CN104281885B - A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester - Google Patents

A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester Download PDF

Info

Publication number
CN104281885B
CN104281885B CN201410472758.5A CN201410472758A CN104281885B CN 104281885 B CN104281885 B CN 104281885B CN 201410472758 A CN201410472758 A CN 201410472758A CN 104281885 B CN104281885 B CN 104281885B
Authority
CN
China
Prior art keywords
mrow
msub
mtr
mtd
tau
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410472758.5A
Other languages
Chinese (zh)
Other versions
CN104281885A (en
Inventor
胡玉涛
李勇
韩利鹏
熊超
安芷瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Liaoning Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Liaoning Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201410472758.5A priority Critical patent/CN104281885B/en
Publication of CN104281885A publication Critical patent/CN104281885A/en
Application granted granted Critical
Publication of CN104281885B publication Critical patent/CN104281885B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Abstract

The invention belongs to power transmission and distribution monitoring technical field, more particularly to a kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester.Including:Step 1:Establish the time series of the non-lightning stroke flashover risk index Evolution System of arrester;Step 2:Reconstitution time sequence(1)The phase space of representative filthy sedimentation index evolution Kind of Nonlinear Dynamical System;Step 3:Calculate the phase point of subsequent time in phase space;Step 4:Calculate non-lightning stroke flashover risk index predicted value.Present invention prediction is accurate, and the non-lightning stroke flashover risk index prediction model of power distribution network arrester of practical implementation is adapted to by establishing, and have effectively achieved the accurate prediction to the non-lightning stroke flashover risk index of arrester.To the severe changeable area of the power distribution network nature meteorological condition such as coastal, riverine, it is possible to achieve complete reliable forecast system, is not influenced by the adverse circumstances.

Description

A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester
Technical field
The invention belongs to power transmission and distribution monitoring technical field, more particularly to a kind of non-lightning stroke flashover risk of power distribution network arrester refers to Number Forecasting Methodology.
Background technology
In the process of running, due to lightning arrester insulation surface contamination, internal valve block failure etc. can cause power distribution network arrester Arrester flashover breakdown in the case of non-lightning stroke discharges, since arrester should be open-circuit condition in power grid normal operation, once Generation flashover discharges, and may result in electric network fault, and at present, the appraisal procedure that non-lightning stroke flashover occurs for arrester is mainly logical Cross and statistical analysis is carried out to non-lightning stroke flashover, summarize the research of its rule etc..
Increasingly complicated for power system operating mode, the challenge of coastal and more haze environment, the non-lightning stroke flashover of arrester is tight Ghost image rings the safe operation of power grid, it is necessary to carry out the Basic Problems research of its occurrence risk prediction in a deep going way.
The content of the invention
In view of the deficiencies of the prior art, the present invention provides a kind of non-lightning stroke flashover risk index prediction side of power distribution network arrester Method, the non-lightning stroke flashover risk index prediction model of power distribution network arrester of practical implementation is adapted to by establishing, with effectively Solve the accurate prediction to the non-lightning stroke flashover risk index of arrester.
The step of technical scheme is realized is as follows:
A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester, comprises the following steps:
Step 1:Establish the time series of the non-lightning stroke flashover risk index Evolution System of arrester:
Non- lightning stroke flashover number, rainfall, humidity, wind speed are measured in Fixed Time Interval, by non-lightning stroke flashover The ratio of number and arrester whole discharge time is as non-lightning stroke flashover risk index, i.e.,:
Then, in a series of moment t1,t2,...,tn(n is natural number, n=1,2 ...) obtains non-lightning stroke flashover risk and refers to Number, temperature, humidity, wind speed time series:
Step 2:The phase of filthy sedimentation index evolution Kind of Nonlinear Dynamical System representated by reconstitution time sequence (1) is empty Between FY
PFiFor the phase point in the time series Phase Space of reconstruct, i=1,2 ..., N, τjtAnd mjtTime delay and Embedded dimensions for t time series of jth, the Embedded dimensions m=m of phase space reconstruction1+m2+...+ m5
Delay time TjtSelection use mutual information method, on delay time TjtMutual information function be:
Take mutual information function INTERjt) τ when first appearing minimumjtAs the time delay of phase space reconfiguration, wherein PROB(fvjt,i) it is in the i-th moment fvjt,iThe probability of appearance,For in the i-th moment fvjt,iWithTogether When the probability that occurs, i=1,2 ..., N;
Embedded dimensions mjtBy differential correlation function:
MjtM during secondary zero crossingjtValue is definite, MjtFor given Accuracy Controlling Parameter, ε is phase point set in advance Between Euclidean distanceUpper limit value, H () is Heaviside sign functions:
Step 3:Calculate the phase point of subsequent time in phase space:
In phase space FYMiddle calculating establishes weight function according to known N number of phase point:
Wherein:I=1,2 ..., N, i-th of phase point to phase space central point and arrive PFcentrDistance be di=‖ PFi- PFcentr‖, dminIt is diIn minimum value.The linear fit function for establishing the unknown phase point of subsequent time is:
PFN+1=ae+bPFN (6)
Wherein, i=1,2 ..., N, e=(1,1 ..., 1)T, a, b are fitting parameter, application weighting least square method:
By FunLocal derviation is asked to have parameter a, b:
Fitting parameter a, b can be obtained by solving equation group, then can calculate next unknown phase point prediction value is:
PFN+1=a+bPFN (9)
Step 4:Calculate non-lightning stroke flashover risk index predicted value:
The PF that will be calculated in step 3N+1As the N+1 phase point in phase space (2), then phase space newly can be obtained For:
Make τjt=1 (jt=1,2 ..., 5), can obtain fv therein1,N+1As non-lightning stroke flashover risk index predicted value.
Advantages of the present invention and have the beneficial effect that:
(1), prediction is accurate, and the non-lightning stroke flashover risk index of power distribution network arrester of practical implementation is adapted to by establishing Prediction model, have effectively achieved the accurate prediction to the non-lightning stroke flashover risk index of arrester.
(2), to the severe changeable area of the power distribution network nature meteorological condition such as coastal, riverine, it is possible to achieve complete reliable Forecast system, is not influenced by the adverse circumstances.
Brief description of the drawings:
The non-lightning stroke flashover risk index prediction flow charts of Fig. 1
Embodiment:
Embodiment 1:
The present invention is described in detail with reference to embodiment and attached drawing.
As shown in Figure 1, a kind of filthy sedimentation index forecasting method of power distribution network overhead transmission line, comprises the following steps:
Step 1:Establish the time series of filthy sedimentation index Evolution System:
In the present embodiment, non-lightning stroke flashover number, rainfall, humidity, wind speed are measured within 40 equally spaced periods, It is non-lightning stroke flashover risk index by the non-lightning stroke flashover number conversion that each moment measures:
When then obtaining one 5 dimension being made of non-lightning stroke flashover risk index, rainfall, humidity, the measurement data of wind speed Between sequence:
Step 2:The phase of filthy sedimentation index evolution Kind of Nonlinear Dynamical System representated by reconstitution time sequence (11) is empty Between:
By:
And:
Try to achieve delay time Tjt=3 and Embedded dimensions mjt=6 pairs of time serieses progress phase space reconfigurations, jt=1,2 ..., 5, then it can obtain phase space:
Step 3:Calculate the phase point of subsequent time in phase space:
Choose PF7For phase space central point, each phase point and PF are calculated6Between di=‖ PFi-PF6‖, by:
Fitting parameter a=12.98, b=6.47 can be solved, then can calculate the next unknown phase point prediction value of phase space is:
PFN+1=1.298+6.471 × PFN (13)
Step 4:Calculate filthy sedimentation exponential forecasting value:
The PZ that formula (13) is tried to achieveN+1Bring phase space into, can obtain:
Take τjt=2 (jt=1,2 ..., 5), the then fv isolated1,N+1, it is non-lightning stroke flashover risk index predicted value.

Claims (1)

1. a kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester, it is characterised in that comprise the following steps:
Step 1:Establish the time series of the non-lightning stroke flashover risk index Evolution System of arrester:
Non- lightning stroke flashover number, rainfall, humidity, wind speed are measured in Fixed Time Interval, by non-lightning stroke flashover number With the ratio of arrester whole discharge time as non-lightning stroke flashover risk index, i.e.,:
Then, in a series of moment t1,t2,...,tn, n is natural number, n=1,2 ..., obtain non-lightning stroke flashover risk index, temperature Degree, humidity, wind speed time series:
<mrow> <mo>{</mo> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mi>v</mi> <msub> <mn>1</mn> <mn>1</mn> </msub> <mo>,</mo> <mi>f</mi> <mi>v</mi> <msub> <mn>1</mn> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>f</mi> <mi>v</mi> <msub> <mn>1</mn> <mi>n</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mi>v</mi> <msub> <mn>2</mn> <mn>1</mn> </msub> <mo>,</mo> <mi>f</mi> <mi>v</mi> <msub> <mn>2</mn> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>f</mi> <mi>v</mi> <msub> <mn>2</mn> <mi>n</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mi>v</mi> <msub> <mn>3</mn> <mn>1</mn> </msub> <mo>,</mo> <mi>f</mi> <mi>v</mi> <msub> <mn>3</mn> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>f</mi> <mi>v</mi> <msub> <mn>3</mn> <mi>n</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mi>v</mi> <msub> <mn>4</mn> <mn>1</mn> </msub> <mo>,</mo> <mi>f</mi> <mi>v</mi> <msub> <mn>4</mn> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>f</mi> <mi>v</mi> <msub> <mn>4</mn> <mi>n</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Step 2:The phase space F of filthy sedimentation index evolution Kind of Nonlinear Dynamical System representated by reconstitution time sequence (1)Y
<mrow> <msub> <mi>F</mi> <mi>Y</mi> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>PF</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>PF</mi> <mi>i</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>PF</mi> <mi>N</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
PFiFor the phase point in the time series Phase Space of reconstruct, i=1,2 ..., N,τjtWith mjtTime delay and Embedded dimensions for t time series of jth, the Embedded dimensions m=m of phase space reconstruction1+m2+...+m5
Delay time TjtSelection use mutual information method, on delay time TjtMutual information function be:
<mrow> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mi>T</mi> <mi>E</mi> <mi>R</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>&amp;RightArrow;</mo> <mi>N</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>B</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mi>l</mi> <mi>n</mi> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>B</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>P</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>B</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>P</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>B</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Take mutual information function INTERjt) τ when first appearing minimumjtAs the time delay of phase space reconfiguration, wherein PROB (fvjt,i) it is in the i-th moment fvjt,iThe probability of appearance,For in the i-th moment fvjt,iWithAt the same time The probability of appearance, i=1,2 ..., N;
Embedded dimensions mjtBy differential correlation function:
<mrow> <msub> <mi>D</mi> <mrow> <mi>F</mi> <mi>C</mi> <mi>L</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mo>(</mo> <mrow> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mo>(</mo> <mrow> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>j</mi> <mi>t</mi> </mrow> <mrow> <mi>n</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </munderover> <mi>H</mi> <mrow> <mo>(</mo> <mrow> <mi>&amp;epsiv;</mi> <mo>-</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>+</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>/</mo> <mi>l</mi> <mi>n</mi> <mi>&amp;epsiv;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>dm</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
MjtM during secondary zero crossingjtValue is definite, MjtFor given Accuracy Controlling Parameter, ε Europe between phase point set in advance Formula distanceUpper limit value, H () is Heaviside sign functions:
<mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mi>x</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.5</mn> <mo>,</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
Step 3:Calculate the phase point of subsequent time in phase space:
In phase space FYMiddle calculating establishes weight function according to known N number of phase point:
<mrow> <msub> <mi>TH</mi> <mrow> <mi>D</mi> <mi>I</mi> <mi>S</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>PF</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>d</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>d</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Wherein:I=1,2 ..., N, i-th of phase point to phase space central point and arrive PFcentrDistance be di=‖ PFi- PFcentr‖, dminIt is diIn minimum value, the linear fit function for establishing the unknown phase point of subsequent time is:
PFN+1=ae+bPFN (6)
Wherein, i=1,2 ..., N, e=(1,1 ..., 1)T, a, b are fitting parameter, application weighting least square method:
<mrow> <msub> <mi>F</mi> <mrow> <mi>u</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>{</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TH</mi> <mrow> <mi>D</mi> <mi>I</mi> <mi>S</mi> <mi>T</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>PF</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mi>a</mi> <mo>-</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>PF</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
By FunLocal derviation is asked to have parameter a, b:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TH</mi> <mrow> <mi>D</mi> <mi>I</mi> <mi>S</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>PF</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mi>a</mi> <mo>-</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>PF</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TH</mi> <mrow> <mi>D</mi> <mi>I</mi> <mi>S</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>PF</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mi>a</mi> <mo>-</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>PF</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>PF</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
Fitting parameter a, b can be obtained by solving equation group, then can calculate next unknown phase point prediction value is:
PFN+1=a+bPFN (9)
Step 4:Calculate non-lightning stroke flashover risk index predicted value:
The PF that will be calculated in step 3N+1As the N+1 phase point in phase space, then the phase space that can be obtained newly is:
<mrow> <msubsup> <mi>F</mi> <mi>Y</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>PF</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>PF</mi> <mi>i</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>fv</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mi>P</mi> <msub> <mi>F</mi> <mi>N</mi> </msub> <mo>=</mo> <mo>(</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> </mrow> </msub> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> </mrow> </msub> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>P</mi> <msub> <mi>F</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>(</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>f</mi> <msub> <mi>v</mi> <mrow> <mi>j</mi> <mi>t</mi> <mo>,</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>j</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Make τjt=1, jt=1,2 ..., 5, fv therein can be obtained1,N+1As non-lightning stroke flashover risk index predicted value.
CN201410472758.5A 2014-09-16 2014-09-16 A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester Active CN104281885B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410472758.5A CN104281885B (en) 2014-09-16 2014-09-16 A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410472758.5A CN104281885B (en) 2014-09-16 2014-09-16 A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester

Publications (2)

Publication Number Publication Date
CN104281885A CN104281885A (en) 2015-01-14
CN104281885B true CN104281885B (en) 2018-04-27

Family

ID=52256745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410472758.5A Active CN104281885B (en) 2014-09-16 2014-09-16 A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester

Country Status (1)

Country Link
CN (1) CN104281885B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403189B (en) * 2017-06-30 2020-06-05 南京理工大学 Wind deviation flashover early warning method based on naive Bayes classifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893674A (en) * 2010-07-12 2010-11-24 沈阳工业大学 Pollution flashover index forecasting method for regional power grid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893674A (en) * 2010-07-12 2010-11-24 沈阳工业大学 Pollution flashover index forecasting method for regional power grid

Also Published As

Publication number Publication date
CN104281885A (en) 2015-01-14

Similar Documents

Publication Publication Date Title
CN104123682B (en) A kind of Distribution Network Failure methods of risk assessment based on meteorological effect factor
CN103324980B (en) A kind of method for forecasting
CN102590685B (en) Current matching state estimating method of power distribution network
CN103927695A (en) Ultra-short-term wind power prediction method based on self-learning composite data source
CN103746750A (en) Radio monitoring electromagnetic situation prediction system
CN105095668B (en) Electrical network icing Long-range Forecasting Methods based on whirlpool, pole, the Asia factor
CN105656031A (en) Security risk assessment method of wind-power-included electric power system based on Gaussian mixture distribution characteristics
CN103440497B (en) A kind of GIS insulation defect shelf depreciation collection of illustrative plates mode identification method
CN106712097A (en) Transient stability risk assessment method of electric power system containing large-scale wind power station
CN108921347B (en) Wind power converter fault prediction method
CN105069236A (en) Generalized load joint probability modeling method considering node spatial correlation of wind power plant
CN103996079A (en) Wind power weighting predication method based on conditional probability
CN104036364A (en) Evaluation method for network structure level of power distribution network
CN104111405A (en) Damping torque analytical method-based low-frequency oscillating source positioning method of power system
CN103093097A (en) Electrical power system fragile section identification method based on normalized-cut
CN104281884B (en) A kind of power distribution network surge arrester failure risk index Forecasting Methodology
CN104361535A (en) Electric transmission line icing state assessment method
CN104281885B (en) A kind of non-lightning stroke flashover risk index Forecasting Methodology of power distribution network arrester
Mai et al. Exploring regression models to enable monitoring capability of local energy communities for self‐management in low‐voltage distribution networks
CN103927597A (en) Ultra-short-term wind power prediction method based on autoregression moving average model
CN106443276A (en) Radio interference computing method and radio interference computing system for alternating-current high-voltage multi-loop electric transmission line
CN104850746B (en) A kind of equivalent salt density Forecasting Methodology based on fourth order Runge-Kutta and simulated annealing
CN105046383A (en) Real-time wind power predicting method based on ensemble empirical mode decomposition and relevant vector machine
CN104377668A (en) Line current differential protection method based on secondary data conversion
CN103441516A (en) Method for determining electrical power system weak nodes or branches based on centralized wind power station

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant