CN101890435A - Automatic convexity and/or wedge control method and system for hot rolling tandem type rolling mill - Google Patents

Automatic convexity and/or wedge control method and system for hot rolling tandem type rolling mill Download PDF

Info

Publication number
CN101890435A
CN101890435A CN 201010230419 CN201010230419A CN101890435A CN 101890435 A CN101890435 A CN 101890435A CN 201010230419 CN201010230419 CN 201010230419 CN 201010230419 A CN201010230419 A CN 201010230419A CN 101890435 A CN101890435 A CN 101890435A
Authority
CN
China
Prior art keywords
mrow
msubsup
strip
wedge
convexity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010230419
Other languages
Chinese (zh)
Other versions
CN101890435B (en
Inventor
安部可治
王平源
刘金存
韩仁生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Research Of Iron & Steel shagang jiangsu Province
Original Assignee
Institute Of Research Of Iron & Steel shagang jiangsu Province
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Research Of Iron & Steel shagang jiangsu Province filed Critical Institute Of Research Of Iron & Steel shagang jiangsu Province
Priority to CN 201010230419 priority Critical patent/CN101890435B/en
Publication of CN101890435A publication Critical patent/CN101890435A/en
Application granted granted Critical
Publication of CN101890435B publication Critical patent/CN101890435B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

The invention relates to a convexity and/or wedge automatic control method and system (ASCC) of hot rolling tandem mill, it is through setting up the work roll bending and roll gap leveling feedback control from first to last finishing stand in the hot rolling tandem mill, realize the strip convexity (wedge) control of full automation, namely, in the rolling process, ASCC model is after detecting the wedge of strip steel, compare with goal wedge and get the deviation, utilize comprehensive operation and control means of the system to rectify the deviation, set up the stepped adjustment method, thus make the response of the feedback control maximize, in order to rectify wedge and convexity of strip steel, guarantee the good straightness of the product, prevent the snakelike movement of strip steel in every stand, dispel the single drawback of control means of the existing convexity, the relation of the comprehensive balance convexity and straightness. The invention can ensure the convexity precision and wedge shape of the long axis direction of the strip, improve the flatness, ensure the product quality and the production safety, and effectively improve the economic benefit of a steel rolling mill.

Description

Automatic convexity and/or wedge control method and system for hot rolling tandem type rolling mill
Technical Field
The invention belongs to the field of automatic control, and relates to a method and a device for automatically controlling the plate convexity (wedge shape) of a strip steel production line, in particular to a method and a system for automatically controlling the convexity and/or wedge shape of a hot rolling tandem type rolling mill capable of dynamically controlling the straightness and the convexity (wedge shape) of a strip steel in the whole length direction in the strip steel production process.
Background
At present, a tandem type finishing mill group is usually adopted to roll on a strip steel production line, but the convexity control model of a common seven-rack tandem type finishing mill group has a single function and does not have an automatic wedge control technology, and the crown control model has a plurality of defects, such as:
(1) convexity adjusting means: the crown control in the crown and plate shape control model mainly acts on a certain finishing mill, namely, the crown and plate shape control system in a secondary computer calculates the roll gap crown of the stand according to the abrasion, thermal expansion and actual rolling force of a roll, and after the crown and plate shape control system is compared with a set value, the roll gap crown is correspondingly adjusted through the roll bending force to ensure the crown of a rolled piece and further control the flatness.
(2) Controlling the flatness: the final purpose of camber control is to obtain good flatness, and the control of flatness of the current strip production line is only applied to the final stand (F)7) When receiving the plate shape data that the straightness instrument passed, the roll bending power through the adjustment end frame comes control straightness, but, after the coiling machine built and opened, because straightness instrument output is not real, lead to the adjustment effect not good, the plate shape is unsatisfactory.
(3) Wedge control technology: because of the absence of an automatic wedge control technology, the problems of strip steel generation of single-side waves and production safety are easily caused, and the problems cannot be improved in the existing control model.
Therefore, in summary, the convexity and strip shape control process and equipment in the prior art cannot meet the strict strip steel strip shape quality requirement, and needs to be modified and perfected urgently so as to meet the product quality requirement of the market.
Disclosure of Invention
The invention aims to provide a convexity and/or wedge automatic control method and system of a hot rolling tandem type rolling mill, which can effectively ensure the convexity precision and wedge of a strip in the long axis direction and improve the flatness. The product quality and the production safety are ensured, thereby overcoming the defects in the prior art.
In order to achieve the purpose, the invention adopts the following technical scheme:
the utility model provides a hot rolling tandem mill's convexity and/or wedge automatic control system which is applied to the hot rolling tandem mill who mainly comprises the several finishing mill frame of establishing ties and set up, all is equipped with work roll bending roll adjustment system and roll gap adjustment system on each finishing mill frame, its characterized in that:
the automatic convexity and/or wedge control system comprises a convexity and/or wedge control device, and the convexity and/or wedge control device is respectively connected with a working roll bending roll adjusting system and a roll gap adjusting system on each finishing mill frame and a strip shape and wedge and/or convexity measuring device arranged at a finishing mill outlet;
and the convexity and/or wedge control device can adjust the roll gap and the roll bending force of each finishing mill frame through a working roll bending roll adjusting system and a roll gap adjusting system on each finishing mill frame according to the difference value obtained by comparing the strip shape and wedge and/or convexity data measured by the strip shape and wedge and/or convexity measuring device at regular time with the target wedge and/or convexity data, so as to realize the automatic convexity and/or wedge control in the long axis direction of the strip.
Further speaking: the convexity and/or wedge control device is connected with the roll gap adjusting system and the working roll bending adjusting system through a roll gap leveling control switch and a working roll bending force control switch respectively;
when the head of the strip reaches the strip shape instrument measuring device, the working roll bending force control switch is closed, the working roll bending force adjusting system starts to work, when the tail of the strip is cut by the flying shear, the working roll bending force control switch is disconnected, and the working roll bending force adjusting system stops working;
when the head of the strip enters underground to be curled and is opened, the roll gap leveling control switch is closed, the roll gap adjusting system starts to work, and when the tail of the strip is cut by the flying shear, the roll gap leveling control switch is disconnected, and the roll gap adjusting system stops working.
The roll gap leveling control switch and the working roll bending force control switch are respectively connected with the convexity and/or wedge-shaped control device through a control main switch.
The convexity and/or wedge control device, the strip shape and wedge and/or convexity measuring device, the working roll bending roll adjusting system and the roll gap adjusting system are connected by adopting an interlocking device.
The process for realizing the automatic wedge control in the long axis direction of the strip material comprises the following steps:
(1) influence coefficient and inheritance coefficient pre-input: calculating influence coefficients and inheritance coefficients off-line according to the deformation of the rolling mill, the roller and the strip, and inputting the influence coefficients and the inheritance coefficients into a convexity and/or wedge control device;
(2) convexity and/or wedge control input data: finishing the setting calculation of the rolling mill and the setting calculation of the plate shape, and then inputting the calculation result and the strip characteristic information into a convexity and/or wedge control device;
(3) convexity and/or wedge control device plate shape, wedge, convexity measurement: when the head of the strip reaches the outlet of the finishing mill, the shape, the wedge shape and the convexity of the strip are measured at regular time, and the convexity and/or wedge shape control device calculates the data average value of the shape, the wedge shape and the convexity of the strip in real time, wherein the wedge shape of the strip at the outlet of the finishing mill
Figure BSA00000195954900031
The following is a formula, that is,
<math><mrow><msubsup><mi>&Delta;Wedge</mi><mi>M</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>h</mi><mi>WS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>h</mi><mi>DS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,
Figure BSA00000195954900033
is the measured thickness value at the edge of the width of the working side of the strip,
Figure BSA00000195954900034
the measured thickness value of the width edge of the transmission side of the strip material;
(4) wedge deviation distribution: by horizontally adjusting finishing mill F1-FMFor stands to eliminate deviation of finishing mill exit wedge
While <math><mrow><msubsup><mi>&Delta;C</mi><mi>M</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mi>M</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
The method comprises the following steps:
firstly, calculating the convexity of a target strip at the outlet of each rack by setting and calculating the shape of the strip to obtain the convexity of a target strip at the outlet of a finish rolling mill
Figure BSA00000195954900037
And the strip convexity of the exit of the target frame
Figure BSA00000195954900038
And calculating the coefficient of convexity K of the unit strip by the following formulai
<math><mrow><mfrac><msubsup><mi>C</mi><mi>i</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><msubsup><mi>C</mi><mi>M</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
Wherein h isMIs the finish rolling outlet thickness, which is the rolling mill set calculated value, i is the stand number, and i is 1, 2, … M, M is a natural number;
next, the strip wedge deflection is measured at the outlet of the finishing mill by
Figure BSA000001959549000310
The dispersion is distributed to each of the finishing stands, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein,
Figure BSA000001959549000312
i, a corrected value of the wedge shape of the strip at the outlet of the rack;
(5) leveling and controlling the roll gap of each frame: the roll gap leveling value Δ L can be obtained by the following equation, that is,
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;L</mi><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,
Figure BSA000001959549000314
the influence coefficient, eta, of the roll gap leveling at the edge of the strip on the wedge shape of the stripi(T) is the wedge inheritance coefficient of the strip, and each finishing mill frame adjusts the roll gap of the roll according to the obtained roll gap leveling value delta L;
through the steps, the wedge-shaped adjustment work is completed.
The process for realizing the automatic convexity control in the long axis direction of the strip material comprises the following steps:
(1) strip crown measurement and control: when the head of the strip reaches the outlet of the finishing mill, the strip shape, the wedge shape and the convexity are measured at regular time, and the average value of the strip shape, the wedge shape and the convexity is calculated in real time by a convexity and/or wedge control device, wherein the average value of the measured values of the convexity of the strip at the outlet of the finishing mill
Figure BSA000001959549000315
Is derived from the following formula:
C M R , MEAS ( T ) = h C MEAS - h WS MEAS ( T ) + h DS MEAS ( T ) 2
in the above formula, the first and second carbon atoms are,is to measureThe value of the strip width center thickness of the quantity,
Figure BSA00000195954900043
is the measured thickness value at the edge of the width of the working side of the strip,
Figure BSA00000195954900044
the measured thickness value of the width edge of the transmission side of the strip material;
(2) calculating the convexity deviation of the strip of the final frame: calculating the convexity deviation of the strip at the outlet of the finish rolling according to the following formula
Figure BSA00000195954900045
That is to say that the first and second electrodes,
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>C</mi><mi>M</mi><mrow><mi>R</mi><mo>,</mo><mi>MEAS</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>C</mi><mi>M</mi><mrow><mi>R</mi><mo>,</mo><mi>REF</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,
Figure BSA00000195954900047
is the target finish rolling outlet strip convexity;
(3) convexity deviation distribution: deviation of the convexity of the strip at the outlet of the finish rolling
Figure BSA00000195954900048
The distribution to the individual racks is made by, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein i is a rack number, and i is 1, 2, … M, M is a natural number, hiIs the thickness of the strip at the exit of the ith stand, KiIs the coefficient of the proportional convexity,
Figure BSA000001959549000410
namely the corrected value of the convexity of the strip at the outlet of each machine frame,
Figure BSA000001959549000411
the corrected value of the convexity of the strip at the finish rolling outlet is also obtained;
(4) adjusting the bending force of the working rolls of each frame:
the bending force control value deltaF of each machine frame working roll is calculated by the following formulai(ton/side):
<math><mrow><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
While <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
Wherein,is the influence coefficient of the strip convexity on the bending force of the working roll, and eta (T) is the inheritance coefficient of the strip convexity and is substituted into
<math><mrow><mi>&Delta;</mi><msubsup><mi>F</mi><mi>i</mi><mi>CTL</mi></msubsup><mo>=</mo><mi>&Delta;</mi><msub><mi>F</mi><mi>i</mi></msub></mrow></math>
Obtaining the control value of the bending force of each frame working roll
Figure BSA000001959549000416
The working roll bending system of each frame adjusts the bending force of the working roll according to the bending force control value of the working roll;
through the steps, the convexity adjusting work is completed.
The strip shape and wedge and/or crown measuring device comprises a shape meter, a wedge and/or crown measuring meter.
The convexity and/or wedge control means employs a programmable logic controller.
A method for automatically controlling the crown and/or wedge of a hot rolling tandem rolling mill is characterized by comprising the following steps:
in the strip steel rolling process, the convexity and/or wedge of a rolled piece are/is dynamically detected, the detected convexity and/or wedge of the rolled piece is compared with the target convexity and/or target wedge, and then the roll gap and the bending force of a working roll in each finishing mill are respectively adjusted according to the deviation value of the actual strip steel convexity and/or wedge and the target convexity and/or target wedge, so that the automatic flatness, the convexity and/or wedge of the rolled piece in the long axis direction are controlled.
Specifically, the method comprises the following steps: when the head of the strip reaches the strip shape instrument measuring device, the bending force adjustment of the working roll is started, and when the tail of the strip is cut by the flying shear, the bending force adjustment of the working roll is stopped, so that the automatic convexity control is realized.
When the head of the strip enters underground to be curled and is stretched, the roll gap adjustment of the roll is started, and when the tail of the strip is cut by the flying shear, the roll gap adjustment of the roll is stopped, so that the automatic wedge control is realized.
The process for realizing the automatic wedge control comprises the following steps:
(1) influence coefficient and inheritance coefficient pre-input: calculating influence coefficients and succession coefficients off-line according to the deformation of the rolling mill, the rolls and the strip, and inputting the influence coefficients and succession coefficients into a crown and/or wedge control device;
(2) convexity and/or wedge control input data: finishing the setting calculation of the rolling mill and the setting calculation of the plate shape, and then inputting the calculation result and the strip characteristic information into a convexity and/or wedge control device;
(3) convexity and/or wedge control device plate shape, wedge, convexity measurement: when the head of the strip reaches the outlet of the finishing mill, the shape, the wedge shape and the convexity of the strip are measured at regular time, and the convexity and/or wedge shape control device calculates the data average value of the shape, the wedge shape and the convexity of the strip in real time, wherein the wedge shape of the strip at the outlet of the finishing mill
Figure BSA00000195954900051
The following is a formula, that is,
<math><mrow><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mi>M</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>h</mi><mi>WS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>h</mi><mi>DS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,
Figure BSA00000195954900053
is the measured thickness value at the edge of the width of the working side of the strip,
Figure BSA00000195954900054
the measured thickness value of the width edge of the transmission side of the strip material;
(4) wedge deviation distribution: by horizontally adjusting finishing mill F1-FMFor stands to eliminate deviation of finishing mill exit wedge
Figure BSA00000195954900055
While <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mi>M</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
The method comprises the following steps:
firstly, calculating the convexity of a target strip at the outlet of each rack by setting and calculating the shape of the strip to obtain the convexity of a target strip at the outlet of a finish rolling mill
Figure BSA00000195954900057
And the strip convexity of the exit of the target frame
Figure BSA00000195954900058
And calculating the coefficient of convexity K of the unit strip by the following formulai
<math><mrow><mfrac><msubsup><mi>C</mi><mi>i</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><msubsup><mi>C</mi><mi>M</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
Wherein h isMIs the finish rolling outlet thickness, which is the rolling mill set calculated value, i is the stand number, and i is 1, 2, … M, M is a natural number;
next, the strip wedge deflection is measured at the outlet of the finishing mill by
Figure BSA00000195954900061
The dispersion is distributed to each of the finishing stands, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein,
Figure BSA00000195954900063
i, a corrected value of the wedge shape of the strip at the outlet of the rack;
(5) leveling and controlling the roll gap of each frame: the roll gap leveling value Δ L can be obtained by the following equation, that is,
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;L</mi><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,the influence coefficient, eta, of the roll gap leveling at the edge of the strip on the wedge shape of the stripi(T) is the wedge inheritance coefficient of the strip, and each finishing mill frame adjusts the roll gap of the roll according to the obtained roll gap leveling value delta L;
through the steps, the wedge-shaped adjustment work is completed.
According to the method, roll gap leveling values of all finish rolling stands are automatically stored as a roll gap preset value of the next strip steel when the last strip steel is subjected to tail cutting, and all the roll gap leveling values are automatically reset after the rolls of the rolling mill are changed.
The process for realizing automatic convexity control comprises the following steps:
(1) strip crown measurement and control: when the strip head reaches the outlet of the finishing mill, the strip shape, wedge shape and convexity are measured at regular time, and the average value of the strip shape, wedge shape and convexity data is calculated by a convexity and/or wedge shape control device, wherein the average value of the measured values of the strip convexity at the outlet of the finishing mill
Figure BSA00000195954900066
Is derived from the following formula:
C M R , MEAS ( T ) = h C MEAS - h WS MEAS ( T ) + h DS MEAS ( T ) 2
in the above formula, the first and second carbon atoms are,is a measured value of the center thickness of the strip width,
Figure BSA00000195954900069
is the measured thickness value at the edge of the width of the working side of the strip,
Figure BSA000001959549000610
the measured thickness value of the width edge of the transmission side of the strip material;
(2) calculating the convexity deviation of the strip of the final frame: calculating the convexity deviation of the strip at the outlet of the finish rolling according to the following formula
Figure BSA000001959549000611
That is to say that the first and second electrodes,
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>C</mi><mi>M</mi><mrow><mi>R</mi><mo>,</mo><mi>MEAS</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>C</mi><mi>M</mi><mrow><mi>R</mi><mo>,</mo><mi>REF</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,
Figure BSA000001959549000613
is the target finish rolling outlet strip convexity;
(3) convexity deviation distribution: deviation of the convexity of the strip at the outlet of the finish rolling
Figure BSA000001959549000614
The distribution to the individual racks is made by, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein i is a rack number, and i is 1, 2, … M, M is a natural number, hiIs the thickness of the strip at the exit of the ith stand, KiIs the coefficient of the proportional convexity,namely the corrected value of the convexity of the strip at the outlet of each machine frame,
Figure BSA000001959549000617
the corrected value of the convexity of the strip at the finish rolling outlet is also obtained;
(4) adjusting the bending force of the working rolls of each frame:
the bending force control value deltaF of each machine frame working roll is calculated by the following formulai(ton/side):
<math><mrow><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
While <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mtext>T</mtext><mo>)</mo></mrow></mrow></math>
Wherein,
Figure BSA00000195954900073
is the influence coefficient of the strip convexity on the bending force of the working roll, and eta (T) is the inheritance coefficient of the strip convexity and is substituted into
<math><mrow><mi>&Delta;</mi><msubsup><mi>F</mi><mi>i</mi><mi>CTL</mi></msubsup><mo>=</mo><msub><mi>&Delta;F</mi><mi>i</mi></msub></mrow></math>
Obtaining the control value of the bending force of each frame working roll
Figure BSA00000195954900075
The working roll bending system of each frame adjusts the bending force of the working roll according to the bending force control value of the working roll;
through the steps, the convexity adjusting work is completed.
The invention is based on the establishment of a rolling train from a first finishing stand to a last finishing stand (F) in a hot-rolling tandem rolling mill1To FM) The feedback control of the bending of the working roll and the leveling of the roll gap realizes the full-automatic control of the strip convexity (wedge), namely an ASCC (automatic strip crown control system) model is established on a strip steel production line. In the rolling process, after the ASCC model detects the strip steel wedge, the deviation is obtained by comparing the ASCC model with a target wedge, the deviation is corrected by utilizing the comprehensive operation and control means of the system, and a secondary F is established1To FMThe stepped adjustment method of the invention maximizes the response of feedback control to correct the wedge shape of the strip steel, ensures good straightness of the product, prevents the strip steel from snake-shaped movement in each frame, and ensures production safety; meanwhile, in the rolling process, after the ASCC model compares the deviation between the actual proportion convexity and the target proportion convexity, the comprehensive control means of the system is fully utilized for correcting the deviation, and a secondary F is established1To FMThe step-type adjustment method of the convex degree control system enables the response of feedback control to be maximized, overcomes the defect of single convex degree control means, and comprehensively balances the relation between the convex degree and the straightness. The invention can ensure the convexity precision and wedge shape in the long axis direction, improve the straightness, ensure the product quality and the production safety, and effectively improve the economic benefit of a steel rolling mill.
Drawings
The invention is further described with reference to the following drawings and detailed description.
FIG. 1 is a schematic view showing the structure of a finishing mill group of a 7-stand tandem strip steel production line provided with an automatic strip crown (wedge) control system (ASCC);
fig. 2 is a schematic diagram of ASCC output types;
FIG. 3 is a schematic view of a web crown structure;
FIG. 4 is a block diagram of the relationship of ASCC to other finishing mill function calculations;
FIG. 5 is an input-output schematic of an ASCC;
FIG. 6 is a schematic flow chart of the roll gap leveling value and the work roll bending force value output by the ASCC to participate in the current control.
Detailed Description
The present invention will be described in detail with reference to a preferred embodiment, but the embodiment is not intended to limit the present invention in any manner.
As shown in fig. 1, this embodiment relates to a 7-stand (F1 to F7) tandem strip line finishing train having a shape meter at the finish rolling exit, the shape meter being connected to an ASCC (which may be a programmable logic controller PLC) and to a work roll bending adjustment system and a roll gap adjustment system in each finishing stand.
The ASCC stop-start process comprises the following steps: the ASCC starts working when the strip head reaches the strip gauge at the finishing mill exit and stops working when the strip tail is cut by the flying shears.
The output of the ASCC is of two types: one is the roll gap leveling value of the frames F1, F2, …, F5, F6 and F7; the other is the bending force value of the working rolls of the frames F1, F2, …, F5, F6 and F7.
When the head of the strip steel reaches the shape meter at the outlet of the finishing mill, the bending force of the working rolls of the frames F1, F2, …, F5, F6 and F7 is effective (the roll gap leveling control is ineffective, and the bending force is effective only after the strip steel reaches an underground coiler and is tensioned, so that the strip steel is prevented from deviating).
After the strip steel is tensioned in the coiling machine, all control functions of the ASCC take effect, namely roll gap leveling control values and working roll bending force control values of all finishing mill groups take effect, and the rolling mill is adjusted and controlled until the tail of the strip steel is cut by flying shears.
The selection of the two outputs is controlled by the following switches:
SW-1 and SW-2 are the control master switches for roll gap adjustment and work roll bending force in ASCC function, respectively, as shown in FIG. 2; SW-3 is a roll gap leveling control switch, when the head of the strip enters the underground to be curled, SW-3 is closed, and when the tail of the strip is cut by a flying shear, SW-3 is opened; SW-4 is a work roll bending force control switch, when the head of the strip reaches a shape meter at a finish rolling outlet, SW-4 is closed, and when the tail of the strip is cut by a flying shear, SW-4 is opened.
First, the definitions of the convexity and the wedge shape described in the present embodiment are explained, which are shown in fig. 3:
strip crown C R = h C - h WS + h DS 2 - - - ( 1 )
Strip Wedge hWS-hDS(mm) (2);
The process of automatic wedge control and crown control with this ASCC is described in detail as follows:
(step 1) influence coefficients and inheritance coefficients: as shown in fig. 4-5, the impact coefficients and inheritance coefficients required by ASCC are stored in ASCC (plc) and calculated off-line from the mill, rolls and strip deformation.
(step 2) ASCC input data: after the final mill set calculation (MSUC) and strip shape set calculation (SSUC) are completed, ASCC (plc) receives the following data from PDI, MSUC, SSUC and stores the data to ASCC.
(step 3) measuring the shape, wedge shape and convexity of the ASCC plate: when the head of the strip reaches the strip shape meter at the outlet of the finishing mill, the strip shape, the wedge shape and the convexity are measured at regular time, the ASCC (PLC) calculates the data average value of the strip shape, the wedge shape and the convexity in real time,
(F7outlet strip wedge shape) <math><mrow><msubsup><mi>&Delta;Wedge</mi><mn>7</mn><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>h</mi><mi>WS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>h</mi><mi>DS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
(F7Deviation of outlet wedge shape) <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>7</mn><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mn>7</mn><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
Wherein,
Figure BSA00000195954900093
(mm) is F7The wedge deviation of the outlet, usually the target value, is 0.
(step 4) wedge bias distribution:F7Deviation of outlet wedge(mm) passing through finishing Mill F1-F7The horizontal adjustment of the frame is eliminated, and the specific steps are as follows:
first, a strip shape (crown and flatness) setting calculation (SSUC) will calculate the target strip crown at the exit of each stand to obtain the target strip crown at the exit of the finish rolling,
<math><mrow><mfrac><msubsup><mi>C</mi><mi>i</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><msubsup><mi>C</mi><mn>7</mn><mi>REF</mi></msubsup><msub><mi>h</mi><mn>7</mn></msub></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>
wherein,is the convexity (mm), h, of the target strip at the outlet of the finish rolling7Is the thickness of the outlet of the finish rolling (calculated value set for the rolling mill), i is the stand number (1, 2, 3, 4, 5, 6), KiIs the unit strip crown coefficient. Calculating the target frame exit strip crown from (SSUC), and calculating the frame exit strip thickness from (MSUC) to obtain KiE.g. KiC of all finishing mills when 1.0( i 1, 2, 3, 4, 5, 6)i/hiThe values (i gantry exit convexity divided by exit thickness) are all the same, given equation (5), F7Deviation of wedge shape of outlet strip
Figure BSA00000195954900097
(mm) is distributed to each finishing stand, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>7</mn><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mn>7</mn></msub></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow></math>
wherein, (i ═ 1, 2, 3, 4, 5, 6),
Figure BSA00000195954900099
(mm) is the correction value for the wedge shape of the strip at the exit of the i stand, in the last stand F7The corrected wedge value at the exit of the machine frame is
Figure BSA000001959549000910
(step 5) controlling the roll gap leveling of each frame: the basic wedge control equation for roll gap leveling is:
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;L</mi><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow></math>
wherein, i is 1, 2 …, 7
Figure BSA00000195954900101
(mm): as given by the equation (6),
Figure BSA00000195954900102
the influence coefficient of the roll gap leveling at the T (mm) position of the strip edge on the strip wedge shape, etai(T) is the strip wedge succession coefficient (for F)1
Figure BSA00000195954900103
(mm) is the intermediate slab wedge) and Δ L (mm) is the roll gap leveling value, where the other terms in equation 7 are known and can be found as Δ L;
according to the steps 1-5 above, the ASCC system completes the wedge adjustment work.
(step 6) strip crown measurement and control: the strip shape, wedge shape and crown are measured periodically as the strip head reaches the strip gauge at the outlet of the finishing mill. ASCC (PLC) calculates the average value of the strip shape, wedge shape and convexity data and the average value of the measured value of the strip convexity at the outlet of the finish rolling in real time
Figure BSA00000195954900104
(mm) is
C 7 R , MEAS ( T ) = h C MEAS - h WS MEAS ( T ) + h DS MEAS ( T ) 2 - - - ( 8 )
Wherein,
Figure BSA00000195954900106
(mm) is the measured width center thickness value,
Figure BSA00000195954900107
(mm) is the measured thickness value at the working-side width edge T (mm),
Figure BSA00000195954900108
(mm) is the measured drive side width edge thickness value.
(step 7) calculating the crown deviation of the strip at the final stand F6: obtaining the convexity deviation of the strip at the outlet of the finish rolling through an equation (8)
Figure BSA00000195954900109
(mm) is
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>C</mi><mn>7</mn><mrow><mi>R</mi><mo>,</mo><mi>MEAS</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>C</mi><mn>7</mn><mrow><mi>R</mi><mo>,</mo><mi>REF</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow></math>
Wherein,
Figure BSA000001959549001011
(mm) is the target (REF, reference) F7Outlet strip crown.
(step 8) convexity deviation assignment: f7The strip convexity deviation at the outlet of the machine frame is eliminated by adjusting the bending force of the working rolls of all the machine frames. This is important to maintain good strip flatness, so the coefficient of proportional crown K defined in equation (5) of step 4iIs very importantDeviation of strip crown at outlet of finish rolling(mm) is assigned to the individual finishing stand by equation (5),
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>7</mn><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mn>7</mn></msub></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow></math>
wherein the frame number is (i ═ 1, 2' -, 6). h (mm) is the thickness of the strip at the exit of the frame, KiProportional crown factor, corrected values of crown of strip at the exit of each stand
Figure BSA000001959549001014
(mm) can be calculated by equation (10) F7The corrected value of the convexity of the outlet strip is
Figure BSA000001959549001015
(mm)。
(step 9) adjusting the bending force of the working rolls of each frame: bending force control value delta F of working roll of each framei(ton/side) is determined by the following equation:
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mtext>T</mtext><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow></math>
wherein the frame number is (i ═ 1, 2, - - -6, 7),
Figure BSA000001959549001017
is the influence coefficient of the strip convexity on the bending force of the working roll, and eta (T) is the inheritance coefficient of the strip convexity; in the case of equation (11),given by equation (10) (assuming the change in the proportional crown of the intermediate blank is 0), then the bending force control value Δ F for each work rolli(ton/side) is a ratio of,
<math><mrow><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mtext>T</mtext><mo>)</mo></mrow><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow></math>
wherein the frame number is (i ═ 1, 2, - - -6, 7),
substitution into <math><mrow><mi>&Delta;</mi><msubsup><mi>F</mi><mi>i</mi><mi>CTL</mi></msubsup><mo>=</mo><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>13</mn><mo>)</mo></mrow><mo>.</mo></mrow></math>
Note that the bending force control value of each machine frame working roll
Figure BSA00000195954900113
(i ═ 1, 2, — -6, 7) can be stored in the ASCC.
As shown in FIG. 6, the roll gap leveling control output is added to the hydraulic roll gap control and the work roll bending force control is added to the work roll bending adjustment system.
In the process, when the head of the strip reaches the strip shape gauge at the finish rolling outlet, the first round of measurement is carried out, for example, the strip wedge shape and the convexity can be measured once per second for three times, the control values are calculated and immediately added into the rolling mill, and then the control is waited to take effect;
thereafter, tracking control points are set on the strip, for example, for tracking control point F1, when it then reaches the strip shape gauge at the finish rolling outlet, the second round measurement is started, once per second, three times in total, and control values are calculated, which are then also immediately added to the rolling mill;
similarly, these measurements and controls (from step-3 to step-11) are repeated until the tail of the intermediate billet is cut by the flying shears.
It should be noted that during ASCC validation, if an operator is to manually intervene in roll gap leveling, the ASCC output is maintained (no increase in output). After the manual intervention is complete, the ASCC output is provided to the mill.
Meanwhile, the ASCC and a control part, a shape gauge and the like in the finishing mill are linked by adopting an interlocking device, and the output of the ASCC is in an open state only when the following conditions are met:
the finishing mill is rolling (no roll change); the roll gap adjusting systems of all the frames for finish rolling are normal; the bending roll adjusting systems of the working rolls of all the frames for finish rolling are normal; the shape meter at the finish rolling outlet is normal; the set calculation (roll gap, roll speed) of the rolling mill is normally finished; the strip shape set calculation (CVC cluster rolls, work roll bending) is the normal end.
In addition, the ASCC has the functions of memorizing the roll gap leveling value and learning blanks, namely, the roll gap leveling values of all the finish rolling stands F1, F2 … F6 and F7 are automatically stored as the roll gap preset value of the next steel block when strip steel is subjected to tail cutting, but all the roll gap leveling values are automatically cleared after the roll change of the rolling mill.
The technical scheme of the invention is further illustrated by the following example of a strip steel rolling process with one specification:
the rolling specifications are assumed to be as follows:
steel grade Width of Thickness of Length of roll body Tolerance of wedge Allowable deviation of convexity (F)7Export)
SS400 1250mm 2.5mm 1700mm 0 0.03±0.005mm
The rolling schedule is set as follows:
bar F1 F2 F3 F4 F5 F6 F7
thickness (mm) 40.00 21.60 12.25 7.16 4.55 3.16 2.36 2.00
Reduction ratio (%) 46.00% 43.30% 41.50% 36.50% 30.50% 25.50% 15.00%
Then: (1) wedge shaped automatic control calculation
Suppose F7The strip wedge detected at the outlet is
Figure BSA00000195954900121
According to the above formula, the leveling values need to be assigned to the racks, and the calculation steps according to the present invention are calculated as follows:
(F7outlet strip wedge shape) <math><mrow><msubsup><mi>&Delta;Wedge</mi><mn>7</mn><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>h</mi><mi>WS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>h</mi><mi>DS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mn>0.05</mn><mi>mm</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
(F7Deviation of outlet wedge shape) <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>7</mn><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mn>7</mn><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mn>0.025</mn><mi>mm</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
The wedge-shaped deviation is adjusted and distributed to each frame according to the following formula:
for F1Frame, setting the intermediate blank wedge to 0, and then deriving from equation (7)
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>1</mn><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msub><mi>&Delta;L</mi><mn>1</mn></msub></mrow></math>
Figure BSA00000195954900125
(mm) is given by equation (6)
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>7</mn><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mn>7</mn></msub></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow></math>
Suppose KiIs 1.1
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>1</mn><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mn>21.6</mn><mo>&times;</mo><mn>1.1</mn><mo>&times;</mo><mn>0.025</mn><mo>&divide;</mo><mn>2.0</mn><mo>=</mo><mn>0.297</mn><mi>mm</mi></mrow></math>
Then roll gap leveling control value DeltaL1(mm) is (say)
Figure BSA00000195954900128
)
<math><mrow><mi>&Delta;</mi><msub><mi>L</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>a</mi><mn>1</mn><mi>L</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mn>1</mn><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mn>1.5</mn><mo>&times;</mo><mn>0.297</mn><mo>=</mo><mn>0.39</mn><mi>mm</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow></math>
Substitution into <math><mrow><mi>&Delta;</mi><msubsup><mi>L</mi><mn>1</mn><mi>CTL</mi></msubsup><mo>=</mo><msub><mi>&Delta;L</mi><mn>1</mn></msub><mo>=</mo><mn>0.39</mn><mi>mm</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow></math>
At Ki
Figure BSA000001959549001211
In the case of known constant coefficientsAccording to the above calculation steps, the roll gap leveling values of other stands of the finishing mill can be obtained.
(2) Automatic crown control calculation
Suppose F7Strip crown detected at the outlet is
Figure BSA000001959549001212
According to the above formula, the convexity adjustment value needs to be assigned to each rack, and the calculation steps according to the present invention are calculated as follows:
mean value of measured values of the strip crown at the outlet of the finish rolling
Figure BSA000001959549001213
(mm) is
C 7 R , MEAS ( T ) = h C MEAS - h WS MEAS ( T ) + h DS MEAS ( T ) 2 = 0.045 - - - ( 17 )
The deviation of the strip crown at the outlet of the finish rolling is obtained by equation (17)
Figure BSA00000195954900132
(mm) is
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>7</mn><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>C</mi><mn>7</mn><mrow><mi>R</mi><mo>,</mo><mi>MEAS</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>C</mi><mn>7</mn><mrow><mi>R</mi><mo>,</mo><mi>REF</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mn>0.045</mn><mo>-</mo><mn>0.035</mn><mo>=</mo><mn>0.01</mn><mi>mm</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></mrow></math>
The strip crown deviation of 0.01(mm) at the finish rolling outlet is assigned to the individual finish rolling stands by equation (19)
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mn>7</mn><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mn>7</mn></msub></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>19</mn><mo>)</mo></mrow></mrow></math>
If desired to find F1Amount of crown adjustment of (1), assuming K11.0, then
F1Convexity regulating variable of 21.6 ÷ 2.0 × 1.0 × 0.01 ═ 0.108mm
If the roll bending force is converted, the following formula is adopted:
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow></math>
in the case of equation (20),from equation (19), 0.108mm is calculated (assuming that the change in the proportional crown of the intermediate billet is 0).
Then, the bending force control value Δ F of each work rolli(ton/side) is a ratio of,
<math><mrow><mi>&Delta;</mi><msub><mi>F</mi><mi>i</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>21</mn><mo>)</mo></mrow></mrow></math>
suppose F1The influence coefficient of the strip steel convexity on the roller convexity is-0.00035 mm/KN, then:
<math><mrow><mi>&Delta;</mi><msubsup><mi>F</mi><mi>i</mi><mi>CTL</mi></msubsup><mo>=</mo><mi>&Delta;</mi><msub><mi>F</mi><mi>i</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></mfrac><mo>&times;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mo>-</mo><mn>0.108</mn><mi>mm</mi><mo>)</mo></mrow><mo>&divide;</mo><mrow><mo>(</mo><mo>-</mo><mn>0.00035</mn><mi>mm</mi><mo>/</mo><mi>KN</mi><mo>)</mo></mrow><mo>=</mo><mn>309</mn><mi>KN</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>22</mn><mo>)</mo></mrow></mrow></math>
according to the above, when F7When a convexity deviation of +0.01mm occurs at the outlet, F is required1The positive bending was carried out with a bending force of 309 KN/side. And the roll bending force adjustment of other frames is carried out according to a formula and a correlation coefficient to obtain the roll bending force adjustment value of the current frame.
The above embodiments are merely illustrative of the technical ideas and features of the present invention, and the purpose thereof is to enable those skilled in the art to understand the contents of the present invention and implement the present invention, and not to limit the protection scope of the present invention. All equivalent changes and modifications made according to the spirit of the present invention should be covered within the protection scope of the present invention.

Claims (14)

1. The utility model provides a hot rolling tandem mill's convexity and/or wedge automatic control system which is applied to the hot rolling tandem mill who mainly comprises the several finishing mill frame of establishing ties and set up, all is equipped with work roll bending roll adjustment system and roll gap adjustment system on each finishing mill frame, its characterized in that:
the automatic convexity and/or wedge control system comprises a convexity and/or wedge control device, and the convexity and/or wedge control device is respectively connected with a working roll bending roll adjusting system and a roll gap adjusting system on each finishing mill frame and a strip shape and wedge and/or convexity measuring device arranged at a finishing mill outlet;
and the convexity and/or wedge control device can adjust the roll gap and the roll bending force of each finishing mill frame through a working roll bending roll adjusting system and a roll gap adjusting system on each finishing mill frame according to the difference value obtained by comparing the strip shape and wedge and/or convexity data measured by the strip shape and wedge and/or convexity measuring device at regular time with the target wedge and/or convexity data, so as to realize the automatic convexity and/or wedge control in the long axis direction of the strip.
2. Automatic crown and/or wedge control system of a hot-rolled tandem rolling mill according to claim 1, characterized in that: the convexity and/or wedge control device is connected with the roll gap adjusting system and the working roll bending adjusting system through a roll gap leveling control switch and a working roll bending force control switch respectively;
when the head of the strip reaches the strip shape instrument measuring device, the working roll bending force control switch is closed, the working roll bending force adjusting system starts to work, when the tail of the strip is cut by the flying shear, the working roll bending force control switch is disconnected, and the working roll bending force adjusting system stops working;
when the head of the strip enters underground to be curled and is opened, the roll gap leveling control switch is closed, the roll gap adjusting system starts to work, and when the tail of the strip is cut by the flying shear, the roll gap leveling control switch is disconnected, and the roll gap adjusting system stops working.
3. Automatic crown and/or wedge control system of a hot-rolled tandem rolling mill according to claim 2, characterized in that: the roll gap leveling control switch and the working roll bending force control switch are respectively connected with the convexity and/or wedge-shaped control device through a control main switch.
4. Automatic crown and/or wedge control system of a hot-rolled tandem rolling mill according to claim 1, characterized in that: the convexity and/or wedge control device, the strip shape and wedge and/or convexity measuring device, the working roll bending roll adjusting system and the roll gap adjusting system are connected by adopting an interlocking device.
5. Automatic crown and/or wedge control system of a hot-rolled tandem rolling mill according to claim 1, characterized in that: the process for realizing the automatic wedge control in the long axis direction of the strip material comprises the following steps:
(1) influence coefficient and inheritance coefficient pre-input: calculating influence coefficients and inheritance coefficients off-line according to the deformation of the rolling mill, the roller and the strip, and inputting the influence coefficients and the inheritance coefficients into a convexity and/or wedge control device;
(2) convexity and/or wedge control input data: finishing the setting calculation of the rolling mill and the setting calculation of the plate shape, and then inputting the calculation result and the strip characteristic information into a convexity and/or wedge control device;
(3) convexity and/or wedge control device plate shape, wedge, convexity measurement: when the head of the strip reaches the outlet of the finishing mill, the shape, the wedge shape and the convexity of the strip are measured at regular time, and the convexity and/or wedge shape control device calculates the data average value of the shape, the wedge shape and the convexity of the strip in real time, wherein the wedge shape of the strip at the outlet of the finishing mill
Figure FSA00000195954800021
The following is a formula, that is,
<math><mrow><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mi>M</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>h</mi><mi>WS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>h</mi><mi>Ds</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,
Figure FSA00000195954800023
is a measured stripThe value of the thickness at the working-side width edge,
Figure FSA00000195954800024
the measured thickness value of the width edge of the transmission side of the strip material;
(4) wedge deviation distribution: by horizontally adjusting finishing mill F1-FMFor stands to eliminate deviation of finishing mill exit wedge
Figure FSA00000195954800025
While <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mi>M</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
The method comprises the following steps:
firstly, calculating the convexity of a target strip at the outlet of each rack by setting and calculating the shape of the strip to obtain the convexity of a target strip at the outlet of a finish rolling millAnd the strip convexity of the exit of the target frame
Figure FSA00000195954800028
And the convexity coefficient Ki of the unit strip is calculated by the following formula,
<math><mrow><mfrac><msubsup><mi>C</mi><mi>i</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><msubsup><mi>C</mi><mi>M</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein h isMIs the finish rolling outlet thickness, which is the set calculated value of the rolling mill, i is the stand number, and i is 12, … M, M being a natural number;
next, the strip wedge deflection is measured at the outlet of the finishing mill by
Figure FSA000001959548000210
The dispersion is distributed to each of the finishing stands, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein,
Figure FSA000001959548000212
i, a corrected value of the wedge shape of the strip at the outlet of the rack;
(5) leveling and controlling the roll gap of each frame: the roll gap leveling value Δ L can be obtained by the following equation, that is,
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;L</mi><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,
Figure FSA000001959548000214
the influence coefficient, eta, of the roll gap leveling at the edge of the strip on the wedge shape of the stripi(T) is the wedge inheritance coefficient of the strip, and each finishing mill frame adjusts the roll gap of the roll according to the obtained roll gap leveling value delta L;
through the steps, the wedge-shaped adjustment work is completed.
6. Automatic crown and/or wedge control system of a hot-rolled tandem rolling mill according to claim 1, characterized in that: the process for realizing the automatic convexity control in the long axis direction of the strip material comprises the following steps:
(1) strip crown measurement and control: when the head of the strip reaches the outlet of the finishing mill, the strip shape, the wedge shape and the convexity are measured at regular time, and the average value of the strip shape, the wedge shape and the convexity is calculated in real time by a convexity and/or wedge control device, wherein the average value of the measured values of the convexity of the strip at the outlet of the finishing mill
Figure FSA00000195954800031
Is derived from the following formula:
C M R , MEAS ( T ) = h C MEAS - h WS MEAS ( T ) + h DS MEAS ( T ) 2
in the above formula, the first and second carbon atoms are,
Figure FSA00000195954800033
is a measured value of the center thickness of the strip width,is a measured stripThe value of the thickness at the working-side width edge,the measured thickness value of the width edge of the transmission side of the strip material;
(2) calculating the convexity deviation of the strip of the final frame: calculating the convexity deviation of the strip at the outlet of the finish rolling according to the following formula
Figure FSA00000195954800036
That is to say that the first and second electrodes,
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>C</mi><mi>M</mi><mrow><mi>R</mi><mo>,</mo><mi>MEAS</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>C</mi><mi>M</mi><mrow><mi>R</mi><mo>,</mo><mi>REF</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,is the target finish rolling outlet strip convexity;
(3) convexity deviation distribution: deviation of the convexity of the strip at the outlet of the finish rolling
Figure FSA00000195954800039
The distribution to the individual racks is made by, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein i is a rack number, and i is 1, 2, … M, M is a natural number, hiIs the thickness of the strip at the exit of the ith stand, KiIs the coefficient of the proportional convexity,
Figure FSA000001959548000311
namely the corrected value of the convexity of the strip at the outlet of each machine frame,
Figure FSA000001959548000312
the corrected value of the convexity of the strip at the finish rolling outlet is also obtained;
(4) adjusting the bending force of the working rolls of each frame:
the bending force control value deltaF of each machine frame working roll is calculated by the following formulai(ton/side):
<math><mrow><msub><mi>&Delta;F</mi><mi>i</mi></msub><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mtext>T</mtext><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
While <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msub><mi>F</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
Wherein,is the influence coefficient of the strip convexity on the bending force of the working roll, and eta (T) is the inheritance coefficient of the strip convexity and is substituted into
<math><mrow><mi>&Delta;</mi><msubsup><mi>F</mi><mi>i</mi><mi>CTL</mi></msubsup><mo>=</mo><msub><mi>&Delta;F</mi><mi>i</mi></msub></mrow></math>
Obtaining the control value of the bending force of each frame working roll
Figure FSA000001959548000317
The working roll bending system of each frame adjusts the bending force of the working roll according to the bending force control value of the working roll;
through the steps, the convexity adjusting work is completed.
7. Automatic crown and/or wedge control system for a hot-rolled tandem rolling mill according to claim 1 or 4, characterized in that: the strip shape and wedge and/or crown measuring device comprises a shape meter, a wedge and/or crown measuring meter.
8. The automatic crown and/or wedge control system for a hot rolling tandem mill according to any one of claims 1 to 6, wherein: the convexity and/or wedge control means employs a programmable logic controller.
9. A method for automatically controlling the crown and/or wedge of a hot rolling tandem rolling mill is characterized by comprising the following steps:
in the strip steel rolling process, the convexity and/or wedge of a rolled piece are/is dynamically detected, the detected convexity and/or wedge of the rolled piece is compared with the target convexity and/or target wedge, and then the roll gap and the bending force of a working roll in each finishing mill are respectively adjusted according to the deviation value of the actual strip steel convexity and/or wedge and the target convexity and/or target wedge, so that the automatic flatness, the convexity and/or wedge of the rolled piece in the long axis direction are controlled.
10. Method for the automatic crown and/or wedge control of a hot-rolled tandem rolling mill according to claim 9, characterized in that: when the head of the strip reaches the strip shape instrument measuring device, the bending force adjustment of the working roll is started, and when the tail of the strip is cut by the flying shear, the bending force adjustment of the working roll is stopped, so that the automatic convexity control is realized.
11. Method for the automatic crown and/or wedge control of a hot-rolled tandem rolling mill according to claim 9, characterized in that: when the head of the strip enters underground to be curled and is stretched, the roll gap adjustment of the roll is started, and when the tail of the strip is cut by the flying shear, the roll gap adjustment of the roll is stopped, so that the automatic wedge control is realized.
12. Method for the automatic crown and/or wedge control of a hot-rolled tandem rolling mill according to claim 9 or 11, characterized in that: the process for realizing the automatic wedge control comprises the following steps:
(1) influence coefficient and inheritance coefficient pre-input: calculating influence coefficients and succession coefficients off-line according to the deformation of the rolling mill, the rolls and the strip, and inputting the influence coefficients and succession coefficients into a crown and/or wedge control device;
(2) convexity and/or wedge control input data: finishing the setting calculation of the rolling mill and the setting calculation of the plate shape, and then inputting the calculation result and the strip characteristic information into a convexity and/or wedge control device;
(3) convexity and/or wedge control device plate shape, wedge, convexity measurement: when the head of the strip reaches the outlet of the finishing mill, the shape, the wedge shape and the convexity of the strip are measured at regular time, and the convexity and/or wedge shape control device calculates the data average value of the shape, the wedge shape and the convexity of the strip in real time, wherein the wedge shape of the strip at the outlet of the finishing mill
Figure FSA00000195954800041
The following is a formula, that is,
<math><mrow><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mi>M</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>h</mi><mi>WS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>h</mi><mi>DS</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
wherein,
Figure FSA00000195954800043
is the measured thickness value at the edge of the width of the working side of the strip,
Figure FSA00000195954800044
the measured thickness value of the width edge of the transmission side of the strip material;
(4) wedge deviation distribution: by horizontally adjusting finishing mill F1-FMFor stands to eliminate deviation of finishing mill exit wedge
Figure FSA00000195954800051
While <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>Wedge</mi><mi>M</mi><mi>MEAS</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
The method comprises the following steps:
firstly, calculating the convexity of a target strip at the outlet of each rack by setting and calculating the shape of the strip to obtain the convexity of a target strip at the outlet of a finish rolling mill
Figure FSA00000195954800053
And the strip convexity of the exit of the target frame
Figure FSA00000195954800054
And calculating the coefficient of convexity K of the unit strip by the following formulai
<math><mrow><mfrac><msubsup><mi>C</mi><mi>i</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><msubsup><mi>C</mi><mi>M</mi><mi>REF</mi></msubsup><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
Wherein h isMIs the finish rolling outlet thickness, which is the rolling mill set calculated value, i is the stand number, and i is 1, 2, … M, M is a natural number;
next, the strip wedge deflection is measured at the outlet of the finishing mill by
Figure FSA00000195954800056
The dispersion is distributed to each of the finishing stands, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein,
Figure FSA00000195954800058
i, a corrected value of the wedge shape of the strip at the outlet of the rack;
(5) leveling and controlling the roll gap of each frame: the roll gap leveling value Δ L can be obtained by the following equation, that is,
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>L</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;L</mi><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>Wedge</mi></msubsup><mrow><mo>(</mo><mtext>T</mtext><mo>)</mo></mrow></mrow></math>
wherein,
Figure FSA000001959548000510
the influence coefficient, eta, of the roll gap leveling at the edge of the strip on the wedge shape of the stripi(T) is the wedge inheritance coefficient of the strip, and each finishing mill frame adjusts the roll gap of the roll according to the obtained roll gap leveling value delta L;
through the steps, the wedge-shaped adjustment work is completed.
13. Method for the automatic crown and/or wedge control of a hot-rolled tandem rolling mill according to claim 12, characterized in that: according to the method, roll gap leveling values of all finish rolling stands are automatically stored as a roll gap preset value of the next strip steel when the last strip steel is subjected to tail cutting, and all the roll gap leveling values are automatically reset after the rolls of the rolling mill are changed.
14. Method for the automatic crown and/or wedge control of a hot-rolled tandem rolling mill according to claim 9 or 10, characterized in that: the process for realizing automatic convexity control comprises the following steps:
(1) strip crown measurement and control: when the strip head reaches the outlet of the finishing mill, the strip shape, wedge shape and convexity are measured at regular time, and the average value of the strip shape, wedge shape and convexity data is calculated by a convexity and/or wedge shape control device, wherein the average value of the measured values of the strip convexity at the outlet of the finishing mill
Figure FSA000001959548000511
Is derived from the following formula:
C M R , MEAS ( T ) = h C MEAS - h WS MEAS ( T ) + h DS MEAS ( T ) 2
in the above formula, the first and second carbon atoms are,
Figure FSA00000195954800062
is a measured value of the center thickness of the strip width,
Figure FSA00000195954800063
is the measured thickness value at the edge of the width of the working side of the strip,the measured thickness value of the width edge of the transmission side of the strip material;
(2) calculating the convexity deviation of the strip of the final frame: calculating the convexity deviation of the strip at the outlet of the finish rolling according to the following formula
Figure FSA00000195954800065
That is to say that the first and second electrodes,
<math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>C</mi><mi>M</mi><mrow><mi>R</mi><mo>,</mo><mi>MEAS</mi></mrow></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msubsup><mi>C</mi><mi>M</mi><mrow><mi>R</mi><mo>,</mo><mi>REF</mi></mrow></msubsup><mrow><mo>(</mo><mtext>T</mtext><mo>)</mo></mrow></mrow></math>
wherein,
Figure FSA00000195954800067
is the target finish rolling outlet strip convexity;
(3) convexity deviation distribution: deviation of the convexity of the strip at the outlet of the finish rolling
Figure FSA00000195954800068
The distribution to the individual racks is made by, that is,
<math><mrow><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>i</mi></msub></mfrac><mo>=</mo><msub><mi>K</mi><mi>i</mi></msub><mo>&CenterDot;</mo><mfrac><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>M</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow><msub><mi>h</mi><mi>M</mi></msub></mfrac></mrow></math>
wherein i is a rack number, and i is 1, 2, … M, M is a natural number, hiIs the thickness of the strip at the exit of the ith stand, KiIs the coefficient of the proportional convexity,
Figure FSA000001959548000610
i.e. the convexity of the strip at the outlet of each machine frame is repairedA positive value of the amount of the first positive,
Figure FSA000001959548000611
the corrected value of the convexity of the strip at the finish rolling outlet is also obtained;
(4) adjusting the bending force of the working rolls of each frame:
the bending force control value deltaF of each machine frame working roll is calculated by the following formulai(ton/side):
<math><mrow><mi>&Delta;</mi><msub><mi>F</mi><mi>i</mi></msub><mfrac><mn>1</mn><mrow><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></mfrac><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
While <math><mrow><mi>&Delta;</mi><msubsup><mi>C</mi><mi>i</mi><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&alpha;</mi><mi>i</mi><mi>B</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msub><mi>F</mi><mi>i</mi></msub><mo>+</mo><msub><mi>&eta;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mi>&Delta;</mi><msubsup><mi>C</mi><mrow><mo>(</mo><mi>i</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>R</mi></msubsup><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math>
Wherein,
Figure FSA000001959548000614
is the influence coefficient of the strip convexity on the bending force of the working roll, and eta (T) is the inheritance coefficient of the strip convexity and is substituted into
<math><mrow><mi>&Delta;</mi><msubsup><mi>F</mi><mi>i</mi><mi>CTL</mi></msubsup><mo>=</mo><msub><mi>&Delta;F</mi><mi>i</mi></msub></mrow></math>
Obtaining the control value of the bending force of each frame working roll
Figure FSA000001959548000616
The working roll bending system of each frame adjusts the bending force of the working roll according to the bending force control value of the working roll;
through the steps, the convexity adjusting work is completed.
CN 201010230419 2010-07-20 2010-07-20 Automatic convexity and/or wedge control method and system for hot rolling tandem type rolling mill Active CN101890435B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010230419 CN101890435B (en) 2010-07-20 2010-07-20 Automatic convexity and/or wedge control method and system for hot rolling tandem type rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010230419 CN101890435B (en) 2010-07-20 2010-07-20 Automatic convexity and/or wedge control method and system for hot rolling tandem type rolling mill

Publications (2)

Publication Number Publication Date
CN101890435A true CN101890435A (en) 2010-11-24
CN101890435B CN101890435B (en) 2012-12-12

Family

ID=43099869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010230419 Active CN101890435B (en) 2010-07-20 2010-07-20 Automatic convexity and/or wedge control method and system for hot rolling tandem type rolling mill

Country Status (1)

Country Link
CN (1) CN101890435B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172635A (en) * 2011-01-13 2011-09-07 宁波钢铁有限公司 Method for controlling shape of cross section of hot rolled steel strip used for rolling ultrathin plate by reversing cold mill
CN102641899A (en) * 2012-04-16 2012-08-22 唐山钢铁集团微尔自动化有限公司 Method for improving gauge setting and dynamic controlling precision of rolling mill by using feedback data
CN103920719A (en) * 2013-01-11 2014-07-16 宝山钢铁股份有限公司 Method for controlling convexity of hot rolled plate shape
CN104096714A (en) * 2013-04-11 2014-10-15 宝山钢铁股份有限公司 Automatic convexity control method for hot-rolled strip steel
CN104226696A (en) * 2014-09-09 2014-12-24 河北钢铁股份有限公司邯郸分公司 Method for preventing flat cross grain of cold-rolled strip steel in online way
CN104438421A (en) * 2014-09-11 2015-03-25 江苏省沙钢钢铁研究院有限公司 Control method for cover annealing bonding of smooth roll cold-rolled strip steel
CN104511482A (en) * 2013-09-26 2015-04-15 宝山钢铁股份有限公司 Hot rolled strip steel convexity control method
CN104772340A (en) * 2014-01-15 2015-07-15 宝山钢铁股份有限公司 Warning control method for abnormal fluctuations of incoming hot rolled slab convexity and wedge shape
CN104785536A (en) * 2014-01-21 2015-07-22 宝山钢铁股份有限公司 Method for restraining convexity fluctuation in watermark point of hot-rolled steep strip
CN105013834A (en) * 2015-07-20 2015-11-04 北京首钢股份有限公司 Finishing mill stand adjustment method and rolling line control system
CN105327946A (en) * 2015-11-11 2016-02-17 北京首钢股份有限公司 Convexity effectiveness judging method and system for feedback calculation of plate shape model
CN106269908A (en) * 2015-05-27 2017-01-04 宝山钢铁股份有限公司 Strip steel wedge shape autocontrol method based on heredity
CN106475424A (en) * 2015-08-25 2017-03-08 宝山钢铁股份有限公司 A kind of control method of Hot Rolling Strip sideslip
CN108500067A (en) * 2018-04-11 2018-09-07 攀钢集团攀枝花钢钒有限公司 The plate shape method of adjustment of hot-continuous-rolling strip steel
CN109513750A (en) * 2018-11-06 2019-03-26 首钢集团有限公司 It is a kind of to take into account the crown feedback method that shape wave is adjusted between rack
CN110722006A (en) * 2018-07-17 2020-01-24 东芝三菱电机产业系统株式会社 Wedge-shaped control device of hot rolling production line
CN110947788A (en) * 2019-11-29 2020-04-03 浙江摩多巴克斯科技股份有限公司 Welded pipe production line capable of realizing full-station high-precision automatic online detection
CN115026136A (en) * 2022-08-11 2022-09-09 东北大学 Method for predicting plate shape of endless rolling wedge-shaped transition process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108356A1 (en) * 2006-03-17 2007-09-27 Mitsubishi-Hitachi Metals Machinery, Inc. Cold continuous rolling facility
CN101134207A (en) * 2006-08-28 2008-03-05 宝山钢铁股份有限公司 Processing method of the hot rolling arrived material convexity in the computing of cold rolled sheet shape initialization
CN201720260U (en) * 2010-07-20 2011-01-26 江苏省沙钢钢铁研究院有限公司 Automatic convexity and/or wedge control system of hot rolling tandem type rolling mill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108356A1 (en) * 2006-03-17 2007-09-27 Mitsubishi-Hitachi Metals Machinery, Inc. Cold continuous rolling facility
CN101134207A (en) * 2006-08-28 2008-03-05 宝山钢铁股份有限公司 Processing method of the hot rolling arrived material convexity in the computing of cold rolled sheet shape initialization
CN201720260U (en) * 2010-07-20 2011-01-26 江苏省沙钢钢铁研究院有限公司 Automatic convexity and/or wedge control system of hot rolling tandem type rolling mill

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172635A (en) * 2011-01-13 2011-09-07 宁波钢铁有限公司 Method for controlling shape of cross section of hot rolled steel strip used for rolling ultrathin plate by reversing cold mill
CN102641899A (en) * 2012-04-16 2012-08-22 唐山钢铁集团微尔自动化有限公司 Method for improving gauge setting and dynamic controlling precision of rolling mill by using feedback data
CN102641899B (en) * 2012-04-16 2014-05-28 唐山钢铁集团微尔自动化有限公司 Method for improving gauge setting and dynamic controlling precision of rolling mill by using feedback data
CN103920719B (en) * 2013-01-11 2015-12-02 宝山钢铁股份有限公司 The convex degree control method of hot rolled plate shape
CN103920719A (en) * 2013-01-11 2014-07-16 宝山钢铁股份有限公司 Method for controlling convexity of hot rolled plate shape
CN104096714A (en) * 2013-04-11 2014-10-15 宝山钢铁股份有限公司 Automatic convexity control method for hot-rolled strip steel
CN104096714B (en) * 2013-04-11 2016-06-29 宝山钢铁股份有限公司 A kind of hot-strip convexity autocontrol method
CN104511482B (en) * 2013-09-26 2016-08-24 宝山钢铁股份有限公司 A kind of hot-strip convex degree control method
CN104511482A (en) * 2013-09-26 2015-04-15 宝山钢铁股份有限公司 Hot rolled strip steel convexity control method
CN104772340A (en) * 2014-01-15 2015-07-15 宝山钢铁股份有限公司 Warning control method for abnormal fluctuations of incoming hot rolled slab convexity and wedge shape
CN104785536A (en) * 2014-01-21 2015-07-22 宝山钢铁股份有限公司 Method for restraining convexity fluctuation in watermark point of hot-rolled steep strip
CN104226696B (en) * 2014-09-09 2016-06-01 河北钢铁股份有限公司邯郸分公司 A kind of method preventing the smooth twill of cold rolled strip from occurring online
CN104226696A (en) * 2014-09-09 2014-12-24 河北钢铁股份有限公司邯郸分公司 Method for preventing flat cross grain of cold-rolled strip steel in online way
CN104438421B (en) * 2014-09-11 2016-06-15 江苏省沙钢钢铁研究院有限公司 Control method for cover annealing bonding of smooth roll cold-rolled strip steel
CN104438421A (en) * 2014-09-11 2015-03-25 江苏省沙钢钢铁研究院有限公司 Control method for cover annealing bonding of smooth roll cold-rolled strip steel
CN106269908A (en) * 2015-05-27 2017-01-04 宝山钢铁股份有限公司 Strip steel wedge shape autocontrol method based on heredity
CN105013834A (en) * 2015-07-20 2015-11-04 北京首钢股份有限公司 Finishing mill stand adjustment method and rolling line control system
CN105013834B (en) * 2015-07-20 2017-07-25 北京首钢股份有限公司 A kind of finishing stand method of adjustment and roll line control system
CN106475424A (en) * 2015-08-25 2017-03-08 宝山钢铁股份有限公司 A kind of control method of Hot Rolling Strip sideslip
CN105327946A (en) * 2015-11-11 2016-02-17 北京首钢股份有限公司 Convexity effectiveness judging method and system for feedback calculation of plate shape model
CN105327946B (en) * 2015-11-11 2017-10-03 北京首钢股份有限公司 A kind of shape models feed back the decision method and system of calculating convexity validity
CN108500067A (en) * 2018-04-11 2018-09-07 攀钢集团攀枝花钢钒有限公司 The plate shape method of adjustment of hot-continuous-rolling strip steel
CN108500067B (en) * 2018-04-11 2020-02-04 攀钢集团攀枝花钢钒有限公司 Strip shape adjusting method for hot continuous rolling strip steel
CN110722006A (en) * 2018-07-17 2020-01-24 东芝三菱电机产业系统株式会社 Wedge-shaped control device of hot rolling production line
CN109513750A (en) * 2018-11-06 2019-03-26 首钢集团有限公司 It is a kind of to take into account the crown feedback method that shape wave is adjusted between rack
CN110947788A (en) * 2019-11-29 2020-04-03 浙江摩多巴克斯科技股份有限公司 Welded pipe production line capable of realizing full-station high-precision automatic online detection
CN115026136A (en) * 2022-08-11 2022-09-09 东北大学 Method for predicting plate shape of endless rolling wedge-shaped transition process

Also Published As

Publication number Publication date
CN101890435B (en) 2012-12-12

Similar Documents

Publication Publication Date Title
CN101890435B (en) Automatic convexity and/or wedge control method and system for hot rolling tandem type rolling mill
CN201720260U (en) Automatic convexity and/or wedge control system of hot rolling tandem type rolling mill
CN104511482B (en) A kind of hot-strip convex degree control method
CN104384199B (en) A kind of control method during cold continuous rolling dynamic variable specification
CN109570241B (en) Wedge-shaped control method with deviation protection
CN104096714B (en) A kind of hot-strip convexity autocontrol method
CN101966535B (en) Cold rolling strip shape forward control setting method based on incoming material plate profile
CN102303050B (en) Rough-rolling width self-learning method
CN105268747B (en) Hot rolled strip convexity on-line closed loop control method
US5875663A (en) Rolling method and rolling mill of strip for reducing edge drop
CN104942019B (en) A kind of cold rolling of strip steel process Automatic control method of width
CN101745549B (en) Method for controlling steel feeding temperature of band steel of hot strip mill
CN102688898B (en) Control method for strip shape in rolling of cold-rolling strip steel by two-stand temper mill
CN103071683B (en) Comprehensive adjustment rolling technology for double-frame S-shaped four-roll cold rolling mill
CN102029294A (en) Control method of lateral thick difference of cold-rolling strip steels
CN103962391A (en) Rolling load optimization method for hot continuous finishing mill group
JP4685777B2 (en) Wedge setting and control method in sheet metal rolling
CN104275352A (en) Cold stripe mill deviation and shape automatic control method
CN103752623A (en) Automatic control method for improving camber of rough mill intermediate billet
CN103949481A (en) Flatness subsection control method considering both rolling stability and quality of hot rolling band steel
CN102581024B (en) Control method for full-length fluctuation of steel rail height
Gasiyarov et al. Correcting electric motor drive speed of plate mill stand in profiled sheet rolling
CN102601124A (en) Method for controlling bottom width full-length fluctuation of steel rail
CN106269908B (en) Strip wedge shape autocontrol method based on heredity
JPH04167910A (en) Method and apparatus for controlling rolling mill

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Automatic control method and system of crown and / or wedge of hot rolling tandem mill

Effective date of registration: 20220721

Granted publication date: 20121212

Pledgee: China Construction Bank Zhangjiagang branch

Pledgor: INSTITUTE OF RESEARCH OF IRON & STEEL,SHAGANG,JIANGSU PROVINCE

Registration number: Y2022320010411