CN101887936A - 一种铟砷量子点有源区结构及发光器件 - Google Patents

一种铟砷量子点有源区结构及发光器件 Download PDF

Info

Publication number
CN101887936A
CN101887936A CN 201010186606 CN201010186606A CN101887936A CN 101887936 A CN101887936 A CN 101887936A CN 201010186606 CN201010186606 CN 201010186606 CN 201010186606 A CN201010186606 A CN 201010186606A CN 101887936 A CN101887936 A CN 101887936A
Authority
CN
China
Prior art keywords
quantum dot
layer
indium
arsenic
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010186606
Other languages
English (en)
Inventor
黄黎蓉
费淑萍
田芃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN 201010186606 priority Critical patent/CN101887936A/zh
Publication of CN101887936A publication Critical patent/CN101887936A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

本发明涉及铟砷量子点有源区结构,它包含n个铟砷量子点层(1),n≥1,n为自然数;每一个铟砷量子点层(1)中都自下而上依次外延生长In组分线性增加的InGaAs层、InAs量子点层、In组分线性减小的InGaAs层、盖层。本发明还涉及铟砷量子点发光器件,它是在镓砷衬底上由下至上依次外延生长镓砷缓冲层、下包层、下限制波导层、铟砷量子点有源区结构、上限制波导层、上包层、欧姆接触层。本发明可以减小铟砷量子点所承受的压应力、抑制量子点中的铟析出、减小量子点有源区结构的积累应变、减小缺陷和位错,因此,铟砷量子点及相应的发光器件具有较大的发光效率和发光强度。

Description

一种铟砷量子点有源区结构及发光器件
技术领域
本发明涉及铟砷(InAs)量子点发光器件,具体包括InAs量子点半导体激光器、半导体发光二极管、超辐射发光管以及半导体光放大器。
背景技术
量子点结构是目前能带工程的一个重要组成部分,也是研究的前沿热点。与体材料、量子阱和量子线相比,量子点作为一种零维半导体材料,具有类似于原子的分离能级和态密度分布,载流子在三个维度上都受到了很强的量子限制作用,其电学性质和光学性质得到显著改善。因此,采用量子点有源区结构的半导体激光器、半导体发光二极管、超辐射发光管和半导体光放大器等发光器件可以获得诸多优越的性能。比如,与其他半导体激光器相比,量子点激光器具有更低的阈值电流密度和噪声强度、更高的特征温度和增益、优异的动态调制特性。与采用体材料、量子阱或者量子线有源区结构的半导体光放大器相比,量子点半导体光放大器具有高的材料增益、高微分增益、大饱和输出功率、超快的增益恢复时间、极低的线宽加强因子、低噪声指数等优越性能,可以对高速率光信号实现无码型效应的光放大和信号处理,能够更好地满足光网络对高比特率的要求。而量子点超辐射发光管则具有宽的发射谱和较大的发光功率。
1.3微米和1.5微米波段分别是光纤通信的第二窗口和第三窗口。对于这两个波段的量子点发光器件,适合的半导体材料体系有镓砷(GaAs)基以及铟磷基。对于以GaAs为衬底的铟砷(InAs)量子点来说,InAs与GaAs之间存在高达7%的压应变,压应变和量子限制效应都具有增大等效带隙、减小发射波长的效果;另外,大的晶格失配度不利于获得尺寸较大的量子点,这也不利于增大发射波长。因此,以GaAs为衬底的InAs量子点的发射波长一般在1.1~1.28微米,很难获得1.3微米波段以及1.5微米波段的发光器件。这显然无法满足光纤通信对该波段半导体激光器、半导体光放大器等发光器件的需求,需采取方案将InAs量子点的发光波长红移到1.3微米波段及以上。
影响InAs量子点发光波长的因素主要包括量子点的尺寸、量子点周围的势垒层材料和应力分布情况。因此,发光波长的调控主要是围绕上述因素进行的。具体来说,延伸发光波长至1.3微米及以上波段的常用方法有如下几种:
①调控量子点生长工艺参数以增加量子点的尺寸,这样可以增大发光波长。
该方法中,量子点的尺寸增大伴随着量子点密度的降低,因此发光波长的增大是以牺牲发光强度为代价的。
②采用多层量子点堆垛结构得到柱状量子点以延伸发光波长。
该方法的工艺控制难度较大,重复性和可靠性不太好。
③采用镓氮砷(GaNAs)应力补偿层作为量子点的盖层来延伸发光波长。GaNAs盖层中的剩余张应力可以有效补偿InAs量子点中的压应力,起到显著延伸量子点发光波长的作用。
该方法中的GaNAs材料由于涉及到氮元素,生长较为困难。
④在量子点下层生长InGaAs应力缓冲层、或者在量子点的上层生长InGaAs应力减少层、或者将量子点生长在InGaAs量子阱中,形成所谓的阱中量子点结构(DWELL:Dots-in-a-Well)结构。因为InGaAs的引入可以减小InAs量子点的压应力、抑制InAs量子点中的铟(In)析出,所以量子点的发射波长获得有效的增大。
该方法在铟砷量子点的下层引入InGaAs应力缓冲层或者在上层引进InGaAs应力减少层以获得发光波长的延伸,这是获得光纤通信中1.3微米波段量子点发光器件的最常用方法。
采用方法④在GaAs衬底上制作的InAs量子点,其发光波长不仅延伸到了1.3微米波段,还进一步扩展到了1.5微米波段。然而,在方法④中,InAs量子点上层以及下层的InxGa1-xAs层的铟(In)组分x都是固定不变的。为了获得较大波长的发射,需要增大InxGa1-xAs中的In组分x,而较大的In组分会伴随发光性能的恶化。这是因为一方面,较大的In组分会导致量子点周围的压应力过大、从而导致缺陷和穿透位错的形成,这些非辐射复合中心使得量子点的发光效率和发光强度急剧降低,这种情况在生长多层量子点的时候会变得更加突出【参考文献M.Gutiérrez,M.Hopkinson,H.Y.Liu,M.Herrera,D.González,R.García,Effect of thegrowth parameters on the structure and morphology of InAs/InGaAs/GaAs DWELL quantum dotstructures.Journal of Crystal Growth,Volume 278(2005),page151-155】。另一方面,InxGa1-xAs的In组分x过大也会降低InAs量子点的势垒高度,量子限制作用减弱,从而导致发光强度降低【参考文献Zongyou Yin and Xiaohong Tang,Effects of InxGa1-xAs matrix layer on InAsquantum dot formation and their emission wavelength.Journal of Applied Physics Letters.Volume100(2006),page 033109】。
发明内容
本发明所要解决的技术问题是:针对上述问题,提供一种InAs量子点有源区结构及相应的发光器件,它们可以在获得较大波长光发射的同时又不至于伴随发光强度的急剧下降。
本发明解决其技术问题采用以下的技术方案:
本发明提供的铟砷量子点有源区结构,它包含n个铟砷量子点层,n≥1,n为自然数;每一个铟砷量子点层中都自下而上依次外延生长In组分线性增加的InGaAs层、InAs量子点层、In组分线性减小的InGaAs层、盖层。
所述盖层可以由在单一生长条件下得到的单层材料构成,所述单层材料为镓砷、铝镓砷、镓磷或铟镓磷。该盖层也可以是在不同生长条件下获得的多层材料构成,其包括:在低温生长的GaAs层和在高温生长的GaAs层构成,或者由GaAs和GaP两层材料构成。
所述In组分线性增加的InGaAs层,其可以是其中的In组分x随其生长厚度线性增加的InxGa1-xAs应力缓冲层,其中:x的值在该层中是逐步地线性增加,其取值下限不小于0、取值上限不大于1
所述In组分线性减小的InGaAs层,其可以是其中的In组分x随其生长厚度线性减小的InxGa1-xAs应力减少层,其中:x的值在该层中是逐步地线性减小,其取值下限不小于0、取值上限不大于1。
本发明提供的铟砷量子点发光器件,设有镓砷衬底,在镓砷衬底上由下至上依次外延生长镓砷缓冲层、下包层、下限制波导层、量子点有源区、上限制波导层、上包层、欧姆接触层,所述的量子点有源区采用上述的铟砷量子点有源区结构。
所述的铟砷量子点发光器件可以是半导体激光器、半导体发光二极管、超辐射发光管或半导体光放大器。它们可以采用金属有机化学气相沉积、分子束外延、原子层外延、化学束外延生长方法中的一种,或者多种外延生长方法得到。
本发明与现有技术相比具有以下主要优点:
InAs量子点上层以及下层的InxGa1-xAs中的In组分线性变化,可以减小InAs量子点所承受的压应力,更好地抑制量子点中的In析出,减少量子点有源区结构的积累应变,减少量子点中的缺陷和位错的形成。
由实验可知:对一个两层的InAs量子点有源区结构,通过金属有机化学气相沉积设备外延生长了样品A和样品B。二者的其他结构和生长参数一样,区别是在样品A中,InGaAs的In组分固定为0.17;而在样品B中,InAs量子点下层InGaAs的In组分由0.15线性增加到0.19,InAs量子点上层InGaAs的In组分由0.19线性减小到0.15。光致发光谱的实验结果表明,量子点基态发射的峰值波长在样品A和样品B中基本相同;两个样品的激发态发射的峰值波长也基本一致,但是样品B总的发光强度是样品A的1.32倍,样品B基态发射的峰值强度是样品A的1.43倍,样品B激发态发射的峰值强度是样品A的1.35倍。
因此,采用本发明的InAs量子点及其相应的发光器件具有较大的发光效率和发光强度。
附图说明
图1为本发明InAs量子点有源区结构的一个实施例结构示意图。
图2为本发明的具有InAs量子点有源区结构的发光器件的一种结构示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步说明。
实施例1.InAs量子点有源区结构
所述InAs量子点有源区结构,如图1所示:其包含n个InAs量子点层1,n≥1。为了简化,在图1中只画出了两个InAs量子点层,其它以“.”表示。在实际的InAs量子点有源区结构中,经常不只是一个量子点层,而是要采用多个量子点层才能获得大的增益和发光强度,这时候量子点有源区结构就会包含多个如图1所示的InAs量子点层1。
对每一个InAs量子点层1,如图1所示:它自下而上依次外延生长In组分线性增加的InGaAs层、InAs量子点层、In组分线性减小的InGaAs层、盖层。
所述盖层可以由在单一生长条件下得到的单层材料构成,比如镓砷(GaAs)、铝镓砷、镓磷(GaP)、铟镓磷等。盖层也可以是在不同生长条件下获得的多层材料构成,比如,在低温生长的GaAs层和在高温生长的GaAs层构成,或者由GaAs和GaP两层材料构成。
在InAs量子点有源区结构中,InAs量子点层1的上层以及下层的InxGa1-xAs层的In组分并不是固定不变的,而是线性变化的。具体来说,就是在InAs量子点下层的InxGa1-xAs中,In组分x线性增加;而在InAs量子点上层的InxGa1-xAs中,In组分x线性减小。
所述In组分线性增加的InGaAs层是其中的In组分x随其生长厚度线性增加的InxGa1-xAs应力缓冲层。也就是说,x的值在该层中是逐步地线性增加,比如x从0.15线性增加到0.35。In组分x的线性变化在金属有机化学气相沉积、分子束外延、原子层外延以及化学束外延等生长设备中都是很容易实现的。由于x代表了In组分的比例,所以其取值下限不小于0、取值上限不大于1。
所述In组分线性减小的InGaAs层是其中的In组分x随其生长厚度线性减小的InxGa1-xAs应力减少层。也就是说,x的值在该层中是逐步地线性减小,比如x从0.35线性减小到0.15。
在所述的InAs量子点有源区结构中,处于下层的InAs量子点层1的应变将对其上层的InAs量子点层1的量子点的成核和结构特性产生影响。当这种应变积累较大时,就会导致上层量子点产生大的岛状物、这些大岛属于缺陷和非辐射复合中心,会导致量子点以及相应发光器件的发光效率和强度下降。在多层量子点的生长中还有可能由此形成穿透多层的所谓穿透位错,从而使得量子点以及相应器件的晶体质量急剧恶化,发光效率和强度急剧下降【参考文献M.Gutiérrez,M.Hopkinson,H.Y.Liu,M.Herrera,D.González,R.García,Effect of thegrowth parameters on the structure and morphology of InAs/InGaAs/GaAs DWELL quantum dotstructures.Journal of Crystal Growth,Volume 278(2005),page151-155】。所以,对于多层量子点结构以及相应的发光器件来说,随着量子点层数增加,材料中积累的应变也随之增加,缺陷和位错数目显著增加,晶体生长质量会急剧恶化、发光效率和强度都会急剧下降【参考文献Tao Yang,Jun Tatebayashi,Masao Nishioka,Yasuhiko Arakawa,Effects of accumulated strainon the surface and optical properties of stacked 1.3 InAs/GaAs quantum dot structures.PhysicaE,Volume 40(2008),Page 2182-2184】。
晶格常数是半导体材料的重要常数之一。当材料之间的晶格常数相差越大,由此导致的晶格失配也越大,材料中积累的应变就会越大。因此,量子点上层和下层的材料选取及结构对于上述负面影响的缓解或者加剧具有很大的作用。如果选取合适的量子点上、下层材料和结构,则可以缓解这种负面影响。比如,当上、下层InGaAs材料中的In含量较大的时候,InGaAs材料的晶格常数就会与InAs的晶格参数接近一些,因而InGaAs与InAs量子点之间晶格失配的程度较小,可以避免材料中积累过大的应变,减缓缺陷和位错的出现,从而获得较大的发光效率和强度。
在本发明中,由于InAs量子点层的下层和上层材料分别采用了组分逐步变化的In组分线性增加的InGaAs层和In组分线性减小的InGaAs层,紧挨在InAs量子点层的InGaAs材料具有较大的In组分,而紧挨着盖层的InGaAs材料则具有较小的In组分,所以,不仅在InGaAs层与InAs量子点层之间的晶格失配减小,而且在InGaAs层与盖层之间的晶格失配也减小。因此,整个结构中的积累应变降低,由于应变过大而导致的缺陷以及穿透位错数目减小,量子点的晶体质量得以提高。好的晶体质量也使得量子点具有大的发光效率和发光强度。
另外,本发明还有助于减小InAs量子点层与InGaAs层以及盖层之间的In-Ga互扩散效应,抑制量子点周围的Ga原子扩散进入InAs量子点层、同时抑制InAs量子点层的In原子扩散到量子点外部去。而In-Ga互扩散效应的压制也有利于提高发光效率、防止发光波长蓝移【参考文献J.G.Cederberg,F.H.Kaatz,R.M.Biefeld,The impact of growth parameters on theformation of InAs quantum dots on GaAs(100)by MOCVD.Journal of Crystal Growth,Volume261(2004),Page 197-203】。
总之,本发明的InAs量子点有源区结构由于在InAs量子点的上、下层材料中采取了In组分线性变化的InGaAs材料,可以减小材料中的过大应变积累,获得好的晶体生长质量,并且抑制量子点中In析出和In-Ga互扩散效应,因此InAs量子点具有较大的发光效率和强度。
实施例2.InAs量子点发光器件
图2为本发明的InAs量子点发光器件的一种结构示意图,可以适用于量子点激光器、超辐射发光管、发光二极管以及半导体光放大器。图2中的量子点发光器件是在GaAs衬底上依次由下至上外延生长GaAs缓冲层、下包层、下限制波导层、量子点有源区、上限制波导层、上包层、欧姆接触层。
所述量子点有源区为InAs量子点有源区结构,其采用了图1所示的n个InAs量子点层,n≥1,这是本发明的创新点。而其他层次,即图2中的GaAs衬底、GaAs缓冲层、下包层、下限制波导层、上限制波导层、上包层、欧姆接触层,则与其他量子点激光器没有区别。
对于半导体激光器、半导体发光二极管、超辐射发光管和半导体光放大器等发光器件来说,其核心区是产生光子和放大光子的有源区。量子点发光器件与体材料、量子阱等发光器件的区别也就是在于其有源区采用了量子点结构。因此,以图1所示的InAs量子点层作为发光器件的有源区,相应发光器件也能获得好的晶体质量和发光性能。
下面结合图2详细举例介绍本发明的实施方法,其结构和外延生长步骤如下:
(1)GaAs衬底选用N型GaAs衬底,掺杂浓度在1018cm-3量级,厚度350微米。
(2)采用金属有机化学气相沉积设备在GaAs衬底上外延生长N型结构的GaAs缓冲层,掺杂浓度在1018cm-3量级,厚度300纳米。
(3)生长N型Al0.35Ga0.65As的下包层,掺杂浓度在1017-1018cm-3量级,厚度1.5微米。
(4)生长不掺杂的GaAs的下限制波导层,厚度150纳米。
(5)生长量子点有源区,它具有的InAs量子点层数为3-5层。每一个量子点层1由下至上依次含有厚度为1.5纳米的In组分线性增加的InGaAs层(其中的In组分由0.15线性地增加到0.19)、厚度为5.7埃的InAs量子点层、厚度为6纳米的In组分线性减小的InGaAs层(其中的In组分由0.19线性地减小到0.15),以及在较低温度生长的GaAs层(生长温度为550摄氏度,厚度为4.5纳米)和在较高温度下生长的GaAs层(生长温度为600摄氏度,厚度为40纳米)共同构成的盖层。其中,InGaAs中的In组分线性改变是通过控制进入反应室中In源与Ga源的摩尔流量比来实现的。
(6)生长不掺杂的GaAs的上限制波导层,厚度150纳米。
(7)生长P型Al0.35Ga0.65As的上包层,掺杂浓度在1017-1018cm-3量级,厚度1.5微米。
(8)生长P型GaAs的欧姆接触层,掺杂浓度为1019cm-3量级,厚度250纳米。
以上结构和外延生长步骤只是本发明的一种实施例,本发明并不局限于上述实施例。

Claims (8)

1.一种铟砷量子点有源区结构,其特征是它包含n个铟砷量子点层(1),n≥1,n为自然数;每一个铟砷量子点层(1)中都自下而上依次外延生长In组分线性增加的InGaAs层、InAs量子点层、In组分线性减小的InGaAs层、盖层。
2.根据权利要求1所述的铟砷量子点有源区结构,其特征是所述盖层由在单一生长条件下得到的单层材料构成,所述单层材料为镓砷、铝镓砷、镓磷或铟镓磷。
3.根据权利要求1所述的铟砷量子点有源区结构,其特征是所述盖层是在不同生长条件下获得的多层材料构成,其包括:在低温生长的GaAs层和在高温生长的GaAs层构成,或者由GaAs和GaP两层材料构成。
4.根据权利要求1所述的钢砷量子点有源区结构,其特征是所述In组分线性增加的InGaAs层是其中的In组分x随其生长厚度线性增加的InxGa1-xAs应力缓冲层,其中:x的值在该层中是逐步地线性增加,其取值下限不小于0、取值上限不大于1。
5.根据权利要求1所述的铟砷量子点有源区结构,其特征是所述In组分线性减小的InGaAs层是其中的In组分x随其生长厚度线性减小的InxGa1-xAs应力减少层,其中:x的值在该层中是逐步地线性减小,其取值下限不小于0、取值上限不大于1。
6.一种铟砷量子点发光器件,设有镓砷衬底,在镓砷衬底上由下至上依次外延生长镓砷缓冲层、下包层、下限制波导层、上限制波导层、上包层、欧姆接触层,其特征是在所述的下限制波导层和上限制波导层之间生长有量子点有源区,该量子点有源区采用权利要求1至5中任一权利要求所述的铟砷量子点有源区结构。
7.根据权利要求6所述的铟砷量子点发光器件,其特征是该发光器件采用金属有机化学气相沉积、分子束外延、原子层外延、化学束外延生长方法中的一种,或者多种外延生长方法得到。
8.根据权利要求6所述的铟砷量子点发光器件,其特征是该发光器件包含半导体激光器、半导体发光二极管、超辐射发光管或半导体光放大器。
CN 201010186606 2010-05-25 2010-05-25 一种铟砷量子点有源区结构及发光器件 Pending CN101887936A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010186606 CN101887936A (zh) 2010-05-25 2010-05-25 一种铟砷量子点有源区结构及发光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010186606 CN101887936A (zh) 2010-05-25 2010-05-25 一种铟砷量子点有源区结构及发光器件

Publications (1)

Publication Number Publication Date
CN101887936A true CN101887936A (zh) 2010-11-17

Family

ID=43073743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010186606 Pending CN101887936A (zh) 2010-05-25 2010-05-25 一种铟砷量子点有源区结构及发光器件

Country Status (1)

Country Link
CN (1) CN101887936A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097564A (zh) * 2010-11-26 2011-06-15 华中科技大学 量子点分子发光器件
CN102684070A (zh) * 2012-05-15 2012-09-19 中国科学院半导体研究所 制作砷化铟/磷化铟量子点激光器有源区的方法
CN102931271A (zh) * 2012-10-23 2013-02-13 天津三安光电有限公司 三结太阳能电池及其制备方法
CN103199438A (zh) * 2012-01-04 2013-07-10 北京邮电大学 GaAs基多层自组织量子点结构及其制备方法
CN105280763A (zh) * 2015-09-14 2016-01-27 中国科学院福建物质结构研究所 一种超辐射发光二极管的制作方法及制得的发光二极管
CN105869993A (zh) * 2016-04-07 2016-08-17 华北科技学院 抑制InAs量子点中In偏析的生长方法
CN110165552A (zh) * 2019-06-10 2019-08-23 厦门乾照半导体科技有限公司 一种具有高功率的vcsel芯片及其制备方法
CN111711075A (zh) * 2020-06-30 2020-09-25 度亘激光技术(苏州)有限公司 有源区、半导体激光器及半导体激光器的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020031900A1 (en) * 2000-09-09 2002-03-14 Korea Institute Of Science And Technology Method for aligning quantum dots and semiconductor device fabricated by using the same
US20040183062A1 (en) * 2003-03-19 2004-09-23 Shiang-Feng Tang [structure of quantum dot light emitting diode and method of fabricating the same]
EP1471582A1 (en) * 2003-03-31 2004-10-27 Ngk Insulators, Ltd. Substrate for semiconductor light-emitting element, semiconductor light-emitting element and its fabrication
WO2008035447A1 (en) * 2006-09-22 2008-03-27 Agency For Science, Technology And Research Group iii nitride white light emitting diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020031900A1 (en) * 2000-09-09 2002-03-14 Korea Institute Of Science And Technology Method for aligning quantum dots and semiconductor device fabricated by using the same
US20040183062A1 (en) * 2003-03-19 2004-09-23 Shiang-Feng Tang [structure of quantum dot light emitting diode and method of fabricating the same]
EP1471582A1 (en) * 2003-03-31 2004-10-27 Ngk Insulators, Ltd. Substrate for semiconductor light-emitting element, semiconductor light-emitting element and its fabrication
WO2008035447A1 (en) * 2006-09-22 2008-03-27 Agency For Science, Technology And Research Group iii nitride white light emitting diode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《J Nanopart Res》 20081217 Zongyou Yin et al. Photoluminescence of InAs quantum dots embedded in graded InGaAs barriers 1947-1955 1-8 第11卷, 第8期 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097564A (zh) * 2010-11-26 2011-06-15 华中科技大学 量子点分子发光器件
CN103199438A (zh) * 2012-01-04 2013-07-10 北京邮电大学 GaAs基多层自组织量子点结构及其制备方法
CN102684070A (zh) * 2012-05-15 2012-09-19 中国科学院半导体研究所 制作砷化铟/磷化铟量子点激光器有源区的方法
CN102684070B (zh) * 2012-05-15 2013-09-18 中国科学院半导体研究所 制作砷化铟/磷化铟量子点激光器有源区的方法
CN102931271A (zh) * 2012-10-23 2013-02-13 天津三安光电有限公司 三结太阳能电池及其制备方法
CN105280763A (zh) * 2015-09-14 2016-01-27 中国科学院福建物质结构研究所 一种超辐射发光二极管的制作方法及制得的发光二极管
CN105280763B (zh) * 2015-09-14 2017-08-29 中国科学院福建物质结构研究所 一种超辐射发光二极管的制作方法及制得的发光二极管
CN105869993A (zh) * 2016-04-07 2016-08-17 华北科技学院 抑制InAs量子点中In偏析的生长方法
CN110165552A (zh) * 2019-06-10 2019-08-23 厦门乾照半导体科技有限公司 一种具有高功率的vcsel芯片及其制备方法
CN111711075A (zh) * 2020-06-30 2020-09-25 度亘激光技术(苏州)有限公司 有源区、半导体激光器及半导体激光器的制作方法

Similar Documents

Publication Publication Date Title
CN101887936A (zh) 一种铟砷量子点有源区结构及发光器件
EP2843714B1 (en) Semiconductor light emitting device including hole injection layer and method of fabricating the same.
KR100482511B1 (ko) Ⅲ-질화물계 반도체 발광소자
JP4612671B2 (ja) 発光デバイス及び半導体装置
US7456423B2 (en) Quantum dot optoelectronic device having an Sb-containing overgrown layer
EP2618388B1 (en) Light-emitting diode chip
US20090179191A1 (en) AlInGaN LIGHT-EMITTING DEVICE
JPWO2004055900A1 (ja) 不均一な量子ドットを有する半導体積層構造、それを用いた発光ダイオード、半導体レーザダイオード及び半導体光増幅器並びにそれらの製造方法
WO2004008552A2 (en) Group iii nitride led with undoped cladding layer and multiple quantum well
JP2011155241A (ja) 歪平衡発光デバイス及びその製造方法
CN103337568A (zh) 应变超晶格隧道结紫外led外延结构及其制备方法
CN102097564B (zh) 量子点分子发光器件
US7375367B2 (en) Semiconductor light-emitting device having an active region with aluminum-containing layers forming the lowermost and uppermost layer
CN108091743A (zh) 一种黄光倒装led外延结构及其制备方法
JP5852660B2 (ja) 高効率なオプトエレクトロニクスのための大きなバンドギャップをもつiii−v族化合物
US7160822B2 (en) Method of forming quantum dots for extended wavelength operation
CN100364193C (zh) 无铝1.3μm铟砷/镓砷量子点激光器
CN103151710B (zh) GaAs基含B高应变量子阱及其制备方法、半导体激光器
US7358523B2 (en) Method and structure for deep well structures for long wavelength active regions
CN114038958B (zh) 发光芯片外延片及其制作方法、发光芯片
KR101051327B1 (ko) 3족 질화물 반도체 발광소자
US7023024B2 (en) Diamond based blue/UV emission source
CN108028296A (zh) 红外led
JP3903182B2 (ja) 低格子不整合系における量子ドットの形成方法および量子ドット半導体素子
CN101113328A (zh) 长波长砷化铟/砷化镓量子点材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20101117