equivalent salt density nonlinear system, a cross-checking method is applied, and the kernel function of the support vector machine model and the parameters of the model are selected as follows: selecting a Gaussian kernel function by the kernel function; the kernel function parameter gamma is 0.6; penalty c is 50; the insensitive loss function parameter epsilon is 0.29;
the prediction result of the prediction model of the support vector machine of the equivalent salt deposit time sequence of the partial equivalent salt deposit monitoring points is shown in figure 3, and the error of the equivalent salt deposit prediction value in the established equivalent salt deposit prediction model is basically controlled within 12%.
The application of the pollution flashover critical voltage prediction model of the insulator is performed according to the following steps, as shown in fig. 1 (c):
1) determination of pollution flashover threshold voltage:
the pollution flashover critical voltage value is the data U obtained by a 50% pollution flashover voltage test50%Equivalent salt deposit density, meteorological parameters and pollution flashover critical voltage value U50%Between the twoCarrying out artificial neural network modeling on the relation to realize the pollution flashover critical voltage U of the insulator with known equivalent salt deposit density and meteorological parameters50%Carrying out prediction;
the data obtained from the pollution flashover voltage test are as follows:
normalized value of air pressure Normalized value of humidity Normalized value of temperature Normalized value of ESDD U50%Normalized value of
0.3913 0.8780 0.5354 0.4900 0.3070
0.8669 0.8785 0.6283 0.1580 0.6580
0.4332 0.7560 0.4486 0.0800 0.6588
0.6100 0.6918 0.6514 0.6360 0.2343
The normalized value is determined by the following equation:
Figure BSA00000184744100101
i is the obtained U50%The number of data;
aias a normalized value of a certain parameter, biAt any value of the parameter, bminIs the minimum of all values of the parameter, bmaxIs the maximum value of all the values of the parameter; selecting a group of data as a test sample, and using other data as a training sample of the artificial neural network;
2) aiming at the processed artificial pollution test data, establishing an artificial neural network model shown in the attached figure 2;
3) adding momentum items on the basis of the artificial neural network model and adaptively adjusting the learning rate of the BP method:
setting an initial value of a network parameter and an allowable value of a network output error by taking the standardized data in the step 1) as a training sample, training the network, and keeping a corresponding network structure parameter after the network output error is smaller than the allowable value;
4) introducing a gradient factor on the basis of an artificial neural network model to enable weight adjustment to be separated from a flat area, and obtaining a pollution flashover critical voltage prediction model:
comparing the prediction result with the measured value of the partial pollution flashover critical voltage prediction model as shown in fig. 4, the error of the pollution flashover critical voltage value in the established pollution flashover critical voltage prediction model is basically controlled within ± 6%;
the application of the pollution flashover grading prediction early warning model is carried out according to the following steps:
pollution flashover index prediction model passing formula
Figure BSA00000184744100111
Determining, wherein κ is a pollution flashover index; u shapeFFThe predicted value of the pollution flashover critical voltage is; u shapeOPIs the operating voltage.

Claims (4)

1. A regional power grid pollution flashover index prediction method is characterized by comprising the following steps: the method comprises the following steps:
step 1, applying an equivalent salt deposit density prediction model on the surface of an insulator to predict the current value of the equivalent salt deposit density in real time;
inputting the environmental parameters and the equivalent salt deposit density historical values collected on the site of the power grid into an insulator surface equivalent salt deposit density prediction model, wherein the output of the insulator surface equivalent salt deposit density prediction model is the current value of the real-time predicted equivalent salt deposit density;
step 2, applying an insulator pollution flashover critical voltage prediction model to predict pollution flashover critical voltage;
inputting the current value of the real-time predicted equivalent salt deposit density and the current collected environmental parameters into a pollution flashover critical voltage prediction model of the insulator, wherein the output of the pollution flashover critical voltage prediction model of the insulator is a pollution flashover critical voltage prediction value;
step 3, applying a pollution flashover grading prediction early warning model to predict a pollution flashover index of the power grid insulator;
inputting the pollution flashover critical voltage predicted value into a pollution flashover grading prediction early warning model, wherein the output of the pollution flashover grading prediction early warning model is a predicted power grid pollution flashover index;
step 4, when the pollution flashover index of the power grid is 0% and 5%, carrying out no pollution flashover early warning; when the pollution flashover index of the power grid is 20%, issuing a pollution flashover grade III early warning; when the pollution flashover index of the power grid is 50% and 85%, the pollution flashover occurrence probability is greater than 50%, and a pollution flashover II-level early warning is issued; when the pollution flashover index of the power grid is 100%, the pollution flashover occurrence probability is quite large, pollution flashover is likely to occur in the regional power grid at any time, and a pollution flashover I-level early warning is issued.
2. The regional power grid pollution flashover index prediction method according to claim 1, characterized in that: the application of the insulator surface equivalent salt deposit density prediction model is carried out according to the following steps:
1) establishing a multivariable equivalent salt deposit density time sequence;
the equivalent salt deposit density data is measured at regular time intervals and at a series of moments t1,t2,...,tnResulting discrete ordered set { x1,x2,...,xnThe time sequence is called discrete equivalent salt deposit density time sequence, and is called the equivalent salt deposit density time sequence for short;
the multivariable equivalent salt deposit density time sequence is a multidimensional equivalent salt density time sequence which is composed of an equivalent salt density time sequence and a meteorological parameter time sequence in the same moment and is a representation form of a multidimensional equivalent salt density nonlinear dynamics system comprising the equivalent salt density time sequence;
m-dimensional equivalent salt deposit density time series: x1,X2,...,XNN stands for the number of moments, where Xi=(x1,i,x2,i,...,xM,i) I.e. by
x 1,1 x 1,2 . . . x 1 , i . . . x 1 , N x 2,1 x 2,2 . . . x 2 , i . . . x 2 , N . . . x M , 1 x M , 2 . . . x M , i . . . x M , N
Wherein i is 1, 2M,NRepresenting the value of the Mth variable at time N, xM,iThe value of the Mth variable at the moment i is shown;
2) reconstructing a phase space of a multivariable equivalent salt deposit density time sequence;
the phase points of the multivariate equivalent salt deposit density time sequence phase space reconstruction are as follows:
<math><mfenced open='{' close=''><mtable><mtr><mtd><msub><mi>V</mi><mi>n</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>n</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>i</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi>V</mi><mi>N</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi><mo>-</mo><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi><mo>-</mo><mrow><mo>(</mo><mi>m</mi><mn>1</mn><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mn>1</mn></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi><mo>-</mo><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mrow><mi>M</mi><mo>,</mo><mi>N</mi><mo>-</mo><mrow><mo>(</mo><msub><mi>m</mi><mi>M</mi></msub><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>&tau;</mi><mi>M</mi></msub></mrow></msub><mo>)</mo></mrow></mtd></mtr></mtable></mfenced></math>
Figure FSA00000184744000022
denotes that the Mth variable is delayed by tau at time NMEmbedding dimension mMThe reconstructed phase space of (a);
where n denotes the time of the nth time instant,
Figure FSA00000184744000023
τiand miFor the delay time and the embedding dimension of the ith time series, the embedding dimension m of the reconstructed phase space is m1+m2+...+mMM is the dimension of the time series;
the phase space reconstruction parameter delay time tau of the multivariable equivalent salt deposit density time sequence is selected by adopting a mutual information method, the mutual information method takes the delay when the mutual information reaches the minimum for the first time as the delay time of the phase space reconstruction, and the method comprises the following steps of
Figure FSA00000184744000024
Determination of Rxx((i +1) τ) is an autocorrelation function with an equivalent salt deposit time series time span of (i +1) τ, τ being the phase space reconstruction parameter delay time; the embedding dimension m is defined by:
<math><mrow><mi>E</mi><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mi>N</mi><mo>-</mo><mi>m&tau;</mi></mrow></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>-</mo><mi>m&tau;</mi></mrow></munderover><mi>&alpha;</mi><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></math>
determining, wherein:
<math><mrow><mi>&alpha;</mi><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>|</mo><mo>|</mo><msub><mi>X</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><msub><mi>X</mi><mrow><mi>n</mi><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>|</mo><mo>|</mo></mrow><mrow><mo>|</mo><mo>|</mo><msub><mi>X</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>X</mi><mrow><mi>n</mi><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>|</mo><mo>|</mo></mrow></mfrac></mrow></math>
Xi(m +1) is the ith phase point in the (m +1) -dimensional reconstructed iso-salt deposit system phase space, and n (i, m) is the phase point X in the m-dimensional iso-salt deposit system phase spacen(i,m)(m) is the phase point Xi(m) nearest integer, | | · | |, is the euclidean distance over the equivalent salt deposit system phase space;
3) testing the certainty of the equivalent salt deposit density time sequence;
in the invention, a Lyapunov exponent method is adopted to carry out deterministic test on an equivalent salt deposit time sequence, the exponent is a numerical representation of the average exponent divergence rate of adjacent orbits in a phase space and is used for depicting the initial state sensitivity of chaotic motion, and the exponent is an integral characteristic as a long-term average result along the orbits and is always real;
the non-linear characteristic of the equivalent salt deposit density time sequence is judged by calculating the maximum Lyapunov exponent, and the method calculates the slope of the regression line of the y (k) curve
Figure FSA00000184744000027
Is the maximum index, wherein,
Figure FSA00000184744000028
li(k) representing each pair of nearest points in the reconstructed equivalent salt dense-phase space, and calculating Euclidean distances after k discrete times, wherein M is the dimension of a time sequence;
4) globally predicting a multivariable equivalent salt deposit density time sequence;
according to the Thanksgiving time-delay embedding theorem, as long as the embedding dimension m and the delay time tau are reasonably selected, the track of the reconstructed phase space in the embedding space is equivalent to an equivalent salt deposit kinetic system in the differential homoembryo sense, and a smooth mapping f exists:
Figure FSA00000184744000031
such that: vi+1=f(Vi),Vi+1Representing the (i +1) th phase point in the reconstruction phase space, and applying a nonlinear approximation method to construct a mapping
Figure FSA00000184744000032
To approximate f and make
Figure FSA00000184744000033
Satisfies the following conditions:
Figure FSA00000184744000034
at a minimum, wherein
Figure FSA00000184744000035
Figure FSA00000184744000036
The expression indicates that the Mth variable is delayed by tau at the time nMEmbedding dimension mMTo reconstruct the value in phase space, τMDenotes the delay time of the Mth variable, MMAn embedding dimension representing an Mth variable;
5) solving a multivariate equivalent salt deposit density time sequence prediction model by using a support vector machine model;
by solving non-linear mappings in the prediction model
Figure FSA00000184744000037
Determining an equivalent salt deposit density time series prediction model and mapping the prediction model on the obtained nonlinear
Figure FSA00000184744000038
The lower prediction error meets the requirement, and the support vector machine theory can effectively solve the problem of nonlinear mapping in the equivalent salt deposit density nonlinear time sequence prediction model under the condition that the equivalent salt deposit density data sample capacity is small
Figure FSA00000184744000039
The support vector machine method for approximating the non-linear mapping relationship in the equivalent salt deposit density time series prediction model is support vector regression;
a sample set formed by phase space phase points of an equivalent salt density system is set as follows: s { (x)i,yi),i=1,2,...,M},(xi,yi) Representing any phase point in the reconstructed phase space, if there is one hyperplane g (x) ═ g<w·x>+b,w∈RnB ∈ R, w, b denote vector parameters, in order to construct a hyperplane g (x), such that: | yi-g(xi) If | ≦ ε, wherein,<·>denotes the vector inner product, i 1, 2Dimension of the salt time series, then the sample set S { (x)i,yi) 1, 2, M is an approximate set of epsilon, with: non-viable cells<w·x>+b-yiI.e. less than or equal to epsilon
Figure FSA000001847440000310
i=1,2,...,M;
Wherein,
Figure FSA000001847440000311
distance d from point of S to hyperplane f (x)iThen, there are:1, 2, M, i.e. the maximum distance of a point in the set S to the hyperplane is
Figure FSA000001847440000313
The optimal approximation hyperplane of set S can be obtained by maximizing the upper bound of the point-to-hyperplane distance in S, and the optimal approximation hyperplane can be obtained by a maximization formulaGet, thus solve | | w | | non-woven phosphor2The optimal approximate hyperplane of the set S can be obtained by the minimization problem, and a nonlinear mapping is needed because the equivalent salt deposit density system is a nonlinear system
Figure FSA00000184744000042
Dividing phase point x in equivalent salt deposit density system phase spaceiMapping to a high-dimensional space, and performing linear regression in the high-dimensional space, wherein a kernel function psi (x) is used to avoid inner product operation due to the inner product operation of the high-dimensional space involved in the optimization processi,xi+1) Substitute for inner product
Figure FSA00000184744000043
To realize the non-linear regression in the phase space of the equivalent salt deposit density system, at the moment, the equivalent salt deposit density systemThe problem of support vector regression in unified phase space can be converted into | | w | | luminance as follows2Optimizing the problem:
Figure FSA00000184744000044
where, i ═ 1, 2., M, the above equation is a quadratic programming problem, and its Lagrange function is:
<math><mfenced open='{' close=''><mtable><mtr><mtd><munder><mi>min</mi><mrow><mi>&alpha;</mi><mo>,</mo><msup><mi>&alpha;</mi><mo>*</mo></msup></mrow></munder><mfrac><mn>1</mn><mn>2</mn></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><msub><mi>&alpha;</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>*</mo></msup><mo>-</mo><msub><mi>&alpha;</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mi>&Psi;</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>&epsiv;</mi><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><msub><mi>y</mi><mi>j</mi></msub><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>,</mo><mi>j</mi><mo>=</mo><mn>1,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>M</mi></mtd></mtr><mtr><mtd><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mi>i</mi></mrow><mo>=</mo><mn>1,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>M</mi></mtd></mtr></mtable></mfenced></math>
wherein alpha isiAnd
Figure FSA00000184744000046
known as lagrange multipliers, there is an equation for any i 1, 2αi≥0,
Figure FSA00000184744000048
If true;
when the nonlinear mapping function approximation in the equivalent salt density system phase space is carried out, because the obtained regression function and the actual function have inevitable errors, a relaxation variable is introduced:
ξi≥0,
Figure FSA00000184744000049
i=1,2,...,M,ξirepresents a relaxation variable;
the optimization at this time is as follows:
Figure FSA000001847440000410
wherein c is a penalty parameter, and c is more than 0;
the Lagrange dual problem can be found as:
<math><mfenced open='{' close=''><mtable><mtr><mtd><munder><mi>min</mi><mrow><mi>&alpha;</mi><mo>,</mo><msup><mi>&alpha;</mi><mo>*</mo></msup></mrow></munder><mfrac><mn>1</mn><mn>2</mn></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><msub><mi>a</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>*</mo></msup><mo>-</mo><msub><mi>a</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mi>&Psi;</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo><msub><mi>x</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>&epsiv;</mi><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mrow><mo>(</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>-</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>&alpha;</mi><mi>i</mi></msub><mo>&GreaterEqual;</mo><mi>c</mi><mo>,</mo><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mo>*</mo></msubsup><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mi>i</mi></mrow><mo>=</mo><mn>1,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>M</mi></mtd></mtr></mtable></mfenced></math>
the above formula is used for predicting the equivalent salt deposit density of the surface of the insulator;
solving the above formula to obtain the non-linear mapping in the phase space of the equivalent salt deposit density system
Figure FSA00000184744000052
The regression function g (x), the kernel function and yiThe equivalent salt deposit density value at the next moment can be obtained as input quantity, and the parameters in the kernel function and the penalty factors in the model parameters of the support vector machine are nonlinear mappings obtained by a method for determining the support vector machine
Figure FSA00000184744000053
The most main factor of the predictive performance is the selection of the support vector machine model parameters by adopting a cross-validation method.
3. The regional power grid pollution flashover index prediction method according to claim 1, characterized in that: the application of the pollution flashover critical voltage prediction model of the insulator is carried out according to the following steps:
1) determining a pollution flashover critical voltage;
the pollution flashover critical voltage value is the data U obtained by a 50% pollution flashover voltage test50%Equivalent salt deposit density, meteorological parameters and pollution flashover critical voltage value U50%The multi-dimensional nonlinear relation between the three-dimensional parameters is subjected to artificial neural network modeling, and the insulator pollution flashover critical voltage U with known equivalent salt deposit density and meteorological parameters is realized50%Carrying out prediction;
2) establishing an artificial neural network model;
the invention adopts a pollution flashover critical voltage prediction artificial neural network model based on a BP method;
determining three layers of an input layer, a hidden layer and an output layer of a pollution flashover critical voltage prediction BP artificial neural network model;
the pollution flashover critical voltage prediction BP artificial neural network model comprises an input layer, a hidden layer and an output layer, wherein the hidden layer is composed of two or three layers of nodes according to different artificial pollution experimental data;
x1,x2,...,xnis an input layer node, including equivalent salt density value, temperature, humidity, air pressure, wind speed and rainfall, h1,h2,...,hmIs a hidden layer node, o is an output layer node, and is a predicted value of the pollution flashover critical voltage of the insulator; v1,V2,...,VmIs the weight from the input layer to the hidden layer, W1,W2,...,WmThe method comprises the following steps that a weight value from a hidden layer to an output layer is obtained, artificial pollution voltage withstand test data are used as training data for training of an artificial neural network model of pollution flashover critical voltage, the structure and parameters of the whole network are optimized through training, the dimension of an input layer of the network is n, the output dimension is one dimension, namely the output of a relevant predicted value, the hidden layer unit dimension m is determined in an optimized mode in network training learning, the predicted value of a prediction model is compared with the result of an actual artificial pollution voltage withstand test, and then the network structure and the weight value are corrected and perfected;
3) adding momentum items on the basis of the artificial neural network model and adaptively adjusting the learning rate of the BP method;
in order to improve the training speed of the artificial neural network for predicting the pollution flashover critical voltage, a momentum item is added in a weight value adjusting formula, if W represents a weight value matrix of a certain layer in the artificial neural network for predicting the pollution flashover critical voltage and X represents an input vector of the certain layer, the expression of the weight value adjusting vector of the artificial neural network for predicting the pollution flashover critical voltage containing the momentum item is as follows:
Δ W (t) ═ η δ X + α Δ W (t-1), where the letter in the formula means α is a momentum coefficient, and α ∈ (0, 1) is set, η is the learning rate of the neural network, Δ W (t-1) is the previous weight adjustment amount, Δ W (t) is the current weight adjustment amount, the momentum term reflects the previous adjustment experience, and plays a role in damping the adjustment at time t, when the error surface suddenly fluctuates, the oscillation trend can be reduced, and the training speed can be increased;
self-adaptive adjustment is carried out on the learning rate of the BP method in the artificial neural network modeling of pollution flashover critical voltage prediction, the learning rate eta belongs to (0, 1) to represent a proportionality coefficient, an initial learning rate is set, and if the total error is increased after one-time weight adjustment, the adjustment is invalid; if the total error is reduced after the weight is adjusted once, the adjustment is effective;
4) introducing a gradient factor on the basis of the artificial neural network model to enable weight adjustment to be separated from a flat area;
introducing a gradient factor in the process of training an artificial neural network model for predicting the pollution flashover critical voltage, wherein a flat area exists on an error curved surface, weight adjustment entering the flat area represents that the output of neurons of the artificial neural network for predicting the pollution flashover critical voltage enters a saturated area of a transfer function, if the net input of the neurons is compressed after the neurons enter the flat area, the net input of the neurons is output and exits the saturated area of the transfer function, the shape of the error function can be changed, and the adjustment is separated from the flat area, specifically, introducing a gradient factor zeta in an original transfer function to ensure that the output is:
<math><mrow><mi>o</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mi>net</mi><mi>&xi;</mi></mfrac></mrow></msup></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>-</mo><mfrac><mi>net</mi><mi>&xi;</mi></mfrac></mrow></msup></mrow></mfrac></mrow></math>
wherein net is the output value of each layer of nodes, when the delta E is close to zero and the d-o value is still larger, the node is considered to enter a flat area, and the zeta is larger than 1; when zeta > 1, the net coordinate is compressed by times, the sensitive segment of the transfer function curve of the neuron of the artificial neural network predicted by the pollution flashover critical voltage is lengthened, so that the net value is withdrawn from the saturation value, and when zeta equals 1, the transfer function is recovered to the original state, so that the sensitivity is higher for smaller net values;
an improved BP artificial neural network prediction model is established, a formula O (j) f (net (j)) is solved, and then a pollution flashover critical voltage prediction value of the insulator can be obtained, wherein j (1, 2.. the sum of the input of a pollution flashover critical voltage prediction neuron j is represented by l, the number of nodes of an output layer is represented by net (j), and f represents a nonlinear mapping relation.
4. The regional power grid pollution flashover index prediction method according to claim 1, characterized in that: the application of the pollution flashover grading prediction early warning model is carried out according to the following steps:
determining pollution flashover index of the insulator, and predicting the pollution flashover index by a formula
Figure FSA00000184744000071
Determining, wherein κ is a pollution flashover index; u shapeFFThe predicted value of the pollution flashover critical voltage is; u shapeOPThe predicted value of the pollution flashover critical voltage is the input of the model, and kappa is the output of the model, namely the predicted pollution flashover index.
CN201010224050A 2010-07-12 2010-07-12 Pollution flashover index forecasting method for regional power grid Active CN101893674B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010224050A CN101893674B (en) 2010-07-12 2010-07-12 Pollution flashover index forecasting method for regional power grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010224050A CN101893674B (en) 2010-07-12 2010-07-12 Pollution flashover index forecasting method for regional power grid

Publications (2)

Publication Number Publication Date
CN101893674A true CN101893674A (en) 2010-11-24
CN101893674B CN101893674B (en) 2012-10-17

Family

ID=43102926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010224050A Active CN101893674B (en) 2010-07-12 2010-07-12 Pollution flashover index forecasting method for regional power grid

Country Status (1)

Country Link
CN (1) CN101893674B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520313A (en) * 2011-11-10 2012-06-27 广东电网公司东莞供电局 Power external insulation pollution flashover early warning method
CN102590677A (en) * 2012-02-28 2012-07-18 浙江省电力试验研究院 Analyzing and processing method for test data of manual pollution flashover of insulator
CN102707209A (en) * 2012-06-13 2012-10-03 浙江省电力公司电力科学研究院 Method for researching pollution flashover characters of natural pollutant retention insulator by considering pollution conversion coefficient
CN102879689A (en) * 2012-10-12 2013-01-16 华北电力大学(保定) Method for evaluating running status of composite insulator
CN103065212A (en) * 2012-11-19 2013-04-24 南京南瑞集团公司 Electric transmission line pollution flashover early warning system based on weather numerical forecasting and method thereof
CN103809084A (en) * 2012-11-15 2014-05-21 南车青岛四方机车车辆股份有限公司 Flashover voltage prediction method for high speed train roof insulator
CN104281885A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network arrester non-lightning flashover risk index prediction method
CN104281888A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network overhead transmission conductor breaking risk index prediction method
CN104281883A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network overhead line icing risk index prediction method
CN104281887A (en) * 2014-09-16 2015-01-14 国家电网公司 Method for forecasting fatigue index of power transmission line in power distribution network
CN104281886A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network overhead power transmission line filth sedimentation index prediction method
CN104281884A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network arrester fault risk index prediction method
CN104361216A (en) * 2014-10-29 2015-02-18 国家电网公司 Insulator pollution flashover early warning method on basis of variable weight analytic hierarchy process
CN104616060A (en) * 2014-12-23 2015-05-13 南京工程学院 Method for predicating contamination severity of insulator based on BP neural network and fuzzy logic
CN104850746A (en) * 2015-05-22 2015-08-19 国家电网公司 Equivalent salt deposit density prediction method based on fourth-order Runge-Kutta and simulated annealing
CN105093077A (en) * 2015-08-24 2015-11-25 国家电网公司 Transmission line area pollution severity characterization method
CN105160419A (en) * 2015-08-06 2015-12-16 国家电网公司 Insulator equivalent salt density prediction model introducing air quality index
CN106405352A (en) * 2016-11-16 2017-02-15 国网河南省电力公司电力科学研究院 Equivalent salt deposit density (ESDD) prediction and early warning system for power insulator surface contaminant
CN106570651A (en) * 2016-11-09 2017-04-19 国家电网公司 Method for evaluating pollution flashover risk of insulator of power transmission line
CN106682774A (en) * 2016-12-23 2017-05-17 中国铁路总公司 Contact net insulator pollution flashover prediction method
CN108615089A (en) * 2018-03-27 2018-10-02 东北电力大学 A kind of short-term wind speed hybrid forecasting method based on recurrence quantification analysis
US10360538B2 (en) 2014-01-28 2019-07-23 International Business Machines Corporation Predicting pollution formation on insulator structures of power grids
CN113095499A (en) * 2021-03-26 2021-07-09 云南电网有限责任公司电力科学研究院 Insulator equivalent salt deposit density prediction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599556A (en) * 1982-01-15 1986-07-08 Bbc Brown, Boveri & Company, Limited Method for detecting a disturbance along a conductor in an electricity-distribution system of the grid type
CN1282876A (en) * 2000-09-15 2001-02-07 清华大学 Method and equipment for positioning failure point on electric power transmission line
CN1558249A (en) * 2004-01-20 2004-12-29 华北电力大学 Charged detection method for insulator of high voltage direct current transmission line
CN1566976A (en) * 2003-06-13 2005-01-19 上海龙源智光电气有限公司 High-voltage electrical appliance insulation parameter on-line monitoring method based on reference phase method
CN101509950A (en) * 2009-03-17 2009-08-19 中国电力科学研究院 Secondary arc analogue simulation apparatus and method for transmission line

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599556A (en) * 1982-01-15 1986-07-08 Bbc Brown, Boveri & Company, Limited Method for detecting a disturbance along a conductor in an electricity-distribution system of the grid type
CN1282876A (en) * 2000-09-15 2001-02-07 清华大学 Method and equipment for positioning failure point on electric power transmission line
CN1566976A (en) * 2003-06-13 2005-01-19 上海龙源智光电气有限公司 High-voltage electrical appliance insulation parameter on-line monitoring method based on reference phase method
CN1558249A (en) * 2004-01-20 2004-12-29 华北电力大学 Charged detection method for insulator of high voltage direct current transmission line
CN101509950A (en) * 2009-03-17 2009-08-19 中国电力科学研究院 Secondary arc analogue simulation apparatus and method for transmission line

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520313A (en) * 2011-11-10 2012-06-27 广东电网公司东莞供电局 Power external insulation pollution flashover early warning method
CN102590677A (en) * 2012-02-28 2012-07-18 浙江省电力试验研究院 Analyzing and processing method for test data of manual pollution flashover of insulator
CN102707209A (en) * 2012-06-13 2012-10-03 浙江省电力公司电力科学研究院 Method for researching pollution flashover characters of natural pollutant retention insulator by considering pollution conversion coefficient
CN102879689A (en) * 2012-10-12 2013-01-16 华北电力大学(保定) Method for evaluating running status of composite insulator
CN102879689B (en) * 2012-10-12 2014-11-26 华北电力大学(保定) Method for evaluating running status of composite insulator
CN103809084A (en) * 2012-11-15 2014-05-21 南车青岛四方机车车辆股份有限公司 Flashover voltage prediction method for high speed train roof insulator
CN103809084B (en) * 2012-11-15 2016-12-21 中车青岛四方机车车辆股份有限公司 A kind of Forecasting Methodology of bullet train roof insulator contamination voltage
CN103065212B (en) * 2012-11-19 2016-06-08 南京南瑞集团公司 A kind of transmission line of electricity pre-warning method based on meteorological numerical forecast
CN103065212A (en) * 2012-11-19 2013-04-24 南京南瑞集团公司 Electric transmission line pollution flashover early warning system based on weather numerical forecasting and method thereof
US10360538B2 (en) 2014-01-28 2019-07-23 International Business Machines Corporation Predicting pollution formation on insulator structures of power grids
CN104281888A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network overhead transmission conductor breaking risk index prediction method
CN104281886A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network overhead power transmission line filth sedimentation index prediction method
CN104281884A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network arrester fault risk index prediction method
CN104281884B (en) * 2014-09-16 2018-04-27 国家电网公司 A kind of power distribution network surge arrester failure risk index Forecasting Methodology
CN104281885B (en) * 2014-09-16 2018-04-27 国家电网公司 A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester
CN104281883A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network overhead line icing risk index prediction method
CN104281887A (en) * 2014-09-16 2015-01-14 国家电网公司 Method for forecasting fatigue index of power transmission line in power distribution network
CN104281886B (en) * 2014-09-16 2018-02-09 国家电网公司 A kind of filthy sedimentation index forecasting method of power distribution network overhead transmission line
CN104281885A (en) * 2014-09-16 2015-01-14 国家电网公司 Power distribution network arrester non-lightning flashover risk index prediction method
CN104361216A (en) * 2014-10-29 2015-02-18 国家电网公司 Insulator pollution flashover early warning method on basis of variable weight analytic hierarchy process
CN104361216B (en) * 2014-10-29 2017-06-23 国网河南省电力公司电力科学研究院 A kind of insulator contamination method for early warning based on change power analytic hierarchy process (AHP)
CN104616060A (en) * 2014-12-23 2015-05-13 南京工程学院 Method for predicating contamination severity of insulator based on BP neural network and fuzzy logic
CN104616060B (en) * 2014-12-23 2018-03-27 南京工程学院 Insulator dirty degree Forecasting Methodology based on BP neural network and fuzzy logic
CN104850746B (en) * 2015-05-22 2017-08-18 国家电网公司 A kind of equivalent salt density Forecasting Methodology based on fourth order Runge-Kutta and simulated annealing
CN104850746A (en) * 2015-05-22 2015-08-19 国家电网公司 Equivalent salt deposit density prediction method based on fourth-order Runge-Kutta and simulated annealing
CN105160419A (en) * 2015-08-06 2015-12-16 国家电网公司 Insulator equivalent salt density prediction model introducing air quality index
CN105160419B (en) * 2015-08-06 2018-09-21 国家电网公司 A kind of insulator equivalent salt density degree prediction model introducing air quality index
CN105093077B (en) * 2015-08-24 2017-10-03 国家电网公司 A kind of transmission line of electricity region pollution degree characterizing method
CN105093077A (en) * 2015-08-24 2015-11-25 国家电网公司 Transmission line area pollution severity characterization method
CN106570651A (en) * 2016-11-09 2017-04-19 国家电网公司 Method for evaluating pollution flashover risk of insulator of power transmission line
CN106405352A (en) * 2016-11-16 2017-02-15 国网河南省电力公司电力科学研究院 Equivalent salt deposit density (ESDD) prediction and early warning system for power insulator surface contaminant
CN106682774A (en) * 2016-12-23 2017-05-17 中国铁路总公司 Contact net insulator pollution flashover prediction method
CN108615089A (en) * 2018-03-27 2018-10-02 东北电力大学 A kind of short-term wind speed hybrid forecasting method based on recurrence quantification analysis
CN113095499A (en) * 2021-03-26 2021-07-09 云南电网有限责任公司电力科学研究院 Insulator equivalent salt deposit density prediction method

Also Published As

Publication number Publication date
CN101893674B (en) 2012-10-17

Similar Documents

Publication Publication Date Title
CN101893674B (en) Pollution flashover index forecasting method for regional power grid
CN111222698B (en) Internet of things-oriented ponding water level prediction method based on long-time and short-time memory network
CN101383023B (en) Neural network short-term electric load prediction based on sample dynamic organization and temperature compensation
Bhardwaj et al. Estimation of solar radiation using a combination of Hidden Markov Model and generalized Fuzzy model
CN103730006B (en) A kind of combination forecasting method of Short-Term Traffic Flow
CN110263866A (en) A kind of power consumer load setting prediction technique based on deep learning
Wang et al. A hybrid forecasting model based on outlier detection and fuzzy time series–A case study on Hainan wind farm of China
CN112101669B (en) Photovoltaic power interval prediction method based on improved extreme learning machine and quantile regression
CN102562469B (en) Short-term wind driven generator output power predicting method based on correction algorithm
CN113554466B (en) Short-term electricity consumption prediction model construction method, prediction method and device
CN106503867A (en) A kind of genetic algorithm least square wind power forecasting method
CN109726802B (en) Machine learning prediction method for wind speed in railway and wind farm environment
CN112884243A (en) Air quality analysis and prediction method based on deep learning and Bayesian model
CN101480143A (en) Method for predicating single yield of crops in irrigated area
CN105160437A (en) Load model prediction method based on extreme learning machine
CN114117852B (en) Regional heat load rolling prediction method based on finite difference working domain division
Mohandes et al. Short term wind speed estimation in Saudi Arabia
CN114492922A (en) Medium-and-long-term power generation capacity prediction method
CN107045659A (en) Predict the method and device of photovoltaic generation power
Chi et al. Comparison of two multi-step ahead forecasting mechanisms for wind speed based on machine learning models
CN118312576A (en) Prediction method and system for high-temperature heat wave-drought composite disaster and electronic equipment
CN118017482A (en) Flexible climbing capacity demand analysis method based on prediction error feature extraction
Adha et al. How large the direct rebound effect for residential electricity consumption when the artificial neural network takes on the role?: a Taiwan case study of household electricity consumption
Shabri Forecasting the annual carbon dioxide emissions of Malaysia using Lasso-GMDH neural network-based
CN115600498A (en) Wind speed forecast correction method based on artificial neural network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: DANDONG POWER SUPPLY COMPANY OF LIAONING ELECTRIC

Effective date: 20130606

Owner name: STATE ELECTRIC NET CROP.

Free format text: FORMER OWNER: SHENYANG UNIVERSITY OF TECHNOLOGY

Effective date: 20130606

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 110178 SHENYANG, LIAONING PROVINCE TO: 100031 DONGCHENG, BEIJING

TR01 Transfer of patent right

Effective date of registration: 20130606

Address after: 100031 West Chang'an Avenue, Beijing, No. 86

Patentee after: State Grid Corporation of China

Patentee after: Dandong Power Supply Company of Liaoning Electric Power Co., Ltd.

Address before: 110178, No. 111, Shen Xi Road, Shenyang economic and Technological Development Zone, Shenyang, Liaoning

Patentee before: Shenyang University of Technology